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A B S T R A C T   

Microplastics (MPs) and nanoplastics (NPs) are found in various environments such as aquatic, 
terrestrial, and aerial areas. Once ingested and inhaled, these tiny plastic debris damaged the 
digestive and respiratory organ systems in animals. In humans, the possible connection between 
MPs and various diseases such as lung diseases has been raised. Yet, the impact of MPs on the 
human nervous system has been unclear. Previous research using animals and cultured cells 
showed possible neurotoxicity of MPs and NPs. In this study, we used neural stem cells cultured 
from mouse subventricular zone to examine the effects of polystyrene (PS) NPs and MPs with sizes 
of 0.1 μm, 1 μm, and 2 μm on the cell proliferation and differentiation. We observed that only 
positively charged NPs and MPs, but not negatively charged ones, decreased cell viability and 
proliferation. These amine-modified NPs and MPs decreased both neurogenesis and oligoden-
drogenesis. Finally, fully differentiated neurons and oligodendrocytes were damaged and 
removed by the application of NPs and MPs. All these effects varied among different sizes of NPs 
and MPs, with the greatest effects from 1 μm and the least effects from 2 μm. These results clearly 
demonstrate the cytotoxicity and neurotoxicity of PS-NPs and MPs.   

1. Introduction 

MPs are plastic particles with a diameter less than 5 mm. They can be intentionally made for products like abrasive cleaners or 
byproducts of deteriorating plastic materials such as plastic bottles, clothes, and cosmetics [1]. With a high use of plastic products with 
an estimate of at least 381 million tons in 2018 year alone, the degraded debris, MPs, represent growing sources of pollution in aquatic 
environments [2] and terrestrial environments [3]. Airborne MPs have been detected in human lung tissue, indicating possible 
inhalation of MPs [4]. Meta-analysis of publications suggested that humans may ingest 0.1–5 g of MPs weekly [5]. The potential 
negative impacts of MPs on human health have been much reported. Upon ingestion, MPs possibly damage the intestinal barrier 
function in human gut [6]. Their possible contributions to human cardiovascular diseases [7], carcinogenesis [8], and lung diseases [9] 
have been raised. Yet, further research on the impacts of MPs on human health is required. 

Since its first production in 1930s, PS has been widely used as a solid material or used to make Styrofoam, which can be used to 
produce food containers, office supplies, and more [10]. Toxic effects of PS-MPs and -NPs on aquatic species, mammals, and human 
cells have been reported [11]. Adult zebrafish exposed to PS-MPs experienced hepatic glycolipid metabolism disorder [12]. In black 
rockfish Sebastes schlegelii, PS-MPs caused incapable hunting behavior along with signs of respiratory stress [13]. Rats exposed to 

* Corresponding author. 
E-mail address: kiyoubpark@ksa.kaist.ac.kr (K.-Y. Park).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e30518 
Received 1 April 2024; Received in revised form 27 April 2024; Accepted 29 April 2024   

mailto:kiyoubpark@ksa.kaist.ac.kr
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e30518
https://doi.org/10.1016/j.heliyon.2024.e30518
https://doi.org/10.1016/j.heliyon.2024.e30518
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e30518

2

PS-MPs showed cardiovascular toxicity [14]. Mice exposed to PS-MPs experienced damage in hepatic lipid metabolism [15]. PS-MPs 
exerted cytotoxicity in cultured human kidney proximal tubular epithelial cells HK-2 by damaging mitochondria and endoplasmic 
reticulum [16]. Additionally, PS-MPs induced reactive oxygen species and decreased transepithelial electrical resistance in human 
lung epithelial BEAS-2B culture cells [17]. Therefore, PS-MPs seem to have toxic effects on various organs in many species along the 
food chain. 

Neurotoxicity of PS-MPs and -NPs in rodents and neural culture cells has been reported. Exposure to PS-MPs impaired learning and 
memory in mice [18]. PS-NPs with a size of 50 nm were shown to pass through the blood-brain barrier and cause microglial activation 
in mice [19]. Chronic exposure to PS-MPs decreased social novelty preferences in mice, suggesting possible neurotoxicity [20]. 
Long-term exposure to PS-MPs reduced cell viability in human forebrain cortical spheroids [21] and increased anxiety-like behaviors 
in adult mice [22]. Ingestion of PS-NPs caused neuronal degeneration in the hippocampi of rats [23]. All these reports suggest that 
PS-MPs and PS-NPs can penetrate the mammalian brain and exert neurotoxicity. 

The subventricular zone (SVZ) is the brain region with neural stem cells (NSCs) that can generate neurons and glial cells throughout 
the lifetime [24]. NSCs cultured from the SVZ can be differentiated to neurons, oligodendrocytes, and astrocytes by replacing the 
growth medium with differentiating medium that lacks growth factors and serum [25]. Therefore, SVZ NSCs are a good model system 
for researching the effects of chemical and biological reagents on the neuronal and glial cell differentiation [26,27]. In this study, we 
treated NSCs cultured from the mouse SVZ with various sizes of PS-MPs and -NPs. We observed that PS-MPs and PS-NPs of 0.1 μm, 1 
μm, 2 μm sizes reduced cell viability and mitotic cell division, which was dependent on the dose and surface charge of MPs and NPs. 
Only positively charged amine-modified MPs and NPs reduced cell viability. PS-MPs and -NPs inhibited neuronal differentiation and 
oligodendrogenesis. PS-MPs and -NPs were cytotoxic to differentiated neurons and oligodendrocytes. To our knowledge, this is the first 
detailed study about the effects of PS-MPs and -NPs on SVZ NSCs. 

2. Materials and methods 

2.1. Characterization of polystyrene microplastic and nanoplastic beads 

In this study, all PS-MPs and -NPs were latex beads with a fluorescence tag and purchased from Sigma Aldrich. The list of poly-
styrene beads is shown in Table 1. All of them were in aqueous suspension with a 2.5 % stock concentration. To apply to cells, the stock 
solution was diluted in the culture medium. 

To measure the hydrodynamic size (HD) and zeta potential (ZP), PS NPs and MPs were diluted in distilled water at a 1:100 dilution. 
HD and ZP were measured at 25 ◦C using a dynamic light scattering (DLS) instrument (Malvern Instruments, Malvern, UK). 

2.2. NSC culture 

NSCs were obtained from SVZ tissue from 5-day-old mouse pups of the CD1 mouse strain (Orient Bio, Korea) after euthanization 
using carbon dioxide. The euthanization process was performed following the protocol approved by Inje University Animal Care and 
Use Committee (approval ID number: Inje 2020-006). The process of obtaining SVZ tissue and NSC culture conditions was previously 
reported [27]. In short, the brain slice was cut in a way to contain the lateral ventricles. The lower part of the lateral ventricles was cut 
and dissociated using trypin (Gibco, ThermoFisher, Waltham, MA, USA). Cells were plated at a density of SVZ tissues from one pup into 
one well of 6-well culture plate. These cells were passage 0 (P0) and incubated for one week. Then, cells were passaged at a 1:2 or 1:3 
split ratio every two or three days. In this study, passage 4 to 7 cells were used for experiments. Cells were incubated at 37 ◦C with 5 % 
carbon dioxide. The growth medium (N5) consists of DMEM/F12-GlutaMAX™ supplemented with 5 % fetal bovine serum (GenDEPOT, 
Texas, USA), 10 % N2 supplement, 35 μg/mL bovine pituitary extract, 20 ng/mL epidermal growth factor (EGF), 20 ng/mL basic 
fibroblast growth factor (bFGF), and 10 % antibiotic/antimycotic. All materials in the culture medium were from Gibco (Thermo-
Fisher, Waltham, MA, USA), except for fetal bovine serum. 

2.3. Cell viability assay 

The NSCs were plated into a 96-well plate. The next day, the culture medium was switched with 100 μl of new culture medium 
containing PS-MPs and -NPs beads per well. After one day of incubation, 10 μl of Quanti-Max™ WST-8 reagent (BIOMAX, Seoul, Korea) 
was added to each well and incubated for 1 h at 37 ◦C with 5 % carbon dioxide. Cell viability was measured by optical density at 450 

Table 1 
Fluorescent tagged PS-MPs and PS-NPs used in this study.  

Polystyrene NPs, MPs Surface modification Surface charge Fluorescence Excitation Fluorescence Emission 

0.1 μm Sulfate – ~520 nm ~540 nm 
0.1 μm Amine ╋╋ ~475 nm ~540 nm 
1 μm Carboxylate – ~470 nm ~505 nm 
1 μm Amine ╋╋ ~470 nm ~505 nm 
2 μm Carboxylate – ~470 nm ~505 nm 
2 μm Amine ╋╋ ~520 nm ~540 nm  
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nm light (OD450) with a VersaMax microplate reader (Molecular Devices, San Jose, CA, USA). Medium without cells was used as a 
blank measurement, and all OD450 values were normalized with the blank measurement. 

2.4. 5-ethynyl-2′-deoxyuridine (EdU) assay 

The NSCs were plated at a 1:4 split ratio on 8-well CC2 chamberslides (Nunc, ThermoFisher, Waltham, MA, USA) coated with 
laminin (Invitrogen, ThermoFisher, Waltham, MA, USA) overnight. The next day, the medium was replaced with fresh medium 
containing 10 μg/ml PS-MPs or NPs, and cells were incubated for 18 h. For EdU incorporation, cells were incubated in N5 medium 
containing 5 μM EdU for 1 h. The EdU detection assay was performed following manufacturer’s protocol of the Click-iT Plus EdU 
Imaging Kit (Invitrogen, ThermoFisher, Waltham, MA, USA). Briefly, cells were fixed in 4 % paraformaldehyde for 15 min and then, 
permeabilized with 0.5 % Triton X-100 for 20 min. Cells were incubated in EdU detection cocktail for 30 min, followed by 4′,6-dia-
midino-2-phenylindole (DAPI) staining (1:1000 diluted in phosphate buffered saline (PBS)) for 30 min. Between different solutions, 3 
% bovine serum albumin (Sigma, St. Louis, MO, USA) in PBS was used for washing. After imaging with the fluorescence microscope 
(Olympus, Tokyo, Japan), EdU-positive cells and DAPI-stained cells were counted using a cell count macro in iSolution software (IMT i- 
Solution Inc., Vancouver, BC, Canada). 

2.5. Lactate dehydrogenase (LDH) assay 

The NSCs (12 × 103 cells per well) were plated on 96-well plate coated with laminin/poly-D-lysine coating solution (Sigma, St. 
Louis, MO, USA). Next day, the cells were briefly rinsed with differentiation medium (N6) and incubated in fresh N6 medium con-
taining 10 μg/ml PS-MPs or NPs. N6 medium is the same as the growth N5 medium except for the lack of EGF, bFGF, and fetal bovine 
serum. After 18-hr incubation, LDH cytotoxicity assay was performed using Quanti-LDH™ PLUS cytotoxicity assay kit, following the 
manufacturer’s instructions (BIOMAX, Seoul, Korea). The absorbance at 490 nm was measured using a VersaMax microplate reader 
(Molecular Devices, San Jose, CA, USA). N6 Medium without cells was used as a blank measurement, and all OD490 values were 
normalized with the blank measurement. 

2.6. Lysotracker labeling 

The NSCs were plated on laminin (Invitrogen, ThermoFisher, Waltham, MA, USA) -coated 8-well CC2 chamberslides (Nunc, 
ThermoFisher, Waltham, MA, USA). The next day, cells were treated with N5 medium containing 5 μg/ml 0.1 μm amine-modified PS 
beads for 12 h. Then, cells were incubated in fresh N5 medium containing 100 nM LysoTracker and 1X Hoechest 33342 (diluted in Live 
Cell Imaging Solution) for 5 min in the 37 ◦C incubator. After rinsing three times with fresh Live Cell Imaging Solution, the cells were 
imaged. All reagents are from Molecular Probes (ThermoFisher, Waltham, MA, USA). 

2.7. Differentiation of NSCs 

NSCs were plated onto laminin coated 8-well CC2 chamberslides at a 1:1 or 1:2 split density. After one day, the culture medium is 
briefly rinsed with N6 medium, and then the cells were treated with fresh N6 or N6 medium containing PS-MPs and -NPs beads. For 
transient exposure with PS-MPs and -NPs beads, medium containing PS beads was removed and then, cells were rinsed with fresh N6 
medium 3 times. Then, fresh N6 medium was added to the cells. For long-term differentiation, fresh N6 medium was added at 4 days of 
differentiation. At 8 days of differentiation, N6 medium containing PS beads was added to the cells. 

2.8. Immunocytochemistry and fluorescence imaging 

Similar procedures as previously described [27] were performed for immunocytochemistry. Cells were rinsed with PBS briefly and 
then fixed in 4 % paraformaldehyde (Sigma, St. Louis, MO, USA) for 15 min or 30 min. After 30 min of blocking with 10 % normal goat 
serum (Cell Signaling, Danvers, MA, USA) with 0.1–0.3 % Triton X-100 (Sigma, St. Louis, MO, USA), cells were incubated in the 
blocking solution containing primary antibodies for 2 h. After briefly rinsing with PBS, cells were incubated in PBS containing sec-
ondary antibodies and DAPI (Sigma, St. Louis, MO, USA) for 30 min. Cells were mounted using Aqua-Poly/Mount (Polysciences, 
Warrington, PA, USA). The primary antibodies were mouse anti-Tuj1 (BioLegend, San Diego, CA, USA), rabbit anti-Olig2, and rabbit 
anti-histone H3 phosphorylated at Ser10 (PH3). Both Olig2 and PH3 antibodies were purchased from Millipore, Billerica, MA, USA. 
The secondary antibodies were Alexa-488-conjugated anti-mouse and Alexa-594-conjugated anti-rabbit. Secondary antibodies were 
from Jackson ImmunoResearch, West Grove, PA, USA. All primary and secondary antibodies were diluted at 1:500. 

For fluorescence imaging, three or four wells of cells per condition were imaged using a fluorescence microscope (Olympus, Tokyo, 
Japan). For cell counting, 5 fields of view per well were randomly imaged. The number of Tuj1-positive cells was counted manually. 
The numbers of Olig2-positive cells and DAPI-positive cells were automatically counted using a cell count macro in iSolution software 
(IMT i-Solution Inc., Vancouver, BC, Canada). 

2.9. Statistical analysis 

All the quantified datasets were analyzed with one-way ANOVA analysis and F statistic value was greater than F critical value in all 
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of the analysis, indicating the presence of differences among groups. Then, post-hoc analysis using the Bonferroni correction was 
performed along with Student’s t-test (two-tailed distribution and two-sample equal variance). When the p-value was less than 0.05 or 
0.01, statistical significance was indicated in the graphs. The number of biologically independent experiments is indicated as N (for 
example, N = 3) in the relevant figure legends. 

Fig. 1. (A) Representative histograms of hydrodynamic (HD) size distribution of polystyrene NPs and MPs of 0.1, 1, and 2 μm in diameter (d. nm) 
with positive (+) or negative (− ) surface charge. (B) The surface modification, HD, and zeta potential (ZP) of each polystyrene beads. All data are 
means ± S.D. (n = 3). 
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3. Results 

3.1. Characterization of polystyrene microplastic and nanoplastic beads 

The sizes and zeta potentials of PS-MPs and -NPs were measured using dynamic light scattering (DLS). The hydrodynamic (HD) size 
distribution indicated that the peak intensity was at the expected size 0.1, 1, and 2 μm (Fig. 1A). The mean sizes (HD) of 0.1 μm amine- 
modified PS, 0.1 μm sulfate-modified PS, 1 μm amine-modified PS, 1 μm carboxyl-modified PS, 2 μm amine-modified PS, and 2 μm 
carboxyl-modified PS were 140.17, 108.12, 981.08, 1385.02, 1952.45, and 1748.03 nm, respectively (Fig. 1B). Additionally, zeta 
potential (ZP) values reflected the surface charges resulting from chemical modifications, amine-, carboxyl-, or sulfate-coating 
(Fig. 1B). 

3.2. Decreased cell viability by polystyrene microplastic and nanoplastic beads 

To investigate the cellular toxicity of PS-MPs and -NPs on cultured NSCs, PS beads with different sizes and charges were applied to 
proliferating NSCs. Amine-modified PS-MPs and -NPs with sizes of 0.1 μm, 1 μm, and 2 μm were added at concentrations of 20 μg/ml, 
40 μg/ml, and 100 μg/ml to the growth medium for 1 day. Compared to the no-beads control group, cells treated with beads showed 
decreased cell viability. The 0.1 μm-sized PS beads reduced cell viability to one-quarter at concentrations of 20, 40, and 100 μg/ml 
(Fig. 2A). The 1 μm-sized PS beads decreased cell viability in a dose-dependent manner, reducing it to one-half at 20 μg/ml, one- 
quarter at 40 μg/ml, and one-eighth at 100 μg/ml compared to the control (Fig. 2A). The 2 μm-sized PS beads reduced cell 
viability to one-half at concentrations of 20, 40, and 100 μg/ml (Fig. 2B). To compare the effects of surface charge, sulfate- or 
carboxylate-modified PS beads of the same size were added. None of the negatively charged PS beads significantly decreased the cell 
viability, while positively charged amine-modified PS beads consistently decreased it (Fig. 2C). Therefore, amine-modified PS beads 

Fig. 2. Reduced cell viability of cultured SVZ NSCs by (A) 0.1 μm, 1 μm, and (B) 2 μm polystyrene beads (PS) at 20, 40, and 100 μg/ml con-
centrations. (C) Effects of the surface charge (+ or -) of each PS-MPs and -NPs at 40 μg/ml on the cell viability of cultured SVZ NSCs. (A)~(C) Mean 
and S.E. are shown (N = 3). Statistical analysis was done using one-way ANOVA and Bonferroni correction for pair-wise comparison to no beads 
control (Cont) (**p < 0.01). 
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were used for the following experiments. 
The decrease in cell viability might be attributed to a reduction in cell proliferation. To investigate this possibility, cells were 

immunostained for a mitotic marker, phosphorylated histone H3 (PH3), after incubation with PS beads. All sizes of PS beads (0.1 μm, 1 
μm, or 2 μm) at a concentration of 10 μg/ml significantly decreased the number of PH3-positive cells (Fig. 3A). While 3.6 % of control 
NSCs were positive for PH3, only 2.0 %, 1.5 %, and 2.1 % of NSCs exposed to 0.1 μm, 1 μm, or 2 μm PS beads, respectively, showed 
positivity for PH3 (Fig. 3B). Additionally, an EdU assay, which detects cells actively synthesizing DNA during the S phase, was per-
formed (Fig. 3C). While 27 % of control NSCs incorporated EdU into their nuclei, 12 %, 5 %, and 14 % of NSCs exposed to 10 μg/ml of 
0.1 μm, 1 μm, or 2 μm PS beads, respectively, exhibited EdU incorporation into their nuclei (Fig. 3D). These results suggest that PS 
beads decrease cell viability by inhibiting cell division. 

Fig. 3. Decreased PH3-positive cells (A and B) and EdU-positive cells (C and D) in SVZ NSCs cultured with 10 μg/ml PS-MPs and –NPs. The means 
and S.D. (in (B), N = 1) or S.E. (in (D), N = 3) are shown. Statistical analysis was done using one-way ANOVA and Bonferroni correction for pair- 
wise comparison to no beads control (*p < 0.05) in (B) and (**p < 0.01) in (D). Scale bar in (A) and (C) is 50 μm. 
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3.3. Cellular localization of 0.1 μm PS beads 

Green fluorescence from 0.1 μm PS beads was observed inside the cells, while 1 μm and 2 μm PS beads appeared to be located 
outside the cells (data not shown). Therefore, the subcellular localization of 0.1 μm PS beads was examined using fluorescence mi-
croscopy in conjunction with the Lysotracker reagent, which accumulates in acidic vesicles within the cell. Co-localization of 0.1 μm PS 
beads with some Lysotracker labeling (Fg. 4) suggests that the endocytosed 0.1 μm PS beads may have been transported to the ly-
sosomes of proliferating NSCs. 

3.4. Inhibition of neurogenesis and oligodendrogenesis by microplastic beads 

The effects of PS microplastic beads on differentiation of NSCs were investigated. NSCs were incubated in differentiation medium 
supplemented with PS beads of sizes 0.1, 1, and 2 μm at concentrations of 1 or 5 μg/ml for 4 days. Immunostaining for the neuronal 
marker Tuj1 and oligodendrocyte marker Olig2 was performed. At 1 μg/ml, PS beads of all sizes did not significantly affect the 
neurogenesis and oligodendrogenesis (data not shown), but at 5 μg/ml, they decreased both (Fig. 5A). Specifically, at 5 μg/ml, 0.1 μm 
and 1 μm PS beads greatly reduced the number of Tuj1-positive cells and Olig2-positive cells (Fig. 5B). Addition of 2 μm PS beads to 
differentiating cells did not significantly alter the number of Tuj1-positive cells but halved the number of Olig2-positive cells compared 
to the no-beads control (Fig. 5B). To investigate the potential cause of reduced differentiation, a lactate dehydrogenase (LDH) activity 
assay was conducted. LDH is released from cells and undergoes enzymatic reaction outside the cell when the plasma membrane is 
damaged. Compared to the no-beads control NSCs, 1 μm PS beads significantly increased LDH cytotoxicity by 2.8-fold, while 0.1 and 2 
μm PS beads showed a slight increase in LDH cytotoxicity, although not statistically significant (Fig. 5C). 

Instead of exposing NSCs to PS beads throughout the entire differentiation process, a transient exposure approach was adopted. 
Specifically, PS beads were added to the cells during the initial two days of differentiation. NSCs were treated with PS beads at a 
concentration of 10 μg/ml for the first two days of differentiation, followed by continued differentiation for an additional two days in 
the absence of PS beads (Fig. 6A). Consistent with the findings in Fig. 4, both 0.1 μm and 1 μm PS beads greatly inhibited neurogenesis, 
whereas 2 μm PS beads did not significantly affect the number of Tuj1-positive neurons (Fig. 6B and C, left). However, oligoden-
drogenesis was greatly suppressed by all sizes of PS beads (Fig. 6B and C, right), aligning with the observations in Fig. 5. Thus, it 
appears that transient exposure to 0.1 μm or 1 μm PS beads, particularly during the early stages of differentiation, inhibits both 
neurogenesis and oligodendrogenesis. 

3.5. Cytotoxic effects of PS microplastic beads on neurons and oligodendrocytes 

Subsequently, the impact of PS beads on the differentiated neurons and oligodendrocytes derived from NSCs was investigated. 
NSCs underwent differentiation for 8 days, after which 5 μg/ml PS beads were introduced into the differentiation medium. Following 3 
days of incubation in the presence of PS beads, cells were subjected to immunocytochemistry (Fig. 7A). Specifically, 1 μm PS beads led 
to a reduction in the number of Tuj1-positive cells and Olig2-positive cells, whereas other PS beads (0.1 μm and 2 μm) did not yield 
significant effects (Fig. 7B). Upon extending the incubation period in the presence of PS beads to 5 days (Fig. 7C), all PS beads with 
sizes of 0.1, 1, or 2 μm decreased the number of Tuj1-positive neurons (Fig. 7D, left). Regarding oligodendrocytes, only 1 μm PS beads 
reduced the number of Olig2-positive cells, while 0.1 μm and 2 μm beads did not elicit significant effects (Fig. 7D, right). These findings 
suggest that PS beads (0.1, 1, and 2 μm) may induce neurotoxicity upon prolonged exposure of neurons to PS-MPs or –NPs. 

4. Discussion 

In this research, we investigated the effects of PS-MPs and -NPs with different sizes. All sizes of MPs and NPs (0.1, 1, and 2 μm) 
exhibited a similar decrease in cell viability in cultured NSCs. Among them, 1 μm MP showed the most pronounced effect in reducing 
cell proliferation, as indicated by PH3 immunostaining and EdU incorporation assays. Furthermore, 1 μm MP nearly completely 
inhibited neurogenesis of NSCs when applied for four days or during the initial two days of differentiation. When added to NSC-derived 
cells undergoing differentiation for 8 days, 1 μm MP resulted in a notable absence of neurons and a significant reduction in the number 
of Olig2-positive oligodendrocytes. These effects may be attributed to damaged plasma membrane integrity, as evidenced by increased 
LDH cytotoxicity. NPs with a size of 0.1 μm exhibited similar effects to 1 μm MP but to a lesser extent. Conversely, 2 μm MP did not 

Fig. 4. Co-localization of 0.1 μm PS beads with Lysotracker as indicated with arrows. Scale bar is 10 μm.  
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significantly decrease neurogenesis, with a reduction observed only when applied to differentiated cells for 5 days. Although smaller 
particles can penetrate cells and tissues more easily, resulting in higher toxicity, the observed cytotoxicity is contingent upon cell types 
and polymer types [28]. Previous studies have shown that 50 nm PS-NPs, but not 2 μm PS-MPs, exhibited cytotoxicity on C17.2 
neuronal progenitor cells from the neonatal mouse cerebellum [29]. Additionally, 0.1 μm PS-NPs reduced the number of neural 
precursor cells and neuronal cells in a brain organoid model [30]. Both 50 nm and 500 nm PS-NPs decreased total cell numbers and 
neurite length in cultured hippocampal NSCs [31]. In the case of SVZ NSCs, 1 μm PS-MPs demonstrated greater cytotoxicity compared 
to 0.1 μm PS-NPs, while 2 μm PS-MPs exhibited the least effects. 

Interestingly, only 0.1 μm NPs appeared to be endocytosed by NSCs, as demonstrated by their co-localization with Lysotracker, a 
marker for acidic intracellular vesicles. Conversely, 1 μm and 2 μm MP did not exhibit internalization by proliferating, differentiating, 

Fig. 5. (A) PS-MPs and -NPs inhibited differentiation of SVZ NSCs to neurons (Tuj1) and oligodendrocytes (Olig2) after 4-day differentiation in the 
presence of 5 μg/ml PS beads. Images with higher magnification (x14), compared to the initial (x1) are shown. Green fluorescent dots in PS-treated 
cells represent fluorescent tagged PS beads. Scale bar is 150 μm. (B) Quantified data of (A). Mean and S.E. are shown (Tuj1; N = 2, Olig2; N = 3). (C) 
Cytotoxicity of 1 μm PS-MPs during differentiation (N = 3). Statistical analysis was done using one-way ANOVA and Bonferroni correction for pair- 
wise comparison to Cont, no beads control (**p < 0.01, *p < 0.05). 
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or differentiated NSCs. This observation aligns with previous findings indicating that 2 μm PS-MPs did not penetrate the cellular 
membrane [20], and 0.1 μm PS-NPs, but not 1 μm PS-MPs, are found within human hepatic cells (HL7702) [32]. Upon internalization, 
PS-MPs may induce cytotoxicity through various mechanisms, including oxidative stress [33], ER stress [34], and damage to mito-
chondrial and nuclear DNA [32]. Specifically, 1 μm PS-MPs appear to compromise plasma membrane integrity without internalization, 
as evidenced by the increased LDH cytotoxicity observed in Fig. 5. Previous studies have shown that large PS-MPs cause plasma 
membrane deformation due to electrostatic interactions between amine-modified PS-MPs and negative charges in the plasma mem-
brane [35]. Additionally, 500 nm PS-NPs have been reported to reduce cell membrane integrity in HUVECs (human umbilical vein 
endothelial cells) [36]. Thus, the compromised plasma membrane integrity introduced by 1 μm MP likely contributes to the diminished 

Fig. 6. (A) Experimental scheme. (B and C) Reduced the number of Tuj1-positive cells and Olig2-positive cells by transient exposure of SVZ NSCs to 
PS-MPs and –NPs (0.1 μm, 1 μm, and 2 μm sizes) at 10 μg/ml. (B) Green fluorescent dots in PS-treated cells represent fluorescent tagged PS beads. 
Scale bar is 25 μm. (C) Mean and S.E. are shown (N = 3). Statistical analysis was done using one-way ANOVA and Bonferroni correction for pair-wise 
comparison to no beads control (**p < 0.01). 
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differentiation of NSCs and the neurotoxic effects observed in differentiated neurons and glial cells (Figs. 5–7). Conversely, the 
negligible increase in LDH cytotoxicity observed in cells treated with 2 μm MP aligns with the minimal effects of these particles on 
mSVZ differentiation and the neurotoxicity of differentiated neurons. 

Regarding the surface charge of MPs and NPs, our results indicated that only positively charged amine-modified particles decreased 
the cell viability, whereas negatively charged carboxylate- or sulfate-modified particles did not. Similar findings have been reported, 
where positively charged PS-MPs and NPs exhibited higher toxicity compared to neutral or negatively charged counterparts in human 
intestinal epithelial cells (Caco-2) [37] and human alveolar cells [38]. The observed impact of surface charge on the toxicity of PS-MPs 
may be attributed to electrostatic interactions between positively charged MPs and negatively charged phospholipid in the plasma 
membrane [35]. Additionally, polysialylated-neural cell adhesion molecule (PSA-NCAM) is expressed in the SVZ [39], and polysialic 

Fig. 7. (A) Experimental scheme for (B). (B) The numbers of Tuj1-positive neurons and Olig2-positive oligodendrocytes decreased in NSCs exposed 
to 1 μm PS-MPs. (C) Experimental scheme for (D). (D) PS-MPs and –NPs decreased the number of Tuj1-positive neurons and 1 μm PS-MPs decreased 
Olig2-positive oligodendrocytes. (B) and (D) Mean and S.E. are shown (N = 3 for B, N = 2 for D). Statistical analysis was done using one-way 
ANOVA and Bonferroni correction for pair-wise comparison to no beads control (*p < 0.05). 

K.-Y. Park et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e30518

11

acid carries a highly negative charge, potentially enhancing the attraction of positively charged PS-MPs. 
In this research, we utilized concentrations of 5 and 10 μg/mL for most of our experiments. While these concentrations may appear 

high compared to physiological levels, recent studies have estimated that humans may ingest 0.1~5g of microplastics weekly [5]. 
Additionally, one study found approximately 300 μg/mL of 23 nm PS-NPs in the brains of mice when administered daily at a dose of 
14.6 ng/kg for three days [40]. Another study reported that oral gavage of 2 μm PS-MPs to mice increased blood-brain barrier 
permeability and facilitated penetration of the particles into brain tissue [41]. Despite these findings, we acknowledge that concen-
trations of 5 and 10 μg/mL may be unrealistically high for human brain tissue. Therefore, accurate measurements are needed to 
determine the environmental concentrations of PS-MPs and NPs in animal brain tissues. 

With the rapid accumulation of research reports on the biological effects of MPs and NPs, their impact on nervous system is still in 
its infancy. In the current study, we investigated the cytotoxic and neurotoxic effects of PS-MPs and –NPs on the NSCs of the SVZ. Our 
results suggest that NPs and MPs can have negative impacts on the neurogenic region of the brain by reducing cell viability, neuronal 
and glial differentiation, and possibly damaging neurons themselves. Although further investigation is needed to elucidate the detailed 
cellular mechanisms underlying this cytotoxicity, these findings provide clear evidence of the detrimental effects of MPs and NPs on 
the nervous system. 
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