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Abstract: Long-chain branched metallocene-catalyzed high-density polyethylenes (LCB-mHDPE)
were solution blended to obtain blends with varying degrees of branching. A high molecular LCB-
mHDPE was mixed with low molecular LCB-mHDPE at varying concentrations. The rheological
behavior of those low molecular LCB-mHDPE is similar but their molar mass and molar mass
distribution are significantly different. Those blends were characterized rheologically to study the
effects of concentration, molar mass distribution, and long-chain branching level of the low molecular
LCB-mHDPE. Owing to the ultra-long relaxation times of the high molecular LCB-mHDPE, the blends
exhibited a clearly more long-chain branched behavior than the base materials. The thermorheological
complexity analysis showed an apparent increase in the activation energies Ea determined from G′,
G”, and especially δ. Ea(δ), which for LCB-mHDPE is a peak function, turned out to produce even
more pronounced peaks than observed for LCB-mPE with narrow molar mass distribution and also
LCB-mPE with broader molar mass distribution. Thus, it is possible to estimate the molar mass
distribution from the details of the thermorheological complexity.

Keywords: polyethylenes; blends; long-chain branches; thermorheological complexity; activation
energy spectrum

1. Introduction

Polyolefins account for ca. 50% of the synthetic polymers produced worldwide, mainly
used for packaging, cable insulation, and household goods. The most commonly used
polyolefin is polyethylene (PE), chemically correctly also known as polyethene, comprising
ca. 30% of the world polymer production, mainly applied for film manufacturing and
cable sheathing. Both processes include strong elongational deformations, for which strain
hardening has proven to be essential for obtaining a stable process and a homogeneous
film or layer thickness [1,2].

The strain hardening for classical long-chain branched polyethylene, the well-known
low-density polyethylene (LDPE), is established to be very good, while for the Ziegler-
Natta polyethylene (linear low density (ZN-LLDPE) or high density (ZN-HDPE)) usually
no strain hardening, at least at high Hencky strain rates [3]

.
ε is found [1,2,4,5]. LCB-mPE

shows weak strain hardening, predominantly at low strain rates
.
ε making these materials

potentially better processable. However, in general the strain hardening of LCB-mPE is
not very high, so that the processing behavior is still not entirely on par with LDPE. The
literature on strain hardening of PE is very broad and will be discussed in detail in part II
or this paper series. To provide a simplified summary, the more LCBs are in a material (e.g.,
per 1000 C), the more strain-hardening is the material. As LCB-mPE has typically about
factor 5–10 less long-chain branches than LDPE, their strain hardening level is not as high.
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In the past, attempts have been made to blend LDPE with LLDPE (ZN-LLDPE, mostly),
which has led to a mix of both properties, i.e., the processing improved in comparison to
LLDPE, while some decrease of its mechanical advantages have to be taken into account.

In the field of analytical characterization of polymers with respect to their branching
topography, many attempts were made to characterize the branching structures, which,
however, has always suffered from the ambiguity that the effects of long-chain branching
and molar mass distribution are very similar to each other in shear rheology so that easy
approaches to characterize samples with respect to their understanding their long-chain
branching topography will not deliver reliable results for polydisperse materials. As is
well known, the relation between zero shear-rate viscosity η0 and weight-average molar
mass Mw (η0 ~ Mw

3.4) for linear polymers was found to be molar mass distribution (MMD)
independent [6–8]. However, this relation requires the determination of Mw by analytical
means, and when taking a±5% error of Mw-determination into account, only deviations by
more than 20% with respect to η0 can be considered reliable. Further, for many materials
determining an accurate Mw is not straightforward. Furthermore, especially for samples
with very broad molar mass distribution, the determination of the true Mw is far from
obvious, so that it is questioned, whether for some “exotic” molar mass distributions the
relation η0~Mw

3.4 would have to be amended with some MMD-dependent terms [9–12],
although the authors believe that it is more likely that this is not the case.

However, another rheological quantity is not dependent on the molar mass distri-
bution, while it reacts to long-chain branching–the thermorheological behavior, as long
as it follows an Arrhenius temperature dependence [13–19]. For materials following
a WLF-temperature dependence, long-chain branching does not have an influence on the
temperature dependence [20].

As already pointed out by Carella, Gotro, and Graessley in 1986 [21], the increase
of Arrhenius activation energy Ea is accompanied by thermorheological complexity, i.e.,
the failure of the time-temperature superposition. This can be explained by long-chain
branching related relaxation processes with a higher activation energy occurring relatively
close on the relaxation time scale to “normal” relaxation processes for linear chains with the
normal activation energy for the polymer under investigation (for HDPE: Ea = 27 kJ/mol.
The consequence is that the relative importance of these processes for the rheological
data as a function of, e.g., angular frequency ω varies, which leads to a non-constant
Ea and, thus, to thermorheological complexity, as the shape of the rheological functions
varies due to the temperature dependence of the shape of the relaxation (or retarda-
tion) spectrum [22]. Thermorheological complexity was previously found for long-chain
branched polyethylene (discussed below), polypropylene [23–26], hydrogenated polybuta-
diene [16,21], fluoro-polymers [27], and polylactides [28]. The authors are not aware of any
reliable publications, where long-chain branching in Arrhenius-type materials does not
lead to an increase in Ea and to thermorheological complexity. Changes in Ea can also be
caused by changes in tacticity (e.g., isotactic polypropylene has a lower Ea than syndiotactic
polypropylene [25,29]) and copolymerization (e.g., ethylene-octene copolymers typically
have Ea = 29–33 kJ/mol [16,30–36]), but those do not lead to thermorheological complexity
and will not be discussed in this paper.

Thus, to analyze the temperature dependence of LCB-materials with an Arrhenius
temperature dependence, the simplest possible way would be to ignore the thermorheo-
logical complexity and make the best global fit (using one shift factor aT per temperature),
which would be scientifically incorrect and would lead to ambiguous results [36]. e.g.,
the results would depend on the frequency range for which they were calculated. First
attempts for a proper analysis of the thermorheological complexity were presented by
Carella et al. [21] and Laun [37], who did not analyze the temperature dependence glob-
ally but locally, namely by determining the shift factors from specific values of G” and
the shear stress σ21, respectively. For LCB-mPE, the thermorheological complexity was
first described by Wood-Adams and Costeux through determining activation energies
derived from storage modulus G′, loss modulus G”, the relaxation spectrum, and η0 [15].
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Based on these initial reports, the authors systematically analyzed the thermorheological
complexity by determining the rheological spectra with high precision methods [38–42]
and shifting them slicewise [22,31,41]. However, while shifting the relaxation spectrum is
the fundamentally most meaningful way of analyzing such a complicated behavior, it is
very cumbersome to do so, as the calculation of a rheological spectrum is a highly difficult
undertaking, being easily influenced by various artefacts.

Instead, research has shown that shifting G′, G” and phase angle δ can provide insight
into different aspects of the thermorheological complexity of branched LCB-mPE [22,42].
However, at this point, the determination still suffered from the fact that the determination
of the shift factors as a function of the rheological quantity (e.g., G′, δ) still had to be done
manually. For this reason, the authors developed a protocol for determining the shift
factors by a numerical procedure and even more precisely and classified the resulting types
of thermorheological complexity [43].

Bai et al. [44] and Shen et al. [45] blended low and high molecular PE with Mw-ratios
around 2.5 and 10 and performed a basic rheological characterization, respectively. They
found a power-law mixing law; however, based on their data, their materials are linear.
Chen et al. [46] made blends of LDPE, LLDPE with an ultrahigh molecular PE and found
melt-miscibility but not in solid state. They found thermorheological complexity but did
not evaluate it. Chaudhuri et al. [47] melt blended normal HDPE with ultrahigh molecular
PE, which was synthesized in a special way that it was unentangled despite the high
molar mass in order to facilitate melt blending. This resulted in superior blend quality and
improved strain hardening.

The thermorheology of polymer blends was investigated for ZN-LLDPE/LDPE and
mLLDPE/mVLDPE (very low-density PE) blends by Dordinejad et al. [18,48]. In the case
of mLLDPE/mVLDPE-blends, the absence of long-chain branches leads to essentially
thermorheologically simple samples [48]. However, the LDPE/LLDPE blends [18] show
a clear thermorheological complexity, which is systematically changing as a function of
composition in a way that at first glance, it is possible to interpolate between the Ea-spectra
with respect to G′ and δ for each blend by using the pure blend components and a linear
mixing rule.

This paper will analyze the rheological behavior of different combinations of blends
of long-chain branched mPE, where three different low molar mass LCB-mHDPEs with
different molar mass distributions are blended with a high molar mass LCB-mHDPE at
different blending ratios. The paper focuses on understanding the thermorheological
behavior caused by the interactions in such blends.

2. Experimental
2.1. Materials and Sample Preparation

The materials used for blending were synthesized on a laboratory scale by SABIC
Limburg B.V. (Geelen, the Netherlands) using supported metallocene catalysts. All ma-
terials are polyethylene homopolymers (HDPE) to avoid any uncertainties concerning
immiscibilities due to different comonomer contents. Table 1 lists the molecular data (Mw,
Mz, Mw/Mn, and the LCB-content from SEC-MALLS) of the base materials, showing that
they vary the molar mass Mw and molar mass distribution Mw/Mn [49–53].

The solution method was chosen to avoid the known problem: it is challenging to
properly melt-mix two polymers with significantly different viscosities [51].

To reach a total mass of polymer of 5 g, it was calculated how much HDPE (A–C)
and HMW-HDPE (high molecular weight) needed to be mixed. The prepared dry blend
was then added into a round bottom flask containing 85 mL p-xylene (GC grade, Macklin,
Shanghai, China). The reflux condensation device was set up and the flask was placed
in an oil bath at 120 ◦C for stirring. The polymers were gradually dissolved, turning the
mixture transparent without any visible aggregates within 30 min. After stirring for 2 h, the
blend solution was slowly poured into a beaker containing 1.5 L deionized water, which
was continuously stirred at room temperature for 30 min to obtain HDPE polymer flocs.
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The pouring was performed so that only a thin stream or tiny drops of the solution were
added to the stirred water to make the precipitation as fast as possible and avoid possible
separation during precipitation. The formed precipitate consisted of fluffy particles with
the largest dimension of ca. 2 mm after drying.

Table 1. Molecular data of the base materials.

Material Mw [g/mol] Mz [g/mol] Mw/Mn [−] LCB from
SEC-MALLS *

HDPE A 87,000 320,000 4.2 medium
HDPE B 105,000 1,400,000 15.8 medium-strong
HDPE C 180,000 5,400,000 14.1 none

HMW-HDPE 1 460,000 930,000 3.6 weak
* The LCB-content from SEC-MALLS is given qualitatively, only, due to the uncertainties in the Zimm-Stockmayer
relation [49] and the fact that the resulting branching degrees from the Zimm-Stockmayer relation [49] are not
molar mass independent. Previous rheological investigations have shown that materials that appear linear in
SEC-MALLS can have long-chain branches in rheology [54].

The solvent of p-xylene was removed twice by washing with ethanol in a Büchner
funnel and then washed with deionized water 3 times. Following this, the blending
particles were oven-dried in vacuo at 80 ◦C for 48 h; afterward, the milky white powder
blending samples were obtained.

Table 2 contains the mixture names, which were systematically chosen according to
the scheme A–C#, where A–C stands for the low molecular partner HDPE A–C and the
#stands for the weight content of HMW-HDPE added; e.g., a mixture of 94% HDPE C and
6% HMW-HDPE is called C6.

Table 2. Designation of the blending materials.

Weight Content of
HMW-HDPE 1

Added
HDPE A HDPE B HDPE C

1% A1 B1 C1
3% A3 B3 C3
6% A6 B6 C6
9% A9 B9 C9

12% A12 B12 C12

The samples were pressed on a Beijing Future Material vacuum mold pressing machine
(FM450, Beijing, China). The diameter and thickness of the shear rheological test samples
are 25 mm and 1–1.5 mm, respectively.

2.2. Rheology

The rheological characterization was carried out on an Anton Paar MCR 702 rheometer
(Graz, Austria) equipped with a forced convection oven. All shear rheological experiments
were carried out in a nitrogen atmosphere.

The shear rheological experiments consisted of frequency sweeps in the range of
ω = 100 . . . 0.1 rad/s and a deformation γ0 of maximum 5%, which is in the linear range
of deformation for all samples. For HMW-HDPE, γ0 = 5% proved to be too high, owing to
the very high viscosity and, thus, the deformation was lowered to 1%. These experiments
were carried out at 150, 170, 190, 210, and 230 ◦C, and finally repeated at 150 ◦C to confirm
that no thermal degradation had taken place. Before each experiment, the temperature was
equilibrated within ±0.5 K of the desired temperature and followed by a waiting time of
300 s to ensure proper temperature equilibration in the sample.

The obtained data were analyzed in particular for their thermorheological complexity,
which was done by the authors’ automated method previously described in ref. [43]. In this
method, the rheological quantities selected storage modulus G′, loss modulus G”, and phase
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angle δ, are not shifted globally but slicewise to determine the Arrhenius activation energy
Ea, i.e., e.g., the activation energy Ea is determined at G′ = 10,000, 5000, and 2000 Pa [15,41].
Practically, a Matlab® script is used to perform the following steps: 1. Fit logG′(log ω),
logG”(logω), and δ(logω) with 4th or 5th order polynomials (5th order polynomials were
only used in the rare cases when a 4th order polymer was insufficient for fitting of δ(logω)),
2. Find the intersection points of these polynomials with a list of constant values of logG′,
logG”, and δ, 3. Determine the Ea for each of those constant values.

3. Results
3.1. Shear Rheological Properties
3.1.1. Base Materials

The rheological data of the blend components are given in Figure 1 and show that
HDPE A, B, and C, although differing significantly in molar mass, are relatively similar in
their rheological behavior, i.e., |η*|(ω), G′(ω), and G”(ω) are similar. The samples were cho-
sen from a larger number of materials to have different Mw, molar mass distributions and
degrees of long-chain branching, while not showing a largely different rheological behavior.
As shown in Table 1 and Figure 1, HDPE A is relatively low molecular (Mw = 87,000 g/mol)
and has a relatively high degree of long-chain branching, as becomes evident from the
high crossover frequency ωc = 201 rad/s, which would be expected for a linear polymer
with Mw = 87,000 g/mol [7], i.e., the molar masses from GPC-MALLS and the rheological
estimate are almost identical. Further, it has a non-negligible deviation from the linear
reference in the δ(|G*|)-plot, which is equivalent to the parallelism of G′(ω) and G”(ω) and
the almost constant slope of the magnitude of the complex viscosity function |η*|(ω) for
ω < 10 rad/s. The relatively narrow molar mass distribution of HDPE A combined with the
low Mw = 87,000 g/mol leads to an upturn of δ in the δ(|G*|)-plot at relatively high |G*|,
which is typical for relatively low molecular LCB-mPE [52]. For HDPE B with the some-
what higher Mw = 105,000 g/mol, the shape of the δ(|G*|)-plot has changed significantly.
Firstly, the plateau in δ is lower, but even more importantly, the upturn towards the lowest
frequencies ω (→lowest |G*|) has almost completely disappeared. This becomes more
evident when comparing the upturn with that of samples LCB-mHDPE F1 and B2, which
were reported before to have almost the same Mw (94,000 and 102,000 g/mol, respectively)
but Mw/Mn = 2 [52,53], it becomes clear that that the broader molar mass distribution of
HDPE A and in particular B leads to significantly broader transitions.

HDPE C is significantly higher in Mw (180,000 g/mol) while having almost the same
molar mass distribution Mw/Mn = 14.1 as HDPE B. The viscosity function |η*|(ω) for
ω < 10 rad/s only has a relatively low slope in comparison, so that for the lowest frequen-
cies, |η*|(ω) of HDPE C is lower than that of HDPE A and B with a higher degree of branch-
ing and a much lower molar mass. For comparison with a material with approximately
the same Mw but lower Mw/Mn, the LCB-mLLDPE F8B was chosen (Mw = 190,000 g/mol,
Mw/Mn = 2, octene content 1.8 mol%) [54,55]. The expected value of zero shear-rate viscos-
ity η0 for a linear polymer of equivalent molar mass Mw to HDPE C (Mw = 180,000 g/mol)
is ca. 80,000 Pa s, which is significantly above the viscosity |η*|(ω = 0.1 rad/s) found
for HDPE C. For sparsely long-chain branched polymers, in general, the zero shear-rate
viscosity η0 is higher than those of their linear equivalent [56]. Consequently, the high
molecular chains lead to a significant increase in the viscosity function |η*|(ω) at frequen-
cies ω� 0.1 rad/s, which is the smallest frequency ω used in this paper.
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octene as comonomer [52]. The data at other temperatures are given in Supplementary Materials Figure SI1.

HMW-HDPE shows an approximately parallel G′(ω) and G”(ω) below ω = 1 rad/s and
a δ(|G*|)-plot, where δ is decreasing with decreasing ω, i.e., dδ/dlogω > 0. Both are typical
features of very high molecular LCB-PEs with low to medium long-chain branching [53].
Owing to the high molar mass Mw and the relatively small temperature dependence of
PE, it is impossible to reach the terminal regime for such materials within a reasonable
time [52].

The thermorheological analysis for these samples was conducted following Stadler
et al.’s method [43], which will be demonstrated in the following. The temperature-
dependent dynamic-mechanical data for HDPE C (Figure 2) demonstrate that-like usually
found for LCB-mPEs-the G′(ω), G”(ω), and |η*|(ω) functions appear to be shiftable
at first glance to create a master curve. However, the δ(|G*|)-plot (Figure 2b) shows
clearly that the data are indeed thermorheologically complex, as in the region plateau,
characteristic of LCB-mPE, the δ(|G*|)-functions are temperature-dependent with the
phase angle δ exhibiting lower values at the same complex modulus magnitude |G*|.
This behavior of the sample, albeit more broad in molar mass distribution, corresponds to
a BL-material (LCB-mPE) typical behavior according to the thermorheological complexity
classification scheme [58]. Thermorheological complexity of type BL is characterized by
curve shapes on the δ(|G*|)-plots similar to the shapes shown in Figure 1b, whose data
in the plateau/shoulder region is highly temperature dependent. For those materials, the
activation energy spectrum with respect to the phase angle Ea(δ) typically show a very
prominent peak, as will be shown later (Figure 2). HDPE A and B qualitatively show the
same characteristics (Figure SI1).

The thermorheological complexity of very high molecular metallocene materials
(above Mw = 250,000 g/mol) has not been reported so far to the best of our knowledge.
HMW-HDPE shows an almost temperature-independent viscosity function (Figure 2c),
while the modulus functions show a temperature dependence, which can be explained with
the smaller dynamic range and the temperature and frequency dependence of the phase
angle. The δ(|G*|)-plots show that the higher the temperature, the higher is the phase
angle δ of the peak around 27◦, which occurs before the minimum in the δ(|G*|)-plot,
which is outside the measurement range, but has to be present in the measurement data,
according to experiences with similar materials [52,53,55]. In the case of HMW-HDPE, this
minimum and the following upturn towards δ = 90◦ is located at too small frequencies
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to be measured within a reasonable time (>1 day). Taking this somewhat different curve
shape into account, it can be concluded that otherwise, HMW-HDPE thermorheologically
behaves just like a BL-material (LCB-mPE) according to the thermorheological complexity
classification scheme [58].
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Figure 2. (a) dynamic-mechanical modulus and viscosity functions of HDPE C. (b) corresponding δ(|G*|)-plots. (c) G′(ω),
G”(ω), and |η*|(ω) for HMW-HDPE and (d) corresponding δ(|G*|)-plots. γ0 ≤ 5%.

So, in conclusion, HDPE A, B, and C, as well as HMW-HDPE, behave like typical
LCB-mPE, albeit with somewhat more smeared out curves, owing to their broader molar
mass distribution than previously published data on LCB-mPE.

The thermorheological complexity analysis will be discussed in detail, together with
the blends made from those base materials to avoid repetition.

3.1.2. Blends

The frequency-dependent data of the three base materials and 15 blends are given
in Figure 3. In all cases, the addition of the high molecular HMW-HDPE leads to distinct
changes in rheological properties. Even for 1 wt.% HMW-HDPE-content, a clear increase
of the viscosity and moduli functions are found at low frequency, which, as expected, is
where a high molecular component has the strongest influence.
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The HDPE A blends roughly retain the typical shapes of a narrow molar mass distribu-
tion LCB-mPE (Figure 3a,b, Figure SI2 (T = 170–230 ◦C)). Their behavior is characterized by
a viscosity function |η*|(ω) with more or less constant slope, which then levels of towards
the zero shear-rate viscosity η0 [59,60]. However, this leveling off was not found for any
sample in this paper, as the focus was on thermorheological behavior. In the δ(|G*|)-plot,
the addition of HMW-HDPE leads to a decrease of the δ-plateau and further flattening of
its slope due to the introduction of long relaxation modes by the blending. These effects are
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equivalent to each other, as through Kramers-Kronig relations δ(ω) and dlog|η*|/dlog(ω)
are inversely proportionally related [59–62]. For the highest HMW-HDPE contents, the
δ(|G*|)-plots start exhibiting a small minimum.

HDPE B and its blends do not show the leveling mentioned above to η0 and a clear
end of the δ-plateau (Figure 3c,d, Figure SI3 (T = 170–230 ◦C)) due to its broader molar
mass distribution. This leads to almost perfectly straight viscosity functions. Consequently,
it is nearly impossible to estimate the zero shear-rate viscosity η0 of these blends.

HDPE C has a lower long-chain branching efficacy than HDPE B, but a similar broad
molar mass distribution. As a consequence, the viscosity functions are not as straight as
for the HDPE B series. However, due to the higher molar mass of HDPE C compared to
HDPE B, the terminal relaxation time leads to even broader transitions in the δ(|G*|)-plot
than the HDPE B blend series. The HDPE C-blend series (except pure HDPE C) does not
show a single material whose δ(ω) has a negative slope at low ω, i.e., all materials have a
maximum at higher frequencies and a minimum at ω < 0.1 rad/s (Figure 3e,f, Figure SI4
(T = 170–230 ◦C)).

The crossover frequencies ωc for the blends (Figure 4) show a clear decrease with
increasing HMW-content c. Considering that ωc is proven to be related to Mw [7,63], it is
not surprising that blending HMW-HDPE will increase Mw and, thus, also decrease ωc.
However, these correlations between ωc (or inverse characteristic relaxation time from
the Carreau-Yasuda model 1/λ ≈ ωc [64,65]) and Mw are influenced by various factors,
most notably by the molar mass distribution. The molar mass distribution changes when
blending two materials. However, it is clear that ωc(c) (Figure 4a) shows a common trend
for all blend series. It should be noted that those correlations between ωc (or 1/λ) and Mw
have been established for linear and not for long-chain branched PE. However, as long
as the deviation from the linear relation in the δ(|G*|)-plot (as shown in Figure 3) is not
significant for δ < 50 ◦C (i.e., at ω = ωc (δ = 45◦), the rheological data are not influenced
by the long-chain branches), it is safe to relate ωc with Mw, which is in line with fits of
the viscosity functions of narrow molar mass distribution LCB-mPEs [66]. This becomes
clear for the sample C12, whose δ(ω)-function exhibits a peak around 52◦ before decreasing
again with decreasing ω (Figure 6). B12 has a very similar behavior but does not exceed
45◦, thus does not have a crossover frequency ωc.
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When calculating the ratio of ωc of pure low molecular blend partner and the respec-
tive blends, it becomes clear that, although somewhat scattered, the slope of the decrease
function is independent of the base material, which is surprising, considering that the molar



Polymers 2021, 13, 328 10 of 20

mass Mw ratios of the blends’ base materials are between 5.4 for the HDPE A-HMW-HDPE
and 2.6 for the HDPE C-HMW-HDPE blend series.

Assuming that the materials are monodisperse and that the crossover frequency ωc
is only related to Mw, it would be possible to calculate the expected Mw and thus ωc
(~Mw

−3.6) simply from the constituents’ Mw and contents. Consequently, the HDPE A
series ωc should decrease to ωc/ωc(c = 0 wt.%) ≈ 0.21 and for HDPE C to ≈ 0.40 for c = 12
wt.%. However, such a big difference is not found for the blends, which indicates that the
influence of molar mass distribution on blends needs a lot more understanding that cannot
be broken down to such a primitive approach.

The differences induced by adding HMW-HDPE to the low molecular HDPEs become
much more pronounced when looking at the lowest frequencies, however (Figure 5). The
δ(|G*|)-plots only for ω = 0.1 rad/s show a clearly decreasing trend for the phase angle δ,
while the complex modulus |G*| increases monotonously as a function of HMW-HDPE
content c (Figure 5a). The complex viscosity |η*| at ω = 0.1 rad/s as a function of HMW-
HDPE content normalized to the low molecular blend partners’ |η*|, shows an increase
by about factor 4 for the HDPE A–C blends (Figure 5b).
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Figure 5c shows the dependence of phase angle δ on HMW-HDPE content c, which
for larger c leads to an almost parallel dependence, while for small c, the initial decrease of
δ is very much sample dependent.

This indicates that at the low frequencies, even a tiny amount of HMW-HDPE in
the blends has a significant effect on the viscoelastic behavior, which is qualitatively in
line with the strong increase of the elastic compliance found by Münstedt [67]. Further,
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it indicates that the larger the molar mass difference is, the larger is the effect on the
rheological properties, especially at low frequency.

3.2. Thermorheological Behavior

The analysis method for the thermorheological behavior was described in detail
before [47] and will, therefore, not be repeated here. The results of the numerical analysis
of the thermorheological complexity are given in Figure 6a–c. Ea(G′) (Figure 6a) shows
that blending HDPE A with HMW-HDPE leads to an overall increase of Ea up to 6%
HMW-HDPE-content c. Above this threshold, the activation energies above 30 kJ/mol are
decreasing. For all samples, the data exhibits a maximum in Ea(G′), whose G’-position
increases with increasing HMW-HDPE-content c, i.e., the influence of the long-chain
branches becomes visible at higher G′, which also corresponds to higher ω. This statement
is true in general, as long-chain branches lead an increased elasticity, which increases the
creep recovery compliance [67,68] and G′ at low ω [50,69–71] owing to the introduction of
long relaxation modes into the relaxation spectrum [72].
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Figure 6. Activation energy spectra of (a) storage modulus (Ea(G′)), (b) loss modulus (Ea(G”)), and (c) phase angle (Ea(δ)).
(d) δ(ω) of HDPE A, (e) δ(ω) of A3. The pink × in (d) and (e) denote the points at which the δ(|G*|)-plots reach the phase
angles δ, at which Ea(δ) HDPE A and A3 have their peak values respectively. The black × in (d) and (e) correspond to the
pink × in (e) and (d), respectively.
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The loss modulus activation energy spectrum Ea(G”) shows an increase of Ea towards
decreasing G”, which is due to the increasing efficacy of long-chain branches towards low
frequencies (caused by long relaxation times due to LCBs) [42,72]. Increasing the blend
concentration c leads to an overall increase of Ea(G”) while mostly retaining the shape of
the loss modulus activation energy spectrum.

Like in previous reports [15,22,43,58], it was also found that Ea(G′) and Ea(G”) is
“too low” for high G′ and G”, i.e., the observed values of Ea are significantly below the
expected value of Ea for linear HDPE (27 kJ/mol). In previous papers, such low Ea were
also found for the relaxation strength activation energy spectrum Ea(H) [31,41]. This effect
is not found for linear materials when evaluating thermorheological complexity with the
slice-wise method; thus, it is most likely not any form of experimental artifact. However,
so far, nobody has presented a conclusive mechanism for observing such “too low” Ea,
and a credible explanation for this effect has not been found, which is why regrettably this
question has to remain unexplained.

The activation energy spectra with respect to δ Ea(δ) shows a clear peak function
(Figure 6c), whose peak heights go through a maximum when increasing the HMW-HDPE-
content c, while δmax, which has been proven to be closely related to the characteristic
phase angle δc, according to the definition of Trinkle et al. [73,74], decreases with increasing
c. Those effects are expected, as adding HMW-HDPE leads to an increase in long relaxation
times, which–in general–broadens the relaxation spectrum and, thus, leads to increased
elasticity, i.e., a lower plateau in the δ(|G*|)-plot or δ(ω)-plot. However, unlike for “normal
LCB-mPE”, a decrease in δmax is usually accompanied by a moderate increase in the
peak activation energy of Ea(δ) of Ea,max. The values Ea,max and δc found for HDPE A are
91.7 kJ/mol and 63.7◦, respectively, which is in good agreement to previously reported
values for similar materials [43]. However, the blends show much higher values of Ea,max
than expected, which is counterintuitive at first glance, as adding an HMW-HDPE broadens
the molar mass distribution, which according to previously reported results, “smears out
the plateaus” in the δ(|G*|)-plot or δ(ω)-plot and thus should rather decrease than increase
Ea,max [43]. In other words, the previous results for LCB-mPEs with a unimodal broad
molar mass distribution were exactly the opposite of the results found in this paper with
respect to Ea(δ).

It should be mentioned that due to the piecewise evaluation, the activation energies
are highly influenced by their input. In the plateau regime of δ(ω), the values of Ea(δ)
can increase significantly beyond the values of Ea(G′) and Ea(G”). This peak in Ea(δ) is, of
course, not supposed to be taken as a physical value but rather as an indication that is very
valuable for branching analysis.

Figure 6d and e show a comparison of the δ(ω)-plots of HDPE A and A3. In these
plots, the position of Ea,max (δmax = 63.7◦ and 59◦, respectively) is marked by the horizontal
line, and the pink x marks the points where δ(|G*|; T = 150, 170, 190, 210, and 230 ◦C) cross
this value. Further, the other material’s corresponding values are given in the respective
plots as small black × to illustrate the differences better. The comparison between these
two samples, differing by the 3% addition of HMW-HDPE, leads to significant differences
in the phase angle functions δ(ω). Namely, the plateau of A3 is significantly widened
and flattened to the extent that for 150 ◦C, an almost constant value of δ is found for
ω = 1 . . . 10 rad/s. As a consequence, the spread between the data at 150 ◦C and 230 ◦C at
δ = 59◦ is significantly larger than the corresponding spread for HDPE A at δ = 63◦.

Thus, the high molecular tail introduced by blending leads to significantly different
behavior than found for the “normal” broadly distributed LCB-mPE. The high molecular
tail stemming from 1–12% HMW-HDPE, which in the case of HDPE A is 5.4 times higher
with respect to Mw, leads to a significant lengthening of the terminal relaxation time and to
an increase in perceived LCB-efficacy.

For HMW-HDPE contents higher than 3%, some erratic peak functions were found,
resulting from δ(ω) exhibiting a minimum, as can be seen from Figure 3a,b. As the
evaluation routine finds one frequency, at which the phase angle δ is exactly at a defined
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phase angle, the analysis is not adequately defined, as the slice-wise evaluation assumes
that all evaluated functions are monotonically increasing or decreasing. For this reason,
the values found for samples having a minimum in δ(ω) cannot be trusted in the regime of
the minimum, which is indicated by the gray ellipse in Figure 6c.

Despite these limitations owing to the slice-wise evaluation approach, it is possible
to determine Ea,max for A6 and A9 but not for A12, whose δ-minimum is too pronounced
to yield reliable values. Ea,max of A6 and A9 are around 160 kJ/mol, which is beyond
any Ea reported for thermorheologically complex polyethylene. This illustrates the strong
effect of the broadening of the spectrum by blending, which leads to bimodal materials.
Figure 6e clearly shows that δ(ω) of A3 at 150 ◦C has a plateau (dδ/dlogω = 0), while at
230 ◦C, the smallest slope is around 2.6, as can be seen from the phase angle derivative
plots (dδ/dlogω(ω), Figure 6d,e). For HDPE A (Figure 6d) the corresponding minima are
1.6 and 3.5, respectively.

For these reasons, the thermorheological complexity of the other blend series is only
discussed in terms of Ea(G′) and Ea(δ). The plots of the other quantities are given in
supplementary information.

Figure 7 shows Ea(G′) and Ea(δ) of the blend series B–D. The HDPE B blend series
shows the largest similarity to the HDPE A blend series (Figure 7a,b). Compared to the
HDPE A blend series, the higher molar mass and longer terminal relaxation time of the
HDPE B blend series increase the storage modulus activation energy spectrum Ea(G′) for
low G′, while the influence at high G′ is rather low. This and the higher branching efficacy
of HDPE B vs. HDPE A make the samples approach higher Ea-values as seen from the
higher slopes found when approaching the maximum. Further, the deviation from the
Ea of linear materials (ca. Ea = 27 kJ/mol) occurs at somewhat higher G’. Ea(δ) clearly
shows that the typical peak shifts towards lower δ with increasing c. However, only for the
pure HDPE B could a regular Ea(δ) peak could be found. A minimum in δ(ω) exists for all
blends, which, as discussed before, leads to extremely high Ea,max and erratic peak shapes.
Thus, the obtained values for, e.g., Ea,max cannot be considered quantitative, but it can be
concluded that they are very high and that δmax decreases with increasing c. The orange
star symbols in Figure 7a are the inflection points, which will be discussed in Figure 9.
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Figure 8 shows the Ea,max(δmax) plot for all samples investigated by the authors and
some literature values. The topographies (1) branched with few long-chain branches (LCB-
mPE)→BL, (2) highly long-chain branched (LDPE)→BH, and branched with comb-like
topography→BC are marked clearly as areas in the same color as the respective symbols
for individual samples [58].
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Previously, it was established that LCB-mPE with narrow molar mass distribution (BL,
blue downward-pointing triangles) have a significantly higher Ea,max(δmax) than LCB-mPE
with a broader molar mass distribution (dark blue upward-pointing triangles), whose
Ea,max(δmax) is rather close to tubular and especially autoclave LDPE [43]. It was then possi-
ble to accumulate some more data, particularly for the LDPE-LLDPE blends of Dordinejad
and Jafari [18], which were analyzed with the same standard analysis method. This data
set shows a transition from LDPE-like behavior (BH) for the LDPE-rich blends to LCB-mPE
like behavior (BL). The LLDPE used was a Ziegler-Natta grade with broader molar mass
distribution, but according to the data published (G′(ω), G”(ω), Ea(G’), Ea(δ), . . . ) [25]
slightly long-chain branched, making it sufficiently similar to a slightly branched LCB-mPE.

When comparing the previously obtained data to the LCB-mPE blends, it becomes
immediately obvious that the special curve shape of δ(ω) leads to Ea,max(δmax) very different
from previously known samples, owing to their very high Ea(δ)-peaks. This confirms
the unusual behavior of the LCB-mPE blends, which is due to the bimodal molar mass
distribution with long-chain branches in the high molecular tail. Thus, the blue BL-
area has to be considered to be a special case of a much broader range of for lightly
branched materials with non-standard molar mass distributions (i.e., symmetrical molar
mass distributions with Mw/Mn = 2 . . . 4). The blends of the HDPE A and HDPE B-series
exhibit a somewhat lower δmax and higher Ea,max than normal BL-materials, while the
HDPE C-blend series is rather similar to the broad molar mass distribution LCB-mPEs and
autoclave LDPEs published before [43]. This difference is probably due to the broad molar
mass distribution of HDPE C and the relatively small Mw difference between HDPE C and
HMW-HDPE.

Those new data clearly indicate that the previously relatively narrow range typically
found for BL-materials (blue area) has to be significantly expanded to form a BL-category
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comprising also broad and bimodal molar mass distributions (including blends), which is
marked as the red area in Figure 8.

Besides the discussion of Ea(δ), also Ea(G′) can offer interesting insights into the
rheological behavior. When looking at Figures 6a and 7a,c carefully, the point at which the
samples have a clear upturn in Ea(G′) depends on the low molar mass blend partner and
blend composition (marked in Figure 7a as orange stars). To analyze this behavior better,
the turning points were determined for each sample and the G′ component of the inflection
point is given in Figure 9.
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Two trends are immediately visible: firstly, an increase of HMW-HDPE content leads
to an increased inflection point, i.e., the activation energy Ea increases at a higher storage
modulus beyond the level of linear material. Thus, the influence of the long-chain branches
appears at higher G′ and, consequently, at higher ω. This effect is exceptionally well visible
at low HMW-HDPE contents. This is in agreement with observations of Münstedt [67]
of minute amounts of a high molecular component having a massive influence on the
elasticity of a blend, for which G′ is the indicator used in this paper.

Secondly, the higher the molar mass of the low molecular material, the lower the G′

at which the inflection point curves are found. This trend can be understood only to be
the consequence of the combination of several parameters. Firstly, as the HMW-HDPE is
the same for all materials, a higher molar mass of the low molecular HDPE means that
both molar mass ratio of the blend partners varies as HDPE A-blends > HDPE B-blends
> HDPE C-blends. The difference between the low molecular base polymers HDPE A,
HDPE B, and HDPE C is primarily in Mw, Mw/Mn, and the LCB-content, which balances
out the differences in molar mass, as the viscosity functions of the three base materials
are very similar (Figure 1). The lower LCB-content of HDPE B and HDPE C leads to an
inflection point at rather low G′. This indicates that the long-chain branches only become
evident at low G′/low ω, indicating that they only have few, but long long-chain branches
mostly stemming from HMW-HDPE, as can be expected from the high molar mass of
HMW-HDPE.

4. Conclusions

Blends of two LCB-mPEs with different molar masses and molar mass distributions
and long-chain branching were created by solution blending. The rheological analysis re-
vealed that the behavior of the blends changes already significantly when adding a minute
amount of high molar mass material.
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A high molecular HDPE lowers the phase angle at low frequency systematically, which
suggests an increased elasticity and an extended terminal relaxation time. The samples’
thermorheological complexity varied systematically with the content of HMW-HDPE
through increased activation energies at low frequencies, i.e., at low G′ and especially in
the δ-peaks. Due to the change of the curve shape of δ(ω), the shape of the phase angle
activation energy spectrum Ea(δ) changed significantly as well. The long relaxation times
introduced by HMW-HDPE led to a clear flattening or even the appearance of a minimum
in δ(ω) at intermediate δ (30–60◦, depending on the material), which leads to very high Ea.

This is very different from the previously observed behavior for LCB-mPE with
Mw/Mn ≈ 2–3 and broad molar mass distribution LCB-mPE with Mw/Mn ≈ 4–6, whose
Ea,max is lowered by the smearing out due to the broadening of the molar mass distribu-
tion. For those previously established materials, Ea,max was found to be between 50 and
100 kJ/mol, depending on the maximum activation energy phase angle δmax (approxi-
mately the same as the characteristic phase angle δc) and an increase in Mw/Mn led to
a significant decrease of Ea,max for those broad LCB-mPEs, whose molar mass distribution
is unimodal. For the bimodal samples characterized in this paper, Ea,max is much higher,
despite the much broader molar mass distribution, which–as stated before–should lower
Ea,max at first thought. The increase of Ea,max is the consequence of the bimodal molar mass
distribution introducing very long relaxation times, leading to Ea,max up to 200 kJ/mol.

Therefore, it is concluded that the molar mass distribution Mw/Mn alone (of course to-
gether with the LCB-content and distribution) does not determine the thermorheologically
complex behavior but that the shape of the molar mass distribution matters as well as its
combination with the LCB-distribution, which together determine the relaxation spectrum
and, thus, the viscoelastic functions.

The difference between broad molar mass distribution LCB-mPE and the LCB-mPE blends
studied in this paper is clearly that the former have a very similar molar mass distribution and
LCB-distribution to regular LCB-mPE (Mw/Mn≈ 2), while the blends consist of 2 separately
synthesized materials with their own molar mass distribution and LCB-topography. The high
molar mass of HMW-HDPE also leads to very long long-chain branches, as the LCB-length in
sparsely branched LCB-mPE approximately equals Mn [75] and according to reports of star-
branched materials, the arm-length (=LCB-length) has a much stronger effect on the terminal
relaxation time than the weight average molar mass Mw has [76]. Consequently, the introduction
of HMW-HDPE leads to a much stronger lengthening of the terminal relaxation than expected
from the molar mass difference alone. These very long terminal relaxation modes lead to an
approximately constant slope in G′(ω) and G”(ω), which corresponds to a plateau (or small
maximum, followed by a shallow minimum) in δ(ω), over a broad frequency range. As an
increase in temperature leads to a systematic increase in this δ-plateau as well, very large shift
factors are observed in the region of this plateau, which lead to the obsevered very high Ea,max.
The fact that typically the δ-plateaus are not 100% flat but show weak minima and maxima
is also the reason for the erratic curve shapes of Ea(δ); the numerical analysis finds one out of
several intersection points of δ(ω) with a certain value of δ and for some values of δ for most of
the blends there is more than one such intersection.

Broad molar mass distribution LCB-mPE do not have these very long terminal relax-
ation times but rather smeared out rheological data, which means that they do not have
a spectrum that leads to a true δ-plateau but rather to a broad zone with constant but
non-negligible slope and consequently a much lower Ea,max than the blends and LCB-mPE
with narrow molar mass distribution.
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Abbreviations

Rheological quantities
Storage modulus G′

Loss modulus G”
Phase angle δ

Complex viscosity function |η*|(ω)
zero shear-rate viscosity η0
Magnitude of the complex modulus |G*|
Angular frequency ω

Relaxation strength H
Relaxation time τ

Hencky strain rate
.
ε

crossover frequency ωc (ω of G′=G”)
temperature dependence according to Williams-Landel-Ferry’s law WLF-temperature dependence
(based on free volume and not on potential barrier)
shift factor aT
Arrhenius activation energy Ea
Activation energy spectrum determined from shifting δ(ω) Ea(δ)
Activation energy spectrum determined from shifting G’(ω) Ea(G′)
Activation energy spectrum determined from shifting G”(ω) Ea(G”)
Maximum activation energy, determined from Ea(δ) Ea,max
Phase angle at which Ea,max is found δmax
Critical phase angle according to definition of Trinkle et al. [73] δc
Slope of phase angle dδ/dlogω

Material with an LCB-mPE-like thermorheologically complex behavior [62] LCB-mPE-like behavior (BL), BL-material
Material with an LDPE-like thermorheologically complex behavior [62] LDPE-like behavior (BH), BH-material
Material with a comb-PE-like thermorheologically complex behavior [62] comb-PE -like behavior (BC), BC-material
Molecular quantities
number-average molar mass Mn
weight-average molar mass Mw
z-average molar mass Mz
Polydispersity index Mw/Mn
molar mass distribution MMD
long-chain branches LCBs
Material types
long-chain branched metallocene catalyzed polyethylene LCB-mPE
long-chain branched metallocene catalyzed high densitypolyethylene LCB-mHDPE
long-chain branched metallocene catalyzed linear low densitypolyethylene LCB-mLLDPE
low-density polyethylene LDPE
linear low density Ziegler-Natta polyethylene ZN-LLDPE
high density Ziegler-Natta polyethylene ZN-HDPE
Miscellaneous
Logarithm (base 10) log
Weight % wt.%
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