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A federated graph neural network framework for
privacy-preserving personalization
Chuhan Wu 1, Fangzhao Wu 2✉, Lingjuan Lyu 3, Tao Qi1, Yongfeng Huang 1✉ & Xing Xie 2

Graph neural network (GNN) is effective in modeling high-order interactions and has been

widely used in various personalized applications such as recommendation. However, main-

stream personalization methods rely on centralized GNN learning on global graphs, which

have considerable privacy risks due to the privacy-sensitive nature of user data. Here, we

present a federated GNN framework named FedPerGNN for both effective and privacy-

preserving personalization. Through a privacy-preserving model update method, we can

collaboratively train GNN models based on decentralized graphs inferred from local data. To

further exploit graph information beyond local interactions, we introduce a privacy-preserving

graph expansion protocol to incorporate high-order information under privacy protection.

Experimental results on six datasets for personalization in different scenarios show that

FedPerGNN achieves 4.0% ~ 9.6% lower errors than the state-of-the-art federated perso-

nalization methods under good privacy protection. FedPerGNN provides a promising direction

to mining decentralized graph data in a privacy-preserving manner for responsible and

intelligent personalization.
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Personalization is a critical direction in the development of
the Web1. It can ease the burden of information overload
by providing different users with different services based on

their preferences and characteristics to better satisfy their perso-
nal needs2. For example, personalized recommender systems can
help display the products, videos and news we would like to
consume3. Personalized healthcare services can help people’s
health management and provide effective therapy plans based on
an individual’s mental and physical conditions4,5. These perso-
nalized services have greatly empowered people in terms of
informed decision making and effective interaction with the
physical world6,7.

Advanced machine intelligence systems have played central
roles in various personalized online applications such as
recommendation8 and personalized search9. Due to the social
nature of the Web, there are numerous interactions between users
and real-world or virtual items as well as complex connections
among different users10. Taking personalized recommendation as
an example, the interactions between users and items can natu-
rally form a bipartite graph. Mining useful information on this
graph is important for understanding users and items for better
personalization11.

Graph neural network (GNN) is an effective neural archi-
tecture for mining graph-structured data, since it can capture the
high-order content and topological information on graphs12. It
has been widely used in personalization scenarios such as product
recommendation13–15 and content recommendation16 to model
the complicated interactions among users and items. The success
of existing GNN-based personalization systems depends on
centralized graph data for model learning, which is usually con-
structed by the data collected from a large number of users17.
However, user data is usually highly privacy-sensitive and its
centralized storage and exploitation can lead to users’ privacy
concerns and the risk of data leakage18. Moreover, under the
pressure of some strict data protection regulations such as Gen-
eral Data Protection Regulation (GDPR)19, online platforms may
not be able to centrally store user data to learn GNN models for
personalization in the future20.

An intuitive way to tackle the privacy issue of these systems is
storing raw data locally on user devices and learning local GNN
models based on it. However, for most cases the data volume on
user devices is too small to locally train accurate GNN models.
Federated learning is a privacy-preserving machine learning
paradigm that can collaboratively learn intelligent models from
data decentralized on a large number of user clients under privacy
protection21. In federated learning, only the model updates
computed on the local data of clients are exchanged and aggre-
gated, where the raw data does not leave the local devices. This
paradigm enables the clients to learn their local GNN models
based on the local graphs inferred from the local interaction data,
and aggregates these local models into a global one for perso-
nalization, which is called subgraph-level federated learning22.
However, two challenges still remain in this framework. First, the
local GNN model trained on local user data may convey private
information, and it is challenging to protect user privacy when
synthesizing the global GNN model from the local ones. Second,
the local user data may only contain first-order interactions
between user and items, while higher-order interaction infor-
mation is not available since user data cannot be directly
exchanged and linked among different clients due to privacy
restrictions. Prior work on subgraph-level federated learning22

assumes that each client has a large subgraph and there is no
sufficient interaction across different subgraphs decentralized on
different clients. However, in personalization scenarios the
decentralized subgraphs can be very small, and the interactions
across different subgraphs can be critical for understanding user

interest. Thus, it is still a rather difficult problem to exploit high-
order interactions to enhance GNN model learning in persona-
lization scenarios without violating privacy protection.

In this work, we present a federated GNN framework named
FedPerGNN, which can empower privacy-preserving personaliza-
tion by mining high-order user-item interaction information in a
privacy-preserving way. Since there is no global user-item graph
due to privacy restrictions, each client needs to locally learn a GNN
model based on the user-item graph constructed from the local
interaction data on this device. The clients further send the model
gradients to a central server, which aggregates the gradients from a
number of clients and distributes the global parameter to user
devices for local update. In this framework, since the model gra-
dients contain private information, we develop a privacy-preserving
model update method to protect user-item interaction information
with local differential privacy (LDP) and a pseudo interacted item
sampling method. To break the dilemma of information isolation,
we design a privacy-preserving graph expansion protocol to exploit
high-order graph information without leaking user privacy. We
conduct experiments on six widely used datasets for personalization
in different scenarios. The results show that FedPerGNN achieves
4.0–9.6% lower errors than several state-of-the-art (SOTA) privacy-
preserving personalization methods under satisfactory privacy
budget. In addition, FedPerGNN has the advantage of low com-
munication cost and more comprehensive privacy protection than
other federated personalization methods, making it a feasible choice
for deployment in practice. Through extensive analysis, we also find
that the information within three orders is more important for
personalization, which has a certain significance for reference in
designing effective, efficient and privacy-preserving personalized
online systems. Our work is expected to serve as a basis workbench
for future researches on privacy-preserving personalization and
decentralized graph data mining.

Result
Overall framework. We first briefly introduce the overall fra-
mework of FedPerGNN for learning GNN-based personalization
model in a privacy-preserving way (Fig. 1). It can leverage the
highly decentralized user interaction data to learn GNN models
for personalization by exploiting the high-order user-item inter-
actions under privacy protection. The participants of FedPerGNN
include a learning server to coordinate model learning, a third-
party server to find and distribute anonymous neighbor infor-
mation, and a large number of user clients to collaboratively learn
GNN models. The user client keeps a local subgraph that consists
of the user interaction histories with items and the neighbors of
this user with co-interacted items with this user. The neighbor
information is provided by a periodically executed privacy-
preserving graph expansion process that incorporates a trusted
third-party server to match encrypted items and distribute
anonymous user embeddings. Each client learns the GNN models
from its local subgraph, and uploads the perturbed gradients to a
central learning server. The learning server is responsible for
coordinating these user clients in the model learning process by
aggregating the gradients received from a number of user clients
and delivering the aggregated gradients to them. This process is
conducted for multiple iterations until the model converges.
Finally the user embeddings on the user devices are uploaded to
the learning server for providing personalization services. In this
way, the high-order information decentralized on different clients
can be exploited to alleviate the information isolation problem,
and user privacy can be well-protected.

Performance evaluation. In our experiments, we use six widely
used benchmark datasets for personalization in different
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scenarios. Three of them are different versions of MovieLens23

(with 100K, 1M, and 10M sample sizes), which are denoted as
ML-100K, ML-1M and ML-10M, respectively. The others are
Flixster, Douban, and YahooMusic datasets provided by24, and
we denote YahooMusic as Yahoo. We list the detailed statistics of
these datasets (Supplementary Table 1). The task on these data-
sets is predicting the unobserved item ratings given by users for
providing future personalization.

We compare the performance of our FedPerGNN approach
with several personalization methods based on the centralized
storage of user data, including: probability matrix factorization
(PMF)25, a variant of singular value decomposition (SVD++)26,
a collaborative filtering approach with graph information named
GRALS27, a matrix completion method with recurrent multi-
graph neural networks called sRGCNN24, a matrix completion
method named GC-MC based on graph convolutional
autoencoders28, a graph convolution based method named
PinSage13, neural graph collaborative filter (NGCF)14, and graph
attention network (GAT)29. We also compare several SOTA
privacy-preserving methods based on federated learning, includ-
ing federated collaborative filtering (FCF)30 and FedMF31. We
evaluate the rating prediction performance of different methods
with the root mean square error (RMSE) between predicted and
real ratings, and report the average results in five independent
experiments with standard deviations (Table 1). We observe that

the methods with high-order information on the user-item graph
(e.g., GC-MC, PinSage, and NGCF) achieve better performance
than those based on first-order information only (PMF). This is
because modeling the high-order interactions between users and
items can enhance user and item representation learning, and
thereby improve the accuracy of personalization. In addition,
compared with the methods based on the centralized user data
storage such as GC-MC and NGCF, our approach FedPerGNN
can achieve comparable or even better performance. For example,
the performance difference between FedPerGNN and the best-
performed baseline on the Yahoo dataset is not statistically
significant (p > 0.1). It shows that FedPerGNN can protect user
privacy and meanwhile achieve satisfactory personalization
performance. Moreover, among the compared privacy-
preserving personalization methods, FedPerGNN achieves the
best performance. For example, compared with FedMF, the
prediction error of FedPerGNN is reduced by 4.0–9.6% across
different datasets (the improvement over FCF is larger), which is
a significant difference (p < 0.001). This is because FedPerGNN
can exploit high-order information of the user-item graphs in a
privacy-preserving way to enhance user and item understanding.
These results verify the effectiveness of FedPerGNN in privacy-
preserving personalization.

To show the advantage of our approach, we compare it with
baseline methods in terms of exploiting high-order contexts and

Table 1 Performance of different methods in terms of RMSE.

Methods Flixster Douban Yahoo ML-100K ML-1M ML-10M

PMF 1.370 ± 0.011 0.893 ± 0.002 26.7 ± 0.529 0.970 ± 0.005 0.885 ± 0.007 0.855 ± 0.0006
SVD++ 1.150 ± 0.008 0.865 ± 0.002 24.8 ± 0.498 0.948 ± 0.004 0.866 ± 0.004 0.833 ± 0.0004
GRALS 1.296 ± 0.009 0.840 ± 0.002 37.9 ± 0.786 0.933 ± 0.002 0.846 ± 0.005 0.811 ± 0.0002
sRGCNN 1.170 ± 0.007 0.805 ± 0.002 22.8 ± 0.482 0.921 ± 0.003 0.839 ± 0.003 0.785 ± 0.0003
GC-MC 0.943 ± 0.006 0.736 ± 0.001 20.4 ± 0.361 0.906 ± 0.001 0.830 ± 0.001 0.778 ± 0.0001
PinSage 0.945 ± 0.005 0.732 ± 0.001 21.0 ± 0.332 0.914 ± 0.002 0.840 ± 0.002 0.790 ± 0.0002
NGCF 0.954 ± 0.004 0.742 ± 0.001 20.9 ± 0.370 0.916 ± 0.002 0.833 ± 0.002 0.779 ± 0.0003
GAT 0.952 ± 0.005 0.737 ± 0.001 21.2 ± 0.334 0.913 ± 0.001 0.835 ± 0.001 0.784 ± 0.0004
FCF 1.064 ± 0.008 0.823 ± 0.002 22.9 ± 0.389 0.957 ± 0.002 0.874 ± 0.005 0.847 ± 0.0007
FedMF 1.059 ± 0.006 0.817 ± 0.002 22.2 ± 0.349 0.948 ± 0.002 0.872 ± 0.004 0.841 ± 0.0005
FedPerGNN 0.980 ± 0.006 0.775 ± 0.001 20.7 ± 0.325 0.910 ± 0.001 0.839 ± 0.003 0.793 ± 0.0002

Results of FedPerGNN and the best-performed baseline are in bold. The advantage of FedPerGNN over other SOTA privacy-preserving personalization methods FCF and FedMF is significant (p < 0.1).
FedPerGNN also achieves comparable performance with other centralized GNN-based personalization methods, and there is no significant difference between FedPerGNN -based personalization
methods, and there is no significant difference between FedPerGNN and the best-performed method on Yahoo (p > 0.1).
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Fig. 1 The overall framework of FedPerGNN. Each user device learns a local GNN model based on the local subgraph inferred from the local user data. A
learning server is used to coordinate a large number of user devices for learning the global GNN model collaboratively. A privacy-preserving model update
method is used to protect private user information encoded in the model gradients exchanged among the learning server and clients. A third-party server is
used to conduct the privacy-preserving graph expansion protocol to incorporate high-order graph information into local model learning under privacy
protection. The devices upload the user embedding and encrypted item IDs to this server for finding user neighbors, and the embeddings of anonymous
neighbor users are distributed to user devices for expanding local subgraphs.
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privacy protection (Table 2). Many existing methods rely on
centralized user data storage and cannot protect user privacy.
Among privacy-preserving personalization methods, they cannot
exploit high-order graph information. In addition, they can only
protect the private user ratings given by users, while cannot
protect users’ interaction histories with items unless they store the
entire set of items with their embeddings in each client, which is
impractical in real-world systems. FedPerGNN can protect both
ratings and user-item interaction histories, which can achieve
more comprehensive privacy preservation.

Model effectiveness. Next, we validate the effectiveness of
incorporating high-order information of the user-item graphs as
well as the generality of our approach. We compare the perfor-
mance of FedPerGNN and its variants with synchronously
updated neighbor user embeddings or without high-order user-
item interactions. In addition, we also compare their results under
different implementations of their GNN models, including gated
graph neural network (GGNN)32, graph convolution network
(GCN)33 and GAT29. From the results (Fig. 2) we have the fol-
lowing findings. Compared with the baseline performance
reported in Table 1, the performance of FedPerGNN and its
variants implemented with other different GNN models is also
satisfactory. This result shows that our approach is compatible
with different GNN architectures, and thereby can serve as a
general framework for GNN-based personalization. We also

observe that GAT-based FedPerGNN slightly outperforms its
variants based on GCN and GGNN. This is because the GAT
network can more effectively model the importance of the
interactions between nodes than GCN and GGNN, which is
beneficial for user and item modeling. In addition, the variants
that can utilize the high-order information encoded in the
neighbor user embeddings perform better than those without
high-order information. It validates the effectiveness of our
approach in incorporating high-order information of the user-
item graph into personalization. Besides, we find that using
periodically updated neighbor user embeddings is slightly better
than using fully trainable ones that are synchronously updated in
each iteration. This may be because the neighboring user
embeddings may not be accurate at the beginning of model
training, and updating them synchronously is not beneficial for
learning accurate user and item representations.

We further analyze the effectiveness of FedPerGNN under
different types of federated model update methods (Fig. 3),
including FedAvg21, FedAtt34, Per-FedAvg35, and pFedME36. We
compare FedPerGNN with FCF and FedMF for reference. We
find that advanced federated model update methods such as
FedAtt, Per-FedAvg, and pFedME slightly outperform the vanilla
FedAvg method, and the personalized federated learning method
Per-FedAvg and pFedME usually achieve the best performance.
This is because personalized federated learning can better handle
the heterogeneity of user data in personalization scenarios. In
addition, we find that FedPerGNN has consistent performance

Table 2 Comparison of different methods in high-order user-item interaction modeling and privacy protection.

PMF SVD++ GRALS sRGCNN GC-MC PinSage NGCF GAT FCF FedMF FedPerGNN

High-order information × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓
Rating protection × × × × × × × × ✓ ✓ ✓
Interaction item
protection

× × × × × × × × × × ✓

User data storage Central Central Central Central Central Central Central Central Local Local Local

“Central” and “Local” represent centralized and decentralized data storage, respectively. Existing centralized graph learning methods can exploit high-order graph information but cannot protect user
privacy. Existing federated learning based methods can only protect private ratings given by users and they are not able to mine high-order contexts. FedPerGNN can incorporate high-order information
into graph mining and meanwhile protect both user ratings and historical interaction items.
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improvement over other compared federated personalization
methods (i.e., FCF and FedMF) under different federated model
update methods. It verifies the generality of FedPerGNN in terms
of being empowered by different federated learning frameworks.

Hyperparameter analysis. We then study the influence of several
important hyperparameters on different aspects of FedPerGNN,
including performance, privacy protection, and communication
cost. We first compare the performance and privacy budget of our
FedPerGNN approach by varying the gradient clipping threshold
δ and the strength λ of Laplacian noise in the LDP module
(Fig. 4). A larger λ and smaller δ means a smaller budget ϵ, i.e.,
better privacy protection. According to these results, we find
model performance gap between δ= 0.1 and δ= 0.2 is marginal.

However, if we clip the gradients with a smaller threshold such as
0.05, the prediction error will substantially increase. Thus, we set
δ= 0.1 due to the better privacy protection without much
sacrifice of model performance. In addition, the model perfor-
mance declines with the growth of the noise strength λ, while the
performance loss is not too heavy if λ is moderate. Thus, we set λ
to 0.2 to achieve a good balance between privacy protection (we
achieve 3-differential privacy under this setting) and personali-
zation accuracy.

We also compare the performance and communication cost of
FedPerGNN w.r.t. different M (Fig. 5). We use the number of
parameters to be exchanged in each iteration during model
training to measure the communication cost. From the results we
observe an interesting peak on the performance curve. This is
because the performance is the best if M is 0, but the user-item
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interaction histories cannot be protected. In addition, the
performance declines when M is non-zero because the randomly
generated gradients will affect the accuracy of item gradients,
while the performance sacrifice is smaller when using a larger
value ofM. This is because whenM is relatively large, the random
gradients of pseudo interacted items can be better counteracted
after aggregation and their influence is better mitigated. More-
over, the model can achieve at least 1000

M -index privacy on the
Movielens datasets (discussed in detail in the Methodology
Section), and privacy protection on other datasets is better. Thus,
if M is too small the user privacy cannot be well-protected.

However, the communication cost is also proportional to M and
can be heavy if M is too large. Since the performance
improvement under M > 1000 is marginal, we set M to 1000 to
achieve 1-index privacy and good personalization performance,
where the communication cost is reasonable.

We further evaluate the performance and upload/download
communication cost of FedPerGNN under different rounds of
privacy-preserving graph expansion (Fig. 6). We find that the
errors decrease when the expansion round increases from 0 to 3,
and the improvements are mainly brought by the first two rounds
of graph expansion. This phenomenon indicates that the graph
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information in the first three orders plays the most important role
in personalization. In addition, the performance decreased when
there are too many expansion rounds, which is probably because
of the over-smooth problem in GNN models37. Besides, we find
the major communication cost is brought by downloading the
anonymous neighbor user embeddings, which is proportional to
the expansion round. Thus, in our approach we use three rounds
of expansion to achieve the best performance within an
acceptable communication cost. Since the download bandwidth
is usually more abundant than upload bandwidth38, FedPerGNN
is practical in real-world scenarios.

Discussion
In this work we present FedPerGNN, a federated framework for
privacy-preserving GNN-based personalization, which aims to
collaboratively train GNN models from decentralized user data by
exploiting high-order interaction information in a privacy-
preserving manner. In our method, we allow each user client to
locally train a GNN model based on its local user-item graph
stored on this device. Each client uploads the locally computed
gradients to a server for aggregation, which are further sent to
user clients for local updates. Since the communicated model
gradients may contain private user information, we develop a
privacy-preserving model update method to protect user privacy
in model training. Different from existing methods that can only
protect private user ratings, our method can protect both ratings
and interaction histories, which can achieve more comprehensive
privacy preservation in practice. In addition, our method does not
need to communicate and locally memorize the global item set,
and its communication overhead is usually acceptable for modern
personal devices. Thus, FedPerGNN can be easier to be deployed
in real-world personalization services.

Since the local user-item graphs inferred from local user data
only contain low-order interaction information, we propose a
privacy-preserving user-item graph expansion protocol to extend
local graphs and propagate high-order information under privacy
protection. In this process, each client receives the anonymous
user embeddings to expand the local subgraph, which helps the
propagation of high-order information on the user-item graph in
a privacy-preserving manner to enhance the performance of
GNN model. Within only a few rounds of privacy-preserving
graph expansion, the high-order information on the user-item
graph can be effectively exploited without heavy communication
cost. In addition, this method is not limited to the personalization
scenario and can serve as a basic technique for privacy-preserving
data mining on decentralized graph data, which has the potential
to facilitate researches in various fields that involve graph-
structured data.

We conducted extensive experiments on six real-world datasets
under different scenarios. The results show that FedPerGNN can
achieve competitive performance with existing GNN methods
based on centralized data storage, and can achieve 4.0–9.6% lower
prediction errors than SOTA privacy-preserving methods. The
experimental results further validate the generality of FedPerGNN
in boosting the performance of GNN models with various archi-
tectures, which shows the potential of our method in serving as a
general benchmark for privacy-preserving GNN model learning.
We also find that FedPerGNN can achieve a good balance between
accuracy, privacy protection and communication cost, which
provides great potential to be incorporated in practice. Through
the analysis of graph expansion, we find the graph information
within the first three orders takes the core role in personalization,
which may provide useful guidance for researchers to reveal the
inherent mechanism of GNN model and help practitioners
develop both effective and efficient graph modeling systems.

The FedPerGNN method we proposed can be used as a tem-
plate framework for mining decentralized graph data under
privacy protection. It is friendly to clients with limited commu-
nication resources, and is compatible with a large number of
clients for collaborative model learning. FedPerGNN also pro-
vides the potential to empower many other scenarios that involve
private graph data, such as intelligent healthcare, urban com-
puting, and quantitative finance. We hope it can inspire future
researches in other related fields to improve the effectiveness and
responsibility of machine intelligence systems.

However, FedPerGNN has the following limitations. First,
FedPerGNN relies on the assumption that third-party server is
trusted and does not collude with the recommendation server,
which is somewhat strong. Second, FedPerGNN may be brittle to
attackers with a large number of malicious clients. Thus, in our
future work, we will study how to defend against intended attacks
from malicious clients and platforms. Furthermore, we plan to
explore the effective and secure deployment of FedPerGNN in
real-world personalization systems to serve their users under
privacy preservation.

Methods
In this section, we first introduce the problem definitions in our FedPerGNN
framework, then introduce the details of our FedPerGNN approach, and finally
provide some discussions and analysis on privacy protection.

Problem formulation. Denote U ¼ fu1; u2; :::; uPg and T ¼ ft1; t2; :::; tQg as the
sets of users and items respectively, where P is the number of users and Q is the
number of items. Denote the rating matrix between users and items as Y 2 RP ´Q ,
which is used to form a bipartite user-item graph G based on the observed ratings
Yo. We assume that the user ui has interactions with K items, which are denoted by
[ti,1, ti,2, . . . , ti,K]. These items and the user ui can form a first-order local user-item
subgraph Gi (the non-shaded area in Supplementary Fig. 4). The ratings that given
to these items by user ui are denoted by [yi,1, yi,2, . . . , yi,K]. To protect user privacy
(both the private ratings and the items a user has interactions with), each user
device locally keeps its individual interaction data, and the raw data never leaves
the user device. We aim to predict the user ratings based on the interaction data Gi
locally stored on user devices in a privacy-preserving way. Note that there is no
global user-item interaction graph in our approach and local graphs are built and
stored in different devices, which is essentially different from existing federated
GNN methods22,39,40 that require the entire graph to be built and stored together
in at least one platform or device.

FedPerGNN framework. Next, we introduce the details of FedPerGNN to train
GNN-based personalization model in a privacy-preserving way (Fig. 7). The local
subgraph on each user client is constructed from the user-item interaction data and
the neighboring users that have co-interacted items with this user. The node of this
user is connected to the nodes of the items it interacted with, and these item nodes
are further connected to the anonymous neighboring users. An embedding layer is
first used to convert the user node ui, the K item nodes [ti,1, ti,2, . . . , ti,K] and the N
neighboring user nodes [ui,1, ui,2, . . . , ui,N] into their embeddings, which are
denoted as eui , ½eti;1; eti;2; :::; eti;K � and ½eui;1; eui;2; :::; eui;N �, respectively. Since the user
embeddings may not be accurate enough when the model is not well-tuned, we first
exclude the neighboring user embeddings at the beginning of model learning, and
then incorporate them into model learning when they have been tuned. Note that
the embeddings of the user ui and the item embeddings are synchronously updated
during model training, while the embeddings of neighboring users are periodically
updated.

Next, we apply a graph neural network to these embeddings to model the
interactions between nodes on the local first-order sub-graph. Various kinds of
GNN networks can be used in our framework, such as GCN33, GGNN32 and
GAT29. The GNN model outputs the hidden representations of the user and item
nodes, which are denoted as hui , ½hti;1; hti;2; :::; hti;K � and ½hui;1; hui;2; :::; hti;N �,
respectively. Then, a rating predictor module is used to predict the ratings given by
the user ui to her interacted items (denoted by ½ŷi;1; ŷi;2; :::; ŷi;K �) based on the
embeddings of items and this user. These predicted ratings are compared against
the gold ratings locally stored on the user device to compute the loss function. For
the user ui, the loss function Li is computed as Li ¼ 1

K ∑
K
j¼1 jŷi;j � yi;jj2. We use the

loss Li to derive the gradients of the models and embeddings, which are denoted by
gmi and gei , respectively. These gradients will be further uploaded to the server for
aggregation.

The server aims to coordinate all user devices and compute the global gradients
to update the model and embedding parameters in these devices. In each round,
the server awakes a certain number of user clients to compute gradients locally,
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which are then sent to the server. After the server receives the gradients from these
users, the aggregator in this server will aggregate these local gradients into a unified
one g. We use the FedAvg21 algorithm to implement the aggregator. Then, the
server sends the aggregated gradients to each client to conduct local parameter
update. Denote the parameter set in the i-th user device as Θi. It is updated by
Θi=Θi− αg, where α is the learning rate. This process will be iteratively executed
until the model converges. When the model learning process completes, the user
clients will upload their locally inferred hidden user embeddings to the server for
providing future personalization services. We summarize the learning framework
of our FedPerGNN method (Supplementary Algorithm 1). We then introduce two
modules for privacy protection in FedPerGNN, i.e., a privacy-preserving model
update module (corresponding to Lines 9–13 in Algorithm 1) for protecting
gradients in the model update and a privacy-preserving user-item graph expansion
module (corresponding to Line 15 in Algorithm 1) to protect user privacy when
modeling high-order user-item interactions.

Privacy-preserving model update. If we directly upload the GNN model and item
embedding gradients, then there may be some privacy issues due to the following
reasons. First, for embedding gradients, only the items that a user has interactions
with have non-zero gradients to update their embeddings, and the server can
directly recover the full user-item interaction history based on the non-zero item
embedding gradients. Second, besides the embedding gradients, the gradients of the
GNN model and rating predictor may also leak private information of user his-
tories and ratings41, because the GNN model gradients encode the preferences of
users on items. In existing methods such as FedMF31, homomorphic encryption
techniques are applied to gradients to protect private ratings. However, in this
method the user device needs to locally memorize the embedding table of the entire
item set T and upload it in every iteration to achieve user interaction history
protection, which is impractical due to the huge storage and communication costs
during model training.

To tackle these challenges, we propose two strategies to protect user privacy in
the model update process. The first one is pseudo interacted item sampling.
Concretely, we sample M items that the user has not interacted with. and randomly
generate their gradients gpi using a Gaussian distribution with the same mean and
co-variance values with the real item embedding gradients. Note that there are
many sampling methods such as using the displayed items that have no interaction

with a user. In our experiments we randomly sample items from the full item set
for simulation. The real embedding gradients gei are combined with the pseudo
item embedding gradients gpi , and the unified gradient of the model and
embeddings on the i-th user device (Line 27 in Algorithm 1) is modified as
gi ¼ ðgmi ; gei ; gpi Þ. The second one is LDP. Following42, we clip the local gradients
on user clients based on their L1-norm with a threshold δ, and apply a LDP43

module with zero-mean Laplacian noise to the unified gradients to achieve better
user privacy protection, which are formulated as follows:

gi ¼ clipðgi; δÞ þ Laplaceð0; λÞ; ð1Þ

where λ is the noise scale. The privacy budget ϵ can be bounded by 2δe
λ , where e is

the number of epochs. The protected gradients gi are uploaded to the learning
server for aggregation.

Privacy-preserving user-item graph expansion. Then, we introduce our privacy-
preserving user-item graph expansion protocol that aims to find the neighbors of
users and extend the local user-item graphs in a privacy-preserving way. In existing
GNN-based personalization method based on centralized graph storage, high-order
user-item interactions can be directly derived from the global user-item graph.
However, when user data is decentralized, it is a non-trivial task to incorporate
high-order user-item interactions without violating user privacy protection. To
solve this problem, we design a privacy-preserving user-item graph expansion
protocol that finds the anonymous neighbors of users to enhance user and item
representation learning, while protecting user privacy. Its framework is shown in
Fig. 8. The central learning server that maintains the personalization services first
generates a public key, and then distributes it to all user clients for encryption.
After receiving the public key, each user device applies Rivest–Shamir–Adleman
encryption to the IDs of the items he/she interacted with, because the IDs of these
items are privacy-sensitive. The encrypted item IDs as well as the embedding of this
user are uploaded to a trusted third-party server. This server finds the users who
interacted with the same items by matching the ciphertexts of item IDs, and then
provides each user with the embeddings of his/her anonymous neighbors. In this
stage, the server for personalization never receives the private information of users,
and the third-party server cannot obtain any private information of users and items
since it cannot decrypt the item IDs. We connect each anonymous user node with
its interacted item nodes. In this way, the local user-item subgraphs can be

Fig. 7 The detailed framework of FedPerGNN. Each client locally stores the interaction data and constructs the first-order local subgraph from it. This
graph is expanded by the neighbor users. Several pseudo interacted items are also sampled from the local interaction data to hide real interacted items. The
neighbor user embeddings are fixed, and the central user embedding is locally updated. The item embedding and GNN gradients are perturbed before
uploading to a server for aggregation, and the aggregated ones are delivered to clients for local update.
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enriched by the high-order user-item interactions without harming the protection
of user privacy. The example structure of the expanded local user-item subgraphs is
shown in Supplementary Fig. 4, and the shaded area is added by the graph
expansion method. We summarize the process of our privacy-preserving user-item
graph expansion protocol (Supplementary Algorithm 2).

Analysis on privacy protection. Overall, user privacy is protected from four
aspects in our FedPerGNN approach. First, in FedPerGNN the personalization
server never collects raw user-item interaction data, and only local computed
gradients are uploaded to this server. Based on the data processing inequality, we
can infer that these gradients contain much less private information than the raw
user interaction data21. Second, the third-party server also cannot infer private
information from the encrypted item IDs since it cannot obtain the private key.
However, if the personalization server colludes with the third-party server by
exchanging the private key and item table, the user interaction history will not be
protected. Fortunately, the private ratings can still be protected by our privacy-
preserving model update method. Third, in FedPerGNN we propose a pseudo
interacted item sampling method to protect the real interacted items by sampling a
number of items that have not been interacted by a user. Since gradients of both
kinds of items have the same mean and co-variance values, it is difficult to dis-
criminate the real interacted items from the pseudo ones if the number of pseudo
interacted items is sufficiently large. It is proved in44 that FedPerGNN can achieve
K
M�index privacy, and a smaller index privacy value indicates better privacy pro-
tection. Thus, the number of pseudo interacted items can be relatively larger to
achieve better privacy protection as long as the computation resources of user
devices permit. Fourth, we apply the LDP technique to the gradients locally
computed by the user device, making it more difficult to recover the raw user
consumption history from these gradients. Prior work42 has shown that the upper
bound of the privacy budget ϵ is 2δ

λ , which means that we can achieve a smaller
privacy budget ϵ by using a smaller clipping threshold δ or a larger noise strength λ
to achieve better privacy protection. However, the model gradients will be inac-
curate if the privacy budget is too small. Thus, we need to properly choose both
hyperparameters to balance model performance and privacy protection.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets involved in this study are all publicly available ones, and we adhere to the
original licenses of them when conducting experiments and analysis. The MovieLens
datasets (100K, 1M, and 10M versions) are available at https://grouplens.org/datasets/

movielens/. The Flixster, Douban, and YahooMusic datasets are available at https://
github.com/fmonti/mgcnn. Source data are provided with this paper.

Code availability
Code used for this study is available at https://github.com/wuch15/FedPerGNN45. In
addition, all experiments and implementation details are described in sufficient detail in
the Methodology section and in the Supplementary Information for reproducibility.
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