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Cognitive abilities, such as memory, learning, language, problem solving, and planning,

involve the frontal lobe and other brain areas. Not much is known yet about the molecular

basis of cognitive abilities, but it seems clear that cognitive abilities are determined by

the interplay of many genes. One approach for analyzing the genetic networks involved

in cognitive functions is to study the coexpression networks of genes with known

importance for proper cognitive functions, such as genes that have been associated

with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD).

Because many of these genes are gene regulatory factors (GRFs) we aimed to provide

insights into the gene regulatory networks active in the human frontal lobe. Using genome

wide human frontal lobe expression data from 10 independent data sets, we first derived

10 individual coexpression networks for all GRFs including their potential target genes.

We observed a high level of variability among these 10 independently derived networks,

pointing out that relying on results from a single study can only provide limited biological

insights. To instead focus on the most confident information from these 10 networks

we developed a method for integrating such independently derived networks into a

consensus network. This consensus network revealed robust GRF interactions that are

conserved across the frontal lobes of different healthy human individuals. Within this

network, we detected a strong central module that is enriched for 166 GRFs known to

be involved in brain development and/or cognitive disorders. Interestingly, several hubs

of the consensus network encode for GRFs that have not yet been associated with brain

functions. Their central role in the network suggests them as excellent new candidates

for playing an essential role in the regulatory network of the human frontal lobe, which

should be investigated in future studies.

Keywords: transcription factor, coexpression network, weighted topological overlap network, consensus
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INTRODUCTION

Broadly defined, cognition refers to the biological mechanisms
through which animals perceive, learn and memorize
information from the environment and decide to act upon
them (Shettleworth, 2009). In humans, cognitive processes
such as use of language, social behavior, and decision-making
have been attributed to the frontal lobe (Duncan et al., 1996;
Chayer and Freedman, 2001). However, the actual molecular
mechanisms that underlie these morphological changes are still
not well understood.

Candidate genes that are involved in the molecular
mechanisms of cognition can be identified through biomedical
studies on cognitive disorders. For example, causative mutations
point to the genes that should in their wild-type variants
be important for providing for healthy cognitive abilities.
Research on cognitive disorders such as Alzheimer’s disease
(AD; Bullido et al., 1998), intellectual disability (ID; Kaufman
et al., 2010), autism spectrum disorder (ASD; Bailey et al.,
1996; Voineagu et al., 2011; Berg and Geschwind, 2012; Ecker
et al., 2012), schizophrenia (SZ; Andreasen, 1995), circadian
rhythm and bipolar disorder (BD; Akula et al., 2014, 2016;
Takahashi, 2015), Parkinson’s disease (PD; Polymeropoulos,
2000), and several syndromes or disorders associated with ID or
cognitive impairment (SY; Greydanus and Pratt, 2005) has thus
already identified several candidate genes involved in cognition.
Importantly, these studies also revealed that most cognitive
disorders are complex and phenotypically and genetically
heterogeneous (Sebat et al., 2007; Tsankova et al., 2007; Voineagu
et al., 2011; Weyn-Vanhentenryck et al., 2014), thus creating
challenges for studying these disorders.

Transcriptome and network analyses bear great potential for
overcoming some of these challenges and uncovering the genetic
interactions and molecular mechanisms causing such complex
disorders. For example, recent studies have used network
approaches to identify coexpressed ASD and ID modules
implicated in synaptic development, chromatin remodeling and
early transcriptional regulation (Parikshak et al., 2013; Willsey
et al., 2013; De Rubeis et al., 2014). However, coexpression
networks can have many false positive inferences. One way
to reduce the effect of false positives is to calculate weighted
topological overlap (wTO) networks (Zhang and Horvath, 2005;
Nowick et al., 2009). Another drawback is that most network
studies so far have only analyzed data from one dataset. However,
it is unclear how variable independently derived networks are
and depend, for instance, on the technical platform or on
the particular samples/individuals that were used to produce
the dataset. We thus analyzed and compared here 10 different
transcriptome datasets from individual human frontal lobe
samples, which have been produced with different platforms
(microarrays and RNA-Seq), and developed a method for
integrating the coexpression wTO networks calculated from
them into one consensus network of high confidence level.

Several reasons prompted us to especially focus on the role of
gene regulatory factors (GRFs) in the consensus network of the
frontal lobe. First, because GRFs regulate the expression of many
genes, they are expected to be among the most important players

in these networks and might provide important insights about
the molecular mechanisms taking place in this tissue. Second,
primate specific zinc finger genes with a Krüppel-associated box
(KRAB-ZNFs) are also enriched among the genes expressed
during frontal lobe development (Zhang et al., 2011), which
leads to the hypothesis that at least some GRFs might contribute
to human specific cognitive abilities. Third, we show here that
GRFs are enriched among the candidate genes for ID and
ASD, thus suggesting an important role of GRFs in the gene
regulatory processes and circuitry of such cognitive disorders.
Taken together, GRFs are thus good candidates for providing
essential information about the molecular mechanisms that set
the stage for cognition.

To identify and analyze GRF proteins with potential
implications in cognition in more detail, we used our in-
house list of all 3315 human GRFs (Perdomo-Sabogal et al.,
under preparation). This catalog includes information from the
most relevant studies in the area of human GRF inventories
(see Section Materials and Methods), and includes information
about proteins involved in different regulatory mechanisms
such as DNA-binding proteins, cofactors that associate with
transcription factors, histone and chromatin modifiers, among
others. We also performed a comprehensive literature survey and
compiled a list of 676 GRFs that are known to be important
during human brain development or that have been associated
with cognitive disorders. We will refer to this set of 676 GRFs as
“Brain-GRFs” (Table S1). Using our high-confidence consensus
network we identified here several GRFs, including 166 “Brain-
GRFs” that are hubs and thus seem to be important for the gene
regulatory processes in the human frontal lobe.

MATERIALS AND METHODS

Data Sets
The raw and processed data from microarrays and RNA-Seq
were downloaded from ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/) and Gene Expression Omnibus (http://www.
ncbi.nlm.nih.gov/geo/). Microarrays were analyzed using the R
programming language and Bioconductor packages (Ihaka and
Gentleman, 1996). For the microarrays, we determined gene
expression levels (RMA values) and MAS5 detection p-value
from the probes using the “affy” and “oligo” package, respectively
of the platform used (Gautier et al., 2004; Carvalho and Irizarry,
2010). We considered only the probesets significantly detected
in at least one individual (p < 0.05). Furthermore, for genes
represented by more than one expressed probeset, we calculated
the mean of the expression values of all its probesets. For the
RNA-Seq data, we used published RPKM values when available
(BrainSpan). Otherwise, we processed and analyzed the raw data
by mapping of the reads using segemehl (Hoffmann et al., 2009)
and calculating RPKM values using R programming language
and R libraries such as GenomicRanges, GenomicFeatures,
and Rsamtools (Lawrence et al., 2013). All the raw data were
mapped to the hg19 genome. All expression values were then
filtered for RPKM values > 0.5 for 90% of the samples. All
samples were used from the following datasets: FrontalVal

Frontiers in Genetics | www.frontiersin.org 2 March 2016 | Volume 7 | Article 31

http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Berto et al. Frontal Lobe GRF Consensus Network

[GSE25219] (Kang et al., 2011), NeoVal [GSE11512] (Somel
et al., 2009), KhatVal [SRA028456] (Somel et al., 2011), and
GexVal [GSE22521] (Liu et al., 2012). Only the data from the
control individuals were selected from the DisVal [GSE53987],
BipRval [GSE53239] (Akula et al., 2014), and BipVal [GSE5388]
(Ryan et al., 2006) datasets. From the BrainSpan dataset we
selected the samples from the frontal lobe regions and subset
them such that individuals with same ages (13 total individuals
per dataset) were used.

Catalog of Gene Regulatory Factor
Proteins
The GRF catalog we used for building our GRFs consensus
network of the human frontal lobe was initially built by
Perdomo-Sabogal et al. (under preparation). For this catalog
the information for 3315 GRF proteins sourced from the
most seminal studies in the area of human GRF inventories
(Messina et al., 2004; Vaquerizas et al., 2009; Ravasi et al., 2010;
Nowick et al., 2011; Corsinotti et al., 2013; Tripathi et al., 2013;
Wingender et al., 2013, 2015) that are associated with gene
ontology terms for regulation of transcription, DNA-depending
transcription, RNA polymerase II transcription cofactor and co-
repressor activity, chromatin binding, modification, remodeling,
or silencing, among others, were manually curated.

Gene Sets
The ASD gene list was compiled using the SFARI gene database
(09/20/2015, 740 genes; Basu et al., 2009; Banerjee-Basu and
Packer, 2010). In the analysis, we included all the 740 genes.
In addition, we also calculated the overlap between GRFs and
ASD genes with strong association with S category (syndromic)
and strong evidence (levels 1–4). ASD modules (asdM12 and
asdM16) were obtained from an independent genome-wide
expression study that compared ASD with healthy post-mortem
brain tissues (Voineagu et al., 2011).

GRFs with association with Parkinson’s disease, Alzheimer’s
disease, and Schizophrenia where filtered according to their
significant evidence in more than two GWAS studies (Allen et al.,
2008; Bertram, 2009; Jia et al., 2010; Lill et al., 2012). Additional
schizophrenia GRFs were derived from independent publication
with 108 loci implicated in schizophrenia (Consortium
SWGotPG, 2014). ID and FMRP targets genes were collected
from independent publications (Inlow and Restifo, 2004; Ropers,
2008; Darnell et al., 2011; van Bokhoven, 2011; Lubs et al., 2012;
Consortium SWGotPG, 2014).

Other brain related GRFs were manually selected using web
sources such as OMIM and independent databases such as SGZR
(Hamosh et al., 2005; Jia et al., 2010). We prioritize GRFs that
have evidence on brain functions, synaptic transmission, and
brain development.

wTO Calculation
Spearman rank correlations were used to correlate the expression
values of the GRF genes with the expression values of all genes,
separately in each of the 10 datasets. Note that only expressed
genes were considered in each dataset and that the number of
expressed GRFs and other genes differs between the datasets. We

extracted all significant correlations (p < 0.05) for calculating
the weighted topological overlap values (ω = wTO) between
all pairs of expressed GRF genes for each dataset as previously
described (Nowick et al., 2009). The calculation is based on a real
symmetric matrix A= [aij], in which aij is a real number ranging
between−1 to 1 that indicates the correlation coefficient between
the i -th and j -th GRF in the dataset. In particular, we have aii =

0. Comparing with the previous method (Zhang and Horvath,
2005), our method incorporates both significant (Spearman rank
correlation; p < 0.05) positive and negative correlations of two
GRFs’ correlated gene sets (u) described as follow: aij ǫ [0, 1]
when aij ≥ 0 → aiuaju ≥ 0 for all u and aij ǫ [−1, 0] when
aij ≤ 0 → aiuaju ≤ 0 for all u. This condition results in a positive
wTO value for the GRFs i and j if they are both correlated in the
same direction with u, while in a negative wTO value if i and j are
correlated with u in the opposite direction.

Inserting the weighted connectivity of a node i as:

Ki =

∑

i
aij,

and the connectivity between i and j as:
C = A ∗ AT , the weighted topological overlap is calculated as:

ωij =
cij + aij

min
(

Ki,Kj

)

+ 1−
∣

∣aij
∣

∣

To evaluate the reliability of each wTO network, we performed
100 permutations by randomizing the expression values of each
individual. This effectively assigned a random expression value
to each gene of a particular individual out of all the available gene
expression values for that individual. The permutation was done
separately for each individual. We then calculated 100 permuted
wTO networks for each dataset. We determined the number of
links in the empirically derived (“real”) network for multiple
wTO cutoffs [0.1:0.6] and compared it to the number of links with
the same wTO cutoff in the 100 permuted networks. This method
allowed us to determine a p-value for how different the empirical
networks are from random expectation and to calculate a false
positive rate for the links in each network. All empirically derived
networks hadmore links at all tested wTO values compared to the
permuted networks, demonstrating that the empirically derived
networks are different from random expectation (Table S2D).

Consensus Network Construction
To construct the consensus network, we first analyzed the
distributions of the wTO values of all GRF-GRF pairs across all
datasets using the boxplot.stats function in R (Williamson et al.,
1989) to have an overall view of the data sets. Our results show
that the distributions of wTO values of the datasets BipRVal,
DisVal, and FrontalVal are different from the other datasets
(Figure 2). Based on these observations, we chose the Wilcoxon
rank sum test for our subsequent analysis, since it is a non-
parametric test and hence robust against outliers. Thus, we are
able to construct the consensus network by taking all the wTO
values from all the datasets into consideration. Furthermore,
to identify significant GRF-GRF pairs, we performed another
Wilcoxon rank sum test with alternative hypothesis greater than
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|wTO|> 0.3. By applying this test, we avoided potential false
positive links due to high variation of wTO values across the
datasets. If the result was significant (p < 0.05), we considered
this GRF-GRF pair as a significant pair. For each of these detected
significant GRF-GRF pairs, we then calculated its consensus wTO
value as the median of all 10 individual wTO values. Note here,
we opted for |wTO|>0.3 as cutoff in the hypothesis, because this
was the mean of the cutoffs at which the 10 networks differed
from random expectation with p < 0.01.

Network Visualization
For network visualization, we used Cytoscape 3.0. Node
attributes were used according to our manually curated Brain-
GRF list, the Human Proteome map (Kim et al., 2014), and the
FMRP targets (Darnell et al., 2011). We included the Cytoscape
session (the file is publically available on http://www.nowick-
lab.info/?page_id=470) for manual visualization of GRF-GRF
interactions as additional file.

Statistics
For gene set enrichments, p-values were calculated with a
one-sided Fisher’s exact test function in R (alternative =

“g,” confidence level = 0.99, simulated p-value with 1000
replicates). A one-sided Wilcoxon ranked test was implemented
to evaluate the enrichment of the connectivity between species
(alternative = “g,” confidence level = 0.99, paired = FALSE).
P-values for overlaps were calculated with hypergeometric tests
using a custom made R script. We retained an independent
background (BrainSpan expressed gene = 15585 genes). P-values
were subsequently adjusted for multiple comparisons using
Benjamini-Hochberg FDR procedure. Two-way permutation
test of 1000 was performed to validate the overlaps. First we
randomized the external gene sets (e.g., ASD genes) by randomly
selecting the same number of genes from an independent brain
expressed genes list (e.g., BrainSpan gene set) and subsequently
calculating the overlap p-values with the GRF gene set. The
second approach randomized the internal gene sets (e.g., GRF
gene set) by randomly selecting the same number of genes
as GRFs that were expressed and subsequently calculating
the overlap p-values. Analysis for RNA-seq, microarray, and
correlation filtering were performed using custom made R and
SQL scripts. To calculate the correlation and wTO, we developed
a Java-based program.

Enrichment for Transcription Factor
Binding Sites (TFBS)
For the TFBS enrichment, we focused on the 5421 genes that
are expressed in all datasets and correlated with at least one
GRF in each of the 10 different datasets. To test whether
correlated genes might be target genes of the respective GRF,
we performed a ChIP Enrichment Analysis (ChEA) using the
ENCODE database and data from Chip-Seq, Chip-Chip, Chip-
PET, and DamID experiments (Lachmann et al., 2010). We
also performed a TFBS enrichment analysis using the Jolma
and JASPAR databases (Jolma et al., 2013; Mathelier et al.,
2014). We tested for enrichment of TFBSs included in those
databases within the 2 kb upstream region of the 5421 genes using

FIGURE 1 | Brain-GRFs association. Overlap between GRFs implicated in

autism (ASD) or intellectual disability (ID), GRFs that are FMRP targets (FMRP),

GRFs involved in brain development and functions (BrD), and GRFs implicated

in syndromes or disorders (DIS). Empty space represents no overlap between

sets. The overlap shows the commonalities of GRFs implicated in multiple

disorders and syndromes.

CentriMo (default parameters) implemented in the MEME suite
(Bailey et al., 2009; Bailey and Machanick, 2012). As background,
we used the 2 kb upstream regions of the remaining protein
coding genes and CpG islands.

Protein–Protein-Interactions Enrichment
Protein–Protein-Interactions (PPIs) were compiled from
BioGRID and InWeb using the method described in Parikshak
et al. (2013). We used the set of 5421 genes commonly expressed
in all 10 datasets. Then we determined the GRF-gene pairs
that were called to interact as proteins according to BioGRID
and InWeb (Rossin et al., 2011; Chatr-Aryamontri et al.,
2013). GRF-gene pairs that were present in each of the 10
datasets and were indicated to interact as proteins were then
combined to a consensus PPI network. Fisher’s exact test was
used for testing the enrichment of PPI in Brain-GRFs and
other GRFs.

GO Enrichment
For the GO enrichment analysis in the consensus network, we
first ranked the genes of each dataset according to the number of
GRFs they were correlated with. Then we summed up the ranks
across the 10 datasets. The ranked list of the sums of the ranks
was used as input for the Wilcoxon test implemented in FUNC
(Prüfer et al., 2007) for the GO enrichment analysis. This method
allowed us to understand the relative importance of a gene in each
dataset according to the rank position. We next summarized the
ranks across the 10 datasets, thus obtaining a general rank (rank-
sum). The GO enrichment test was performed using FUNC
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TABLE 1 | Platforms description.

Dataset Names Assession number Sample Type Permutation

(|wTO|)

BipRVal Bipolar RNA-seq Values GSE53239 11 Adult >0.39

BipVal Bipolar Microarray Values GSE5388 31 Adult >0.24

DfcVal DFC RNA-seq Values BrainSpan 13 Developmental >0.36

DisVal Disorder Microarray Values GSE53987 19 Adult >0.30

FrontVal Frontal Pole Microarray Values GSE25219 348 Developmental >0.10

GexVal Gene Expression Microarray Values GSE22521 25 Developmental >0.25

KhatVal RNA-seq Values from a Khaitovich study SRA028456 12 Developmental >0.36

NeoVal Neoteny Microarray Values GSE11512 44 Developmental >0.19

OfcVal OFC RNA-seq Values BrainSpan 13 Developmental >0.37

VfcVal VFC RNA-seq Values BrainSpan 13 Developmental >0.37

We used multiple platforms to uncover the GRF—GRF interactions.

The first column represents the chosen name of each dataset.

The second column showed complete name of the dataset, the used platform, and Values as indication for the wTO calculation.

The third column contains the accession numbers of each dataset.

The fourth column indicates the number of samples used for the analysis.

The fifth column indicates the type of dataset.

The sixth column shows the |wTO| cutoff at which the dataset has significantly more links in the empirical network than in the permuted ones.

For BipRval, BipVal, DisVal, we used only the control samples consisting of healthy individuals (see Materials and methods).

FIGURE 2 | Overview of differences and similarities between datasets. (A) Representation of the distribution of the wTO values of the 10 datasets. On the right

side, a wTO density plot. On the top, a clustering map of the datasets showing FrontalVal and BipRVal as outliers compared with the remaining datasets. (B)

Two-dimensional scaling plot in which the circles represent the datasets used in this study. The BipRVal dataset is the most different dataset compared to the other

datasets. The three BrainSpan datasets (DfcVal, OfcVal, VfcVal) cluster together. The microarray datasets (GexVal, NeoVal, DisVal, BipVal) showed a consistent

clustering with one additional RNA-seq dataset (KhatVal). FrontalVal is not clustering with any of the other microarray or RNA-Seq datasets. This clustering suggests

that the wTO networks do not simply cluster according to experimental platforms. (C) Overall stripe chart of the wTO values across the 10 datasets. Red represents

negative wTO values whereas blue represents positive wTO values. As also seen in Figure 2A, FrontalVal and BipRVal wTO values differ most from the other datasets.

(D) Barplot representing the numbers of detected wTO outlier values (wTO-ov) per dataset. BipRVal contained the highest number of outliers underlining it as being

the most distant dataset.

(Prüfer et al., 2007). We used a Wilcoxon rank-based test for GO
enrichment among the genes with highest rank-sums. For the GO
analyses we only analyzed GO groups with at least 20 genes per
group. We report GO groups with enrichment with p < 0.01
before and after refinement.

For the analysis of GO enrichment within each individual
network among genes correlated with the selected Brain-GRF
hubs we collected for each hub its correlated genes in all the
10 datasets. The remaining set of expressed genes was used as
background set. We used the hypergeometric test implemented
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FIGURE 3 | Consensus method. Schematic representation of the method

we implemented for combining multiple networks into a consensus network.

The examples shown in the first part highlight hypothetical interactions present

in three independent datasets. The numbers on the links represent the wTO

values calculated using our method. We performed a Wilcoxon rank sum test

to statistically determine which links had wTO values that were significantly

higher than a chosen cutoff (|wTO|> 0.3) across all datasets. The blue network

represents the consensus network containing only these significant links. The

numbers shown at the links of the consensus network are the median wTO

values calculated from the respective links in the 10 datasets. The links that

not full-filled our statistical criteria due to high variation between dataset and

cutoff trimming were consequently excluded.

in FUNC for the GO enrichment analysis considering only GO
groups with at least 20 genes per group. We report GO groups
with enrichment with p < 0.01 before and after refinement.
Finally, we summarized the 10 lists of significant GO categories
into one single list, thus removing duplicated GO categories.
We also parsed the analyzed GO categories into a list of
developmental categories using CateGOrizer (Hu et al., 2008).

RESULTS

Gene Regulatory Factors Involved in Brain
Development and Cognitive Disorders
Within this list of human GRFs we identified 676 GRFs that
are involved in cognitive functions, brain development, and
disorders by using different sources (see Materials and Methods;
Figure 1 and Table S1). A prevalence of genes coding for GRFs
among genes associated with some cognitive disorders has been
observed before (Hong et al., 2005; West and Greenberg, 2011;
Parikshak et al., 2013; De Rubeis et al., 2014; Nord et al.,
2015). We here tested if this observation represents a significant
overrepresentation of GRF genes among genes implicated in
cognitive disorders. Among the 401 genes implicated in ID,
we identified 106 genes coding for GRFs, which represents
a highly significant enrichment of GRFs among all ID genes
(hypergeometric test, p = 2.03 × 10−07). The SFARI database
(Basu et al., 2009; Banerjee-Basu and Packer, 2010) currently
contains 740 genes implicated in autism. Among those, 297

genes show strong evidence of ASD association. We identified
154 GRFs among the 740 genes (78 among the 297 ASD genes
with strong association), which demonstrates that there is also
a highly significant overrepresentation of GRFs among genes
associated with autism (hypergeometric test, p = 0.0001). We
further investigated whether GRFs are enriched among the target
genes of the Fragile-X Mental Retardation Protein (FMRP). This
protein was previously shown to play an important role in ASD-
pathways by exerting translational regulation during human
brain development (Darnell et al., 2011). Among the set of 842
FMRP target genes predicted by HITs-CLIP, we identified 179
GRF genes revealing a significant overrepresentation of GRF
genes (hypergeometric test, p = 0.0001). In addition, GRFs are
also significantly enriched for genes highly expressed in neurons
(hypergeometric test, p < 0.001) and astrocytes (hypergeometric
test, p < 0.05) compared with other brain cell-type expressed
genes (Zhang et al., 2014).

Taken together, these findings show that GRF genes are
enriched among candidate genes for cognitive disorders and
cell important for brain functions, metabolism, and structure.
Therefore, they are likely to be good candidates for providing
essential information about the molecular processes involved in
the organization and functioning of neural circuits that support
healthy cognitive abilities.

A Consensus Network of High Confidence
To investigate the roles of all GRFs in the frontal lobe, we
analyzed 10 genome-wide expression datasets comprised of
frontal lobe samples from individuals of different ages and
obtained with different techniques (Table 1). We first analyzed
each dataset independently to investigate the consistency of the
coexpression networks derived from these independent datasets.

Specifically, from each dataset, we constructed a weighted
topological overlap (wTO) network taking into account all
expressed GRFs and their coexpressed genes (Nowick et al.,
2009). For constructing this wTO network, we first identified
all genes that are significantly correlated in expression (i.e.,
coexpressed) with a particular GRF. These genes include putative
target genes and genes coding for interaction partners of
that GRF. The wTO of a pair of GRFs then represents the
commonality of these two GRFs in their sets of coexpressed
genes. Because GRFs can function as activators or repressors of
gene expression, we take into account the sign of the correlation
when calculating the wTO. Pairs of GRFs with |wTO|values above
a certain cutoff are connected by a link in the wTO network
visualization (see Materials and Methods).

Even though each network is supported to significantly differ
from random expectation, we noted differences between the 10
networks, for instance, in the distribution of the wTO values and
when comparing the wTO values for particular links between the
datasets (Figures 2A,B). The differences between the networks
can probably be explained by biological variation between
individuals, but also by technical variations such as in RNA
extraction methods, RIN values, and RNA library preparation
procedures. We observed that the dataset BipRVal differs the
most from the other datasets by having the highest number
of wTO outliers, followed by datasets DisVal and FrontalVal
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FIGURE 4 | Consensus network. In red Brain-GRFs; in blue all other GRFs. Node size is proportional to the number of links. Links with positive wTO values are in

blue and links negative wTO values are shown in red.

(Figures 2B,C). All in all, we found that merely 19% (287930) of
all links between GRFs are present in all 10 wTO networks. Given
such variation between the networks, we think it is dangerous to
rely on only one dataset whenmaking inferences about biological
relationships. Instead, multiple datasets should be combined to
alleviate the dependence of the results on a particular set of
individuals, developmental time points, different RNA library
preparations, and gene expression measurement platforms and
to focus on the most consistently observed links.

To combine the 10 independently derived networks into
a consensus network with higher confidence, we considered
them as biological replicates. We evaluated for each GRF—
GRF pair, whether the distribution of strengths of their links
across the 0 datasets is significantly higher than a chosen
cutoff (Wilcoxon rank sum test, p < 0.05; Figure 3 and
see Materials and Methods). If so, the link was included
into our consensus network. The resulting consensus network
for |wTO|>0.3 consists of 2516 links (Figure 4 and Tables
S2A,B). This method allowed us to pinpoint the links with the
strongest consistency across multiple networks. To determine
the final weight of the links in the consensus network, we
calculated the median of all wTO values for the respective
GRF—GRF pair.

Brain-GRF Genes Are Often Hubs and
Highly Interconnected in the Frontal Lobe
Consensus Network
Focusing on the most consistent links as determined by our
consensus network, we next analyzed how the known Brain-
GRFs are integrated into this consensus network. Of the total
of 676 Brain-GRFs, 166 are present in the consensus network.
Interestingly, this represents a significant enrichment of Brain-
GRFs among the 498 GRFs of the consensus network (Fisher
exact test, p = 1.79 × 10−11, Odd Ratio = 2.2). Remarkably,
the group of Brain-GRFs has a higher connectivity (number
of links) compared to other GRFs in the consensus network
(Wilcoxon rank sum test, p = 0.015). Those finding suggests
that known Brain-GRFs have stronger and more consistent
functional relationships amongst each other than other GRFs in
the frontal lobe.

To confirm the transcriptional pathways suggested by our
consensus network, we examined whether there is enrichment
of the GRF binding sites in the regulatory sequences of the
5421 genes that are correlated with at least one of the 498
GRFs of the consensus network (Table S2C). To this end, we
first performed a ChIP enrichment analysis (ChEA) using the
updated ENCODE database and a manually curated list of
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FIGURE 5 | Proteome GRF modules with red nodes representing the Brain-GRFs whereas in blue the other GRFs. Links with positive wTO values are in

blue and links negative wTO values are shown in red. (A) Fetal module. (B) Adult module. Brain-GRFs are significantly enriched in the fetal module showing higher

connectivity compared with the other GRFs.
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FIGURE 6 | High confident consensus network and proteomics networks. (A) Representation of the frontal lobe consensus network. Shown are the most

highly connected hubs (degree > 25). Red nodes highlight Brain-GRFs, while blue nodes represent all other GRFs. The size of a node is proportional to its number of

links: bigger nodes represent hubs in the network. Links with positive wTO values are in blue and links with negative wTO values are shown in red. (B) Brain-GRFs and

FMRP targets module. Red nodes highlight the Brain-GRFs, while the green nodes highlight GRFs that are FMRP targets. The size of the nodes is proportional to their

number of links.
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target genes uncovered by ChIP-Seq, Chip-chip, ChIP-PET, and
DamID from multiple studies (Lachmann et al., 2010). We
found that the TFBS of 55 GRFs in the consensus network are
significantly enriched among the regulatory sequences of the
5421 genes (p < 0.05 after Benjamini-Hochberg correction).
Among those 55 GRFs, we found, for instance, HDAC2 involved
in synaptic plasticity and neural circuits (Guan et al., 2009),
ATF2 linked to neuronal apoptosis and cell migration (Yuan
et al., 2009), and CHD2 implicated in ASD and epilepsy (Rauch
et al., 2012; Table S3A). Secondly, using the Jaspar and Jolma
databases (Jolma et al., 2013; Mathelier et al., 2014), we found
an enrichment of binding sites for 34 additional GRFs of the
consensus network within the 2 kb region upstream of the
transcription start site of the 5421 genes (Fisher exact test, p <

0.05 after Benjamini-Hochberg correction; Jolma et al., 2013;
Mathelier et al., 2014). Here, we found enrichment for binding
sites of ARNTL, important for circadian rhythm associated with
BD (Nievergelt et al., 2006), MEF2D, involved in neuronal
differentiation and PD (Yang et al., 2009), and MEF2C, involved
in ASD, ID, and epilepsy (Novara et al., 2010) among others
(Table S3B).

Coexpressed genes can also indicate protein interaction
partners. Thus, we next examined protein—protein interactions
(PPI) among the 498 GRFs and the 5421 correlated genes
utilizing the annotations from BioGRID (Stark et al., 2006)
and InWeb. We found that correlated GRF-gene pairs were
significantly enriched within the PPI interactions (Fisher exact
test, p = 2.2×10−6, Odd Ratio> 3), thus providing an additional
confirmation of the potential functional interactions between
GRFs and their correlated genes (Table S4).

In addition to the Brain-GRF enrichment, we examined the
overlap between our consensus network with two coexpression
modules, asdM12 and asdM16, that have been implicated in ASD
previously (Voineagu et al., 2011). Remarkably, the consensus
network overlaps significantly with the asdM12 module that is
associated with synaptic development and dysregulated in ASD
brains (hypergeometric test, p = 0.045). This result suggests that
functional relationship of the GRFs in our consensus network
plays a role in ASD.

To investigate whether the GRFs are also highly expressed
at protein level in a fetal or adult brain, we superimposed our
consensus network with a proteome map of the human brain
at different stages, which was derived using mass-spectrometry
proteomics (Kim et al., 2014). This strategy allowed us to
understand the potential roles of the GRFs in the period of
brain development and circuitry formation compared with an
adult brain. Interestingly, overall the GRFs of our consensus
network have higher expression and significantly more links
in the fetal module compared to the adult module (Wilcoxon
rank sum test, p = 0.006). The known Brain-GRFs are
specifically enriched in the fetal module (Fisher exact test,
p = 0.03, OR = 1.5) with generally higher number of links in
comparison to other GRFs (Wilcoxon rank sum test, p = 0.002;
Figures 5A,B).

To determine the most important GRFs in the consensus
network of the human frontal pole, we determined the GRFs
with the highest numbers of links (Figures 6A,B). Examples of

such hubs include ADNP, ZFN711, ZNF74, and SOX4, which
are all Brain-GRFs. Interestingly, those Brain-GRFs are also
strongly interconnected with other Brain-GRFs (e.g., MEF2C,
PBX1, SMARCA1, an SOX11) and GRFs that are FMRP-targets
(e.g., KDM4B, MED13, NRIP1, and ZNF365), suggesting a
high functional interrelationship between various Brain-GRFs
(Figure 7). Of note, in addition to the Brain-GRFs, the consensus
network also contained hubs that yet are not implicated in
brain functions or disorders. For example we detected GRFs
important for embryogenesis (e.g., CBX7, TFDP1, and TLE3;
Dehni et al., 1995; Morey et al., 2013; Laing et al., 2015) and
energy metabolism (e.g., PSMC5 and SERTAD2; Hoyle et al.,
1997; Liew et al., 2013). Due to their strong connectivity to
known Brain-GRFs in the consensus network, it seems likely that
also these GRFs play an important role in the human frontal
lobe circuitries. Taken together, our results suggest GRFs that
are important for shaping the transcriptional circuitry of the
human frontal lobe, including novel candidates for experimental
validation of their roles at brain level and potential association
with cognitive disorders.

To infer more about the functions of the GRFs in the
consensus network, we performed a Gene Ontology (GO)
enrichment analysis among the genes correlated with the
GRFs (see Materials and Methods). We found significant
enrichment for genes involved in metabolism, signaling,
transport, translation, and RNA splicing (Figure 8A). We
also specifically tested for GO enrichment of the genes
correlated with three Brain-GRFs that are the strongest hubs
in the consensus network: ADNP, ZNF711, and ZNF74 (see
Materials and Methods). Overall, we found similar GO groups
enriched for these hubs like we did for the consensus
network as a whole. However, there were also hub-specifically
enriched GO categories such as brain development, methylation,
and regulation of synaptic transmission, which suggests a
specific role of these three GRFs in the regulation of genes
important for these particular brain functions (Figures 8B–D;
Table S5).

DISCUSSION

Comprehending the characteristic complexity of cognitive
disorders, such as ASD and ID, still represents a challenge in
neurosciences. An important step toward understanding this
complexity is to elucidate the molecular networks of healthy
human brains. In this study, we specifically compiled a set of
676 “Brain-GRF” genes implicated in brain development and
cognitive disorders and analyzed their co-expression networks
to gain first insights into which gene regulatory pathways
these genes may be involved in in the frontal lobe of healthy
individuals. Importantly, we discovered that networks derived
from independent studies differ considerably from each other,
highlighting a potential danger of relying on just one dataset.
After combining these independent networks into a consensus
network containing the links that are the most conserved across
them, we were able to identify robust relationships between
GRFs in the coexpression network of the frontal lobe of
healthy human individuals. We further discovered that, while
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FIGURE 7 | Neighbors of hub Brain-GRFs and their strongly connected partners. (A) ADNP module, (B) MEF2C module, (C) ZNF74 module, (D) ZNF711

module, and (E) ZNF365 module. Red nodes highlight Brain-GRFs whereas green nodes represent FMRP targets. Links with positive wTO values are in blue and links

negative wTO values are shown in red. Each hub Brain-GRFs is interestingly associated with other known Brain-GRFs highlighting potential interactions and common

pathways.

some hubs in the consensus network are known “Brain-GRF”
genes, others have not been linked to functions in the brain
before.

The function of most GRFs is still only insufficiently
characterized. However, insights into the functions and
interactions of our human frontal lobe consensus network
can be gained from the expression patterns of the GRFs, the
GO enrichment of the genes correlated with the GRFs, and
disorders the GRFs have been associated with. Many hubs of
the consensus network are also expressed in tissues other than
brain. However, we observed that a considerable number of them
(115 in total), for example ZNF711, ADNP, MEF2C, SOX11,
and CBX7, have higher expression in mouse neurons than in
other brain cells, such as glia, astrocytes, oligodendrocytes,
myelinating oligodendrocytes, and endothelial cells (Zhang et al.,

2014), suggesting that they have an essential role in neurons.
In addition, we also discovered that the GRFs of our network
play dominant roles in the fetal proteome module, (Kim et al.,
2014) supporting the reasoning that these GRFs might regulate
important processes during brain development such as forming
the necessary brain structures for proper brain functions,
including cognitive functions. Despite being ubiquitously
expressed, it is plausible that some GRFs might only be hubs in
the frontal lobe, a possibility that needs to be investigated further
when data becomes available.

Our GO analysis revealed that the hub GRFs of the
frontal lobe consensus network are likely to regulate genes
involved in splicing, translation, metabolism, signaling, and
synaptic transmission in the frontal lobe. Interestingly, these
GO categories seem to be important for several brain functions.
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FIGURE 8 | GO enrichment among correlated genes of the consensus network and of Brain-GRF hubs. (A) GO categories that are enriched among the

correlated genes of the GRFs of the consensus network. The categories for metabolism represent 46% of the enrichment. (B–D) GO categories enriched among the

correlated genes of three selected Brain-GRF hubs of the consensus network (ADNP, ZNF711, and ZNF74, respectively). Interestingly, Brain-GRFs showed specific

enrichment for categories involved in cognition and brain development.

For instance, translational mechanisms have been shown to
play a role in the mechanisms of memory formation and
synaptic plasticity (Richter and Klann, 2009) and RNA splicing
mechanisms have been implicated in neuronal development (Li
et al., 2007; Weyn-Vanhentenryck et al., 2014). Genes involved
in metabolism might be important to provide the brain with
the necessary energy for its functions. Signaling and synaptic
transmission are important for the communication between
neurons and relevant to allow for cognitive abilities. We thus
suggest the interactions of the GRFs in the frontal lobe network
are critically underlying the regulatory processes that allow for
these vital brain functions.

We found a significant enrichment of known Brain-GRFs,
including GRFs implicated in ASD, ID, or SY in our consensus
network, indicating that it forms the basis for setting the
stage for healthy cognitive abilities. For instance, the three
strongest hubs are ZNF711, associated with ID (Tarpey et al.,
2009), ADNP, involved in ID and ASD (Helsmoortel et al.,
2014; Iossifov et al., 2014), and ZNF74, involved in ID and
SY (Ravassard et al., 1999). Being in these central network
positions presumably renders them to risk genes that increase
the likelihood for developing brain disorders. We speculate
that interaction between ZNF711 and ZNF74 reflect biological
pathways that might be important for intellectual abilities. In line
with this potential, genes correlated with ZNF711 and ZNF74
are enriched for functions such as axon development, brain
development and regulation of synaptic transmission, which are

likely important for the development andmaintenance of healthy
cognitive skills. Another hub in our GRF consensus network is
MEF2C, a GRF that is important for synaptic plasticity and has
been implicated in ASD (Ebert and Greenberg, 2013). MEF2C is
also strongly associated with other Brain-GRFs such as ZNF711,
SOX11, and SOX5, defining a strongly interconnected module
of GRFs involved in regulatory pathways that might control
cognitive functions (Uwanogho et al., 1995; Jankowski et al.,
2006; Tarpey et al., 2009; Schanze et al., 2013). Our analysis
highlighted also hubs that are targeted by FMRP, pointing to
pathways that might be (dys)regulated at the post-transcriptional
level. For instance, CREBBP, a GRF associated with ASD and
ID (Barnby et al., 2005), HDAC4, implicated in ID and ASD
(Pinto et al., 2014), ZNF365, which has been discovered in a
module strongly associated with ASD in a brain expression
study (Voineagu et al., 2011), and KDM5B and KDM4B, recently
implicated in ASD using another weighted network approach
(TADA; De Rubeis et al., 2014; Iossifov et al., 2014). CREB
transcription factors and HDAC4 are further known to regulate
synaptic plasticity and memory formation (Silva et al., 1998;
Hardingham et al., 2001; Vecsey et al., 2007; Thomson et al.,
2008; Kim et al., 2012; Sando et al., 2012). These observations lead
us to speculate that Brain-GRFs are strongly dependent on each
other by sharing functional pathways and target genes. Further
experimental studies are needed to identify shared targets of these
and other GRFs to confirm their role in human frontal lobe
functions and disorders.
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Supporting our speculation that Brain-GRFs depend on each
other, we found that Brain-GRFs have significantly more links
than other GRFs and are strongly interconnected in the human
frontal lobe network. Importantly, in addition to 30 known
Brain-GRFs that are hubs, we identified further 36 GRF genes
that are hubs in the frontal lobe consensus network but were
not included in our Brain-GRFs list. Interestingly, one of these
hubs, GABPB1 encodes for a subunit of the hetero-tetrameric
GABP consisting of two GABPA and two GABPB subunits
(Batchelor et al., 1998). GABPA was recently found to bind
human-specific binding sites and regulate gene expression of
at least four genes (ALDOA, HSPA8, TP73, and TMBIM6) that
have been associated with cognitive diseases such as autism,
AZ, PD and other brain disorders (Perdomo-Sabogal et al.,
2016). To 0 explore if more of these hubs might be associated
with brain functions, we mined the (non-curated) data from
DisGeNET (Piñero et al., 2015). We found that at least 12 of
these hubGRFsmay be connected withmental diseases and other
neurological pathologies such as AZ (DR1, ETS2, TFDP1, and
TRIM13), PD (RUNX1T1), SZ (ZNF365), developmental verbal
dyspraxia (ERC1) and central neuroblastoma (LMO3, PSMC5,
TRIM13, TRIM24, ZMAT3), among others. This suggests that
with our method we have potentially identified novel candidates
for being associated with important, if not essential, functions in
the brain. We speculate that sequence and regulatory changes
altering the regulatory activity or expression of these 36 hub
GRFs could have medical relevance. It would thus be highly
interesting to experimentally investigate their functions at brain
level.

The structure and organization of the consensus network we
are presenting here provides insights into regulatory circuits of
the human frontal lobe. However, a yet unanswered question is
how the network that we described for the human frontal lobe
differs from the network of other brain regions, tissues or species.
We expect that the relevant data for addressing this question will

become available soon. We also expect that more GRFs will be
discovered to be involved in brain functions. In future studies
similar strategies as we presented here can then be implemented
to enrich our knowledge about themolecular basis and regulatory
networks underlying cognitive abilities.
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