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The dense stroma is one cause of poor efficacy of T cell-medi-
ated immunotherapy in pancreatic ductal adenocarcinoma
(PDAC). Carbohydrate sulfotransferase 15 (CHST15) is a pro-
teoglycan-synthetic enzyme responsible for remodeling tumor
stroma. Intra-tumoral injection of CHST15 small interfering
RNA (siRNA) has been shown to increase the tumor-infil-
trating T cells (TILs) in patients with unresectable PDAC.
However, the mechanism underlying the enhanced accumula-
tion of TILs is not fully explored. Here, we demonstrate that
intra-tumoral injection of CHST15 siRNA locally and remotely
diminishes myeloid-derived suppressor cells (MDSCs) and en-
hances TILs in mice. CHST15 was expressed by tumor cells and
MDSCs in both tumor and tumor-draining lymph nodes
(TDLNs), and CHST15 siRNA repressed stromal density,
neutrophil extracellular traps, and Ly6C/G+ MDSCs in vivo.
Remarkably, tumor growth inhibition was only observed in
the immunocompetent KPC model, which is associated with
enhanced TILs. In vitro, CHST15 siRNA significantly downre-
gulated the levels of CHST15 and indoleamine 2,3-dioxygenase
mRNA in CD33+ MDSCs derived from human peripheral
blood mononuclear cells. These results suggest a dual role for
intra-tumorally injected CHST15 siRNA onmodulating the tu-
mor immune microenvironment for T cell entry and remotely
diminishing CHST15+ MDSCs, decreasing T cell suppression
and expanding T cells in the TDLN, ultimately leading to an
enhanced accumulation of TILs.
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INTRODUCTION
Dense stromal remodeling and poor tumor-infiltrating T cells (TILs)
are hurdles for the treatment of pancreatic ductal adenocarcinoma
(PDAC), especially in patients with unresectable PDAC who did
not respond sufficiently or lost response to the first-line chemo-
therapy. Tumormatrix remodeling has been reported to act as a phys-
ical barrier to diminish the efficiency of cancer therapy by interfering
with the abilities of systemic drugs and anti-tumor T cells to enter,
Mole
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diffuse, and be activated in the tumor.1–8 Stroma-modifying agents
would thus provide a novel therapeutic strategy to overcome immune
suppression and are anticipated to augment effective treatment regi-
mens by combination with chemotherapy and/or immune check-
point inhibitors.1–5

Carbohydrate sulfotransferase 15 (CHST15) is a type II transmem-
brane Golgi protein that highly biosynthesizes sulfated disaccharide
units (E-units) of chondroitin sulfate (CS), which is responsible for
tumor matrix remodeling.9,10 CHST15 and CS-E are involved in the
multi-process of tumor progression of a wide range of cancers,
including PDAC,11–24 but their role in immune suppression is
largely unexplored. In biopsy specimens from unresectable PDAC
patients who showed progression despite first-line gemcitabine
and nab-paclitaxel therapy, higher CHST15 expression correlated
with lower numbers of tumor-infiltrating CD3+ and CD8+

T cells,25 suggesting the involvement of CHST15 in T cell immune
suppression in tumor.

We previously reported that specific knockdown of tumor-intrinsic
CHST15 enhanced tumor-infiltrating CD4+ and CD8+ T cells and
eliminated tumors in a T cell-dependent manner in a mouse model
of PDAC.26 Comprehensive RNA expression analyses revealed that
tumoral CHST15 knockdown up-regulated genes involved in the
recognition and killing of cancer cells by T cells, while down-regu-
lated genes related to stromal remodeling and metastasis.26 The role
cular Therapy: Oncology Vol. 32 June 2024 ª 2024 The Authors. 1
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Human BxPC-3 Mouse KPC Figure 1. Comparison of hCHS15 siRNA’s binding

affinity to and silencing efficacy on human and

mouse mRNAs

(A) Binding affinity of hCHST15 siRNA to human (black), pig

(red), rat (green), andmouse (blue) CHST15mRNAs. Melting

temperatures are shown. (B) In vitro silencing efficacy of

hCHST15 siRNA on human CHST15 mRNA by human

BxPC-3 cells and mouse CHST15 mRNA by mouse KPC

cells are shown. Relative quantity was measured compared

with control by qPCR. ****p < 0.0001, **p < 0.01, Welch’s

independent t test.
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of tumor-intrinsic CHST15 in the suppression of anti-tumor activity
by T cells was shown in mice.26

In a phase 1/2a clinical study, intra-tumoral administration of
STNM01, the RNA oligonucleotide to suppress CHST15 gene
expression through an RNA interference mechanism,25,27–34 signif-
icantly increased tumor-infiltrating CD3+ and CD8+ T cells in
patients with chemotherapy-refractory, unresectable PDAC as a
second-line therapy.25 An increase in CD3+ T cells at week 4 after
the first dose of STNM01 correlated with longer survival, indicating
that treatment-associated rapid increase of TILs contributed to
favorable outcomes.25 One possibility is that STNM01 acted locally
and broke the physiological matrix barrier, leading to accelerated
recruitment of anti-tumor T cells into the tumor. However, ques-
tions arose if anti-tumor T cells were sufficiently induced or
expanded before entering into the tumor site, as T cells were poorly
detectable in immunosuppressive PDAC patients of second-line
setting. Thus, in the present study, we investigated how locally in-
jected human CHST15 small interfering RNA (siRNA), which has
the same sequence as STNM01, enhances TILs in vivo in mouse
models of PDAC.
RESULTS
Comparison of human CHST15 siRNA’s binding affinity to and

silencing efficacy on human and mouse mRNAs

To investigate the in vivo mechanism underlying the increased TILs
by intra-tumoral STNM01 application found in clinical studies in pa-
tients with unresectable PDAC, the present study was conducted un-
der several conditions in mice. First, we used human CHST15 siRNA
(hCHST15 siRNA), which has the same sequence as STNM01, but
not mouse CHST15 siRNA. Second, both T cell-deficient nude
mice and immunocompetent mice were used as a hosts, to examine
the differences in tumor lesions in the presence or absence of
T cells. Third, we selected PDAC cell lines whose proliferation was
not affected by CHST15 silencing in vitro, to examine immune-medi-
ated tumor growth inhibition by excluding the influence of in vivo
anti-proliferative effects as much as possible. Therefore, human
BxPC-3 cells and mouse KPC cells were selected, as the proliferation
of these cells was not affected by several CHST15 silencing methods
in vitro in our preliminary and past studies (Figure S2).26
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Melting temperature analysis showed that antisense oligonucleotides
of hCHST15 siRNA designed to be fully complementary to the
Homo sapiens (human) RNA sequence hybridized most strongly
with it. In addition, the antisense oligonucleotide hybridized with
the corresponding RNA sequences of Sus scrofa domesticus (pig),
Rattus norvegicus (rat), and Mus musculus (mouse), even though
these hybridized complexes include several base mismatches (Fig-
ure 1A; Table S2). The melting temperature tended to decrease as
the number of base mismatches increased. The decreased binding
affinity of hCHST15 siRNA to mouse CHST15 mRNA was consis-
tent with decreased silencing efficacy in vitro that hCHST15 siRNA
showed 86.8% knockdown against human CHST15 mRNA in
BxPC-3 cells and 52.0% against mouse CHST15 mRNA in KPC cells
(Figure 1B). However, the inhibition rate of mouse CHST15
mRNA by hCHST15 siRNA was significant compared with that
by control.

hCHST15 siRNA showed tumor growth inhibition in

immunocompetent mice

In human BxPC-3-implantation model in T cell-deficient nude mice,
hCHST15 siRNA or control vehicle was injected intra-tumorally
twice a week from day 28, and mice were sacrificed at day 42 (Fig-
ure 2A). In a murine KPC-implantation model in immunocompetent
mice, hCHST15 siRNA or control vehicle was injected intra-tumor-
ally twice a week from day 7 and mice were sacrificed at day 21
(Figure 2B).

In T cell-deficient mice, there was no significant difference in tumor
size (Figure 2C); in contrast, tumor growth was inhibited in the
immunocompetent mice (Figures 2C and 2D).

Intra-tumoral injection of hCHST15 siRNA altered tumor stromal

components in both human BxPC-3 and murine KPC tumor

models

We first investigated the stromal components by histological exam-
ination. CHST15 protein was positive for ductal tumor cells in con-
trol mice (Figure 3A) and hCHST15 siRNA significantly repressed
CHST15 positive area (Figure 3A). The dense deposit of collagen fi-
bers and fibrils was seen and this was associated with massive citrul-
linated histone H3 staining, a hallmark of neutrophil extracellular
trap (NET) formation, and poor CD31+ vascularity (Figure 3A).
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Figure 2. hCHST15 siRNA showed tumor growth inhibition in immunocompetent mice

(A and C) Human BxPC-3 cells (1� 107 cell/mouse) were implanted subcutaneously into Balb/c-nu mice on day 0, and macroscopic tumor volume was monitored (n = 15).

ns, not significant by two-way ANOVA with Bonferroni multiple comparison test. (B and D) Mouse KPC cells (5 � 104 cell/mouse) were implanted subcutaneously into

syngeneic C57/BL6 mice on day 0, and macroscopic tumor volume was monitored (n = 5). *p < 0.05, ***p < 0.001. ns, not significant by two-way ANOVA with Bonferroni

multiple comparison test.
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In contrast, collagen formation was sparse in hCHST15 siRNA-
treated mice (Figure 3A). hCHST15 siRNA markedly decreased
the citrullinated histone H3+ NET formation while increasing the
CD31+ vascularity (Figure 3A). Accumulation of Ly6C/G+

myeloid-derived suppressor cells (MDSCs) within the fibrotic area
was also detected in control, and this was reduced by hCHST15
siRNA (Figure 3A).

CHST15 was strongly expressed by tumor cells (Figure 3B) and
stromal remodeling, such as dense fibrotic architecture, NETosis,
and aberrant vascularity was seen in control mice (Figure 3B).
Massive accumulation of MDSCs was seen (Figure 3B) and greater
positivity of CHST15 and MDSC was observed in immunocompe-
tent control mice compared with T cell-deficient control mice
(Figures 3A, bottom, and 3B, bottom). hCHST15 siRNA signifi-
cantly reduced percent positive areas of CHST15 and this was asso-
ciated with reduced fibrotic structure, NETosis, and MDSCs (Fig-
ure 3B). Part of the accumulated MDSCs expressed CHST15, and
hCHST15 siRNA repressed these cells (Figure S3). These results
indicated that suppressed stromal remodeling by hCHST15 siRNA
was a common feature in both immunodeficient and immunocom-
petent mice.

hCHST15 siRNA showed enhancement of T cells in both the

tumor and TDLN in the KPC model

In the KPC model, tumor-infiltrating CD4+ and CD8+ T cells were
rarely detectable in control mice (Figure 4A). In contrast, we found
a significant increase in the number of tumor-infiltrating CD4+

and CD8+ T cells by intra-tumoral injection of hCHST15 siRNA
(Figure 4A). In addition, Ki-67+ proliferating CD4+ and CD8+

T cells were rarely detectable in control mice as well, while
significantly increased by locally injected hCHST15 siRNA
(Figure 4B).

hCHST15 siRNA entered into the draining lymph node after local

injection, suppressed CHST15, and diminished MDSCs

To investigate whether locally injected hCHST15 siRNA possesses
any effect on TDLN components directly or indirectly, we examined
the pharmacokinetics of locally injected hCHST15 siRNA. Although
locally injected CHST15 siRNA has been reported to be degraded
Molecular Therapy: Oncology Vol. 32 June 2024 3
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Figure 3. Silencing of hCHST15 siRNA alters stromal components in human BxPC-3 and mouse KPC models

(A and B, top) Immunostaining for CHST15, citrullinated histone H3 (Citrullinated H3), CD3 or mLy6C/G (brown) and Sirius red in the tumor of mice treated with vehicle control

or hCHST15 siRNA. Scale bars, 20 mm. Yellow arrows indicate positive signals. (A and B) Quantitative analysis for stained tissues. Percentage positive areas for CHST15,

Sirius red, citrullinated H3, CD31, and mLy6C/G are shown. Mean ± SD (n = 5). **p < 0.01, ***p < 0.001, ****p < 0.0001 by Wilcoxon rank-sum test.
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rapidly after entering into the blood circulation,30,34 hCHST15 siRNA
was unexpectedly detected in not only the local sites, but also the
draining lymph node after local injection (Figure 5A). In the KPC
4 Molecular Therapy: Oncology Vol. 32 June 2024
model, MDSCs were abundantly detectable in the TDLN, but this
was significantly diminished by locally injected hCHST15 siRNA
(Figures 5B and 5C). hCHST15 siRNA also suppressed CHST15 in
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Figure 4. hCHST15 siRNA showed enhancement of

T cells in both the tumor and TDLN in KPC model

(A) Immunostaining for CD4 or CD8 (brown) in the tumor

of mice treated with vehicle control or hCHST15 siRNA in

KPC model (left). Original magnification �200. Yellow

arrows indicate positive signals. Quantitative analysis for

stained tissues (right). Percentage positive areas for

CD4 and CD8 are shown. Mean ± SD (n = 5). **p < 0.01

by Mann-Whitney test. (B) Double immunostaining for

Ki-67 (red) and CD4 (brown) or CD8 (brown) in the

TDLN with vehicle control or hCHST15 siRNA in KPC

model (left). Original magnification �100 (top left), �630

(bottom left). Yellow arrows indicate double-positive

signals. Quantitative analysis for stained tissues (right).

Percentage doubly positive areas for Ki-67+CD4+ and

Ki-67+CD8+ are shown. Mean ± SD (n = 5). **p < 0.01

by Mann-Whitney test.
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the TDLN (Figure 5B). Part of the MDSCs also expressed CHST15 in
the TDLN, and this was reduced by locally injected hCHST15 siRNA
(Figure S4A). In the BxPC-3 model, similar findings were observed,
although the absolute numbers of MDSCs were low compared with
the KPC model (Figure S4B).

Expression of CHST15 by human peripheral blood mononuclear

cell-derived MDSC and direct action by hCHST15 siRNA

Finally, we investigated whether hCHST15 siRNA directly acts on
MDSCs (Figure 6A). Human peripheral blood mononuclear cell
(PBMC)-derived, IL-6, and granulocyte macrophage colony stimu-
lating factor (GM-CSF)-induced CD33+ MDSCs actually expressed
CHST15 mRNA in vitro (Figure 6B). hCHST15 siRNA significantly
suppressed CHST15 mRNA by CD33+ MDSCs (Figure 6B). In addi-
tion, indoleamine 2,3-dioxygenase (IDO) mRNA was suppressed by
hCHST15 siRNA (Figure 6B).

DISCUSSION
Intra-tumoral injection of STNM01 was shown to enhance TILs in
chemotherapy-refractory patients with unresectable PDAC who
showed a poor T cell immune suppressive condition.25 In the pre-
sent study, we investigated how intra-tumorally injected hCHST15
siRNA enhances TILs using xenogeneic and syngeneic mouse
models of PDAC. We found that intra-tumorally injected hCHST15
siRNA acted not only locally, but also remotely. In a BxPC-3 xeno-
graft model, depletion of local dense stroma alone was not effective
in inducing tumor regression. In an immunocompetent KPCmodel,
which showed tumor progression with poor TILs, hCHST15 siRNA
achieved significant enhancement of TILs and this was associated
with a significant increase in CD4+ and CD8 T+ cells in the TDLN
Mo
compared with the control. Effective accumula-
tion of TILs is thus considered to be achieved
when an abundant number of T cells are gener-
ated in the secondary lymphoid organs, espe-
cially TDLN. This work is also the first report
illustrating that CHST15 is expressed by tu-
mor-associated MDSCs and the direct action of hCHST15 siRNA
on MDSCs.

Locally, the major effects of hCHST15 siRNA are considered to be the
suppression of CHST15 expression and the inhibition of tumor cell in-
vasion, as observed in the present study. In addition, hCHST15 siRNA
diminished Ly6C/G+ MDSCs. In both BxPC-3 and KPC models,
hCHST15 siRNA monotherapy by intra-tumoral injection inhibited
stromal remodeling as evidenced by an altered fibrotic structure
from dense to sparse, decreased NET formation, and increased vascu-
larity. NET is recently reported to be a critical structure to interfere
with CD8+ cytotoxic T cell infiltration into cancer epithelium and is
induced by PMN-MDSCs and neutrophils.35 Decreased Ly6C/G+

MDSCs by hCHST15 siRNA may thus lead to decreased NET forma-
tion. Hypovascularity is one of the unique features of PDAC, which
leads to insufficient systemic drug delivery, blocks T cell entry, and
is associated with a worse prognosis.36 Although the molecular mech-
anisms remain unexplored, hCHST15 siRNA-mediated alteration of
stromal structure may contribute to the maturation of vascularity, as
fibrotic stroma is considered to inhibit the formation and function
of blood vasculature.37 Therefore, hCHST15 siRNA conditions the
local tumor microenvironment to less NETosis with mature vascu-
larity, which is a prerequisite for T cell entry.

Unexpectedly, we found that locally injected hCHST15 siRNA was
detectable in the TDLNs. Remotely, a major effect of hCHST15 siRNA
is considered to expand CD4+ and CD8+ T cells in the TDLN of the
immunocompetent host. Direct action of hCHST15 siRNA on
T cells is unlikely, since CHST15 was not expressed by LN T cells in
the KPC model. In contrast, CHST15 was expressed by both human
lecular Therapy: Oncology Vol. 32 June 2024 5
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Figure 5. hCHST15 siRNA diminishes MDSCs in the TDLN

(A) Concentrations of hCHST15 siRNA within mouse tissues were detected by HLPC. Typical histograms of hCHST15 siRNA in the local tissue (pancreas) and its draining LN

(paraaortic LN) 1 h after single local injection of hCHST15 siRNA are shown. Negative control shows HPLC result in the pancreas 1 h after single local injection of saline. (B)

Quantitative analysis for CHST15-immunostained stained tissues of TDLN from human BxPC-3 model (left) or mouse KPC model (right). Percentage positive areas for

CHST15 are shown. Mean ± SD (n = 15 for BxPC-3model, n = 5 for KPCmodel). **p < 0.01, ***p < 0.001 byMannWhitney test. (C) Immunostaining for Ly6C/G (brown) in the

TDLN of KPC model (left panels). Original magnification �100. Yellow arrows indicate positive signals. Quantitative analysis for stained tissues (right). Percentage positive

areas for Ly6C/G are shown. Mean ± SD (n = 5). **p < 0.01 by Mann-Whitney test. LN, lymph node.
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PBMC-derived and mouse MDSCs. hCHST15 siRNA acted on
MDSCs and inhibited IDO expression in vitro. Direct action of
hCHST15 siRNA on MDSCs in the TDLN is thus considered. There-
fore, intra-tumorally injected hCHST15 siRNA enters into the TDLN
through afferent lymphatics, diminishes MDSCs, removes MDSC-
mediated T cell suppression, and expands CD4+ and CD8+ T cells in
the TDLN. As it remains a challenge to convert an immune suppres-
sive condition toward activation in PDAC, reactivation of T cells in
secondary lymphoid organs would be a reasonable approach. The
intra-tumoral route of administration is suggested to be an effective
route for RNA oligonucleotide to reactivate T cells in the TDLNs.

We previously reported that TDLN-expanded T cells enter into the
circulation, migrate to the tumor sites, and are further activated
within the tumor sites, probably upon antigen encounter in the
KPC implantation model.26 Similarly, in the present study, hCHST15
siRNA-expanded T cells can accumulate in the tumor, contributing to
T cell-dependent tumor growth inhibition. In PDAC patients, intra-
6 Molecular Therapy: Oncology Vol. 32 June 2024
tumoral administration of STNM01 was also reported to increase
TILs.25 The rate of RECIST-based progression disease (22.7%) was
not so high considering reported clinical studies ranging from
46.8% to 91.6% for second-line setting,38–43 and one complete
response was observed.25 This implies that locally acting STNM01
kept stable disease status for not only primary, but also metastatic, le-
sions and was able to eliminate metastatic tumors. Our results in the
present study explain why local injection influences remote lesions.
Since TDLN-expanded T cells enter the circulation, and then migrate
to primary and metastatic lesions, it is also considered that these
T cells play roles in preventing the progression or promoting the
regression of tumors systemically.

There are some limitations in our study. First, the silencing efficacy of
hCHST15 siRNA on mouse CHST15 mRNA was not strong (Fig-
ure 1B). This might influence the extent of anti-tumor efficacy in
the mouse KPC model, although we found significant tumor growth
inhibition by hCHST15 siRNA compared with controls (Figure 4B).



A B Figure 6. Expression of CHST15 by human PBMC-

derived MDSC and direct action by hCHST15 siRNA

(A) In vitro, the efficacy of hCHST15 siRNA on the expression

of human CHST15 mRNA and IDO mRNAs by human

PBMC-derived CD33+ MDSCs are shown. (B) Relative

quantity was measured compared with control by qPCR.

*p < 0.05, Independent t test.
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Second, although CHST15 was expressed by parts of MDSCs in both
tumor and TDLN, hCHST15 siRNA broadly diminished MDSCs
in vivo, including CHST15-negative MDSCs. It is possible that other
mechanisms besides siRNA silencing of hCHST15 are responsible for
this phenomenon. Since tumoral CHST15-derived CS-E is released
into the circulation and leads to MDSC activation by binding to its
functional receptor, CXCL4,44,45 one possibility is considered that
hCHST15 siRNA inhibits CS-E synthesis and indirectly diminishes
MDSCs. Further investigations including MDSC mobilization will
be required to explore the roles of hCHST15 siRNA on the modula-
tion of tumor-emergent MDSCs. Third, our models did not show
visible metastases, so the effect of hCHST15 siRNA on metastatic le-
sions needs to be investigated in other animal models. Forth, mole-
cules related to immune checkpoint inhibition were not investigated.
However, considering the findings that TILs increased in number by
hCHST15 siRNA treatment, it will be of great interest to examine the
detailed phenotype of T cells and the anti-tumor efficacy by combina-
tion with immune checkpoint inhibitors in mouse models. Fifth, the
extent ofMDSCs in the tumor-bearing control mice of C57BL/6 back-
ground was relatively higher than that of Balb/c background (Fig-
ure 3). Further investigations are needed into whether MDSCs with
different strains46,47 would modify the anti-tumor effect of hCHST15
siRNA.

In conclusion, in vivo coordinated actions of intra-tumorally injected
hCHST15 siRNA to achieve effective TIL enhancement were docu-
mented in murine PDAC. Locally, hCHST15 siRNA suppresses
stromal remodeling, which is a pivotal prerequisite for T cell entry,
diffusion, recognition, and killing of cancer. At the same time, locally
injected hCHST15 siRNA moves to the TDLN and remotely dimin-
ishes MDSCs while expanding T cells in the TDLN. A novel concept
for an intra-tumoral route for RNA oligonucleotide is suggested to
alter the suppressive microenvironment toward activation in addition
to breaking dense stroma in this hard-to-treat PDAC.

MATERIALS AND METHODS
BxPC-3 xenograft model in T cell-deficient nude mice

A human PDAC cell line of BxPC-3 cells (ECACC 93120816) was
used. Cells were grown in RPMI 1640 with 10% heat-inactivated fetal
bovine serum, 100 U/mL penicillin, and 100 mg/mL streptomycin at
37�C under a humidified 5% CO2 atmosphere.
Mo
BxPC-3 cells (1� 107 cell/mouse) were implanted
subcutaneously in T cell-deficient Balb/c-nu mice
on day 0. CHST15 siRNA26–32 (10 nmol/L; n =
15) or physiological saline as control vehicle
(n = 15) was injected intra-tumorally (100 mL/mouse) twice a week
from day 28 to day 42 and mice were sacrificed at day 42. The physi-
ological saline was selected as a negative control to conduct experi-
ments under the same conditions as a clinical trial.34 Scrambled siRNA
was not used, as we previously reported that there were no significant
differences between scrambled siRNA and physiological saline in
several murine models, including tumor implantation models to
Balb/c-nu and C57BL/6J mice.26,29–31 The dosing interval was deter-
mined by in situ hybridization and stem-loop PCR (Supporting
materials and Figure S1). This study was approved by the Institutional
Animal Care and Use Committee (Approval No. IACUC649-003) and
was performed in accordance with the animal welfare bylaws of
Shin Nippon Biomedical Laboratories, Ltd., which is accredited by
AAALAC International.

KPC syngeneic model in immunocompetent mice

Mouse PDAC cell line of KPC cells (C57BL/6J background) were
purchased from Ximbio (London, UK) and used as previously
described.26

C57BL/6J mice (5-week-old males) were purchased from CLEA
Japan, Inc. (Tokyo, Japan). KPC cells (5 � 104 cell/mouse) were sub-
cutaneously injected into the left hind footpad of C57BL/6J mice. Tu-
mor size was measured twice weekly using a caliper, and the tumor
volume was determined using the formula, width2 � length � 0.5.
CHST15 siRNA27–32 (5.4 nmol/L, n = 5) or physiological saline as a
control vehicle (n = 5) was intra-tumorally injected (100 mL/mouse)
twice a week from day 7 to day 17, and mice were sacrificed at day 21.
This study was approved by the Institutional Animal Care and Use
Committee (Approval No. HKD49008) and was performed in accor-
dance with the animal welfare by laws of HOKUDO, Co., Ltd. At the
end of experiment, mice were euthanized and tumors and left popli-
teal lymph nodes (as TDLNs) were excised.

Immunohistochemistry

The tissues were fixed in 10% neutral buffered formalin, embedded
in paraffin and were sliced serially into sections (3 mm thick) for
hematoxylin and eosin, Sirius red, immunohistochemical staining,
and immunofluorescence staining. Immunohistochemical staining
was performed as previously reported26,48,49 using CHST15, CD4,
CD8a, mLy6C/G, CD31, CD11b, citrullinated histone H3, and
lecular Therapy: Oncology Vol. 32 June 2024 7
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Ki-67. All antibodies used in the present study are listed in
Table S1. For quantification of immunostained areas, bright field
images were captured using a digital camera (DFC280, Leica Mi-
crosystems, Wetzlar, Germany) at 400-fold magnification and
the positive areas or cell counts in five fields per section were
measured using ImageJ software (National Institute of Health, Be-
thesda, MD, USA).26,48,49

In vitro silencing experiments of human PBMC-derived MDSCs,

human PDAC, and murine PDAC cell lines

Human PBMC were purchased from Fujifilm Wako Pura Chemical
Corporation (Richmond, VA, USA; Lot #2010113900) and were
cultured in RPMI 1640 with 10% heat-inactivated fetal bovine serum,
100 U/mL penicillin, and 100 mg/mL streptomycin for 7 days, supple-
mented with recombinant human IL-6 (10 ng/mL, Fujifilm Wako
Pura Chemical Corporation) and GM-CSF (10 ng/mL, Fujifilm
Wako Pura Chemical Corporation) under humidified conditions in
a CO2 incubator set at 5% CO2 conc1entration and 37�C.50,51 After
1 week, all cells were collected from PBMC cultures. Adherent cells
were removed using non-protease cell detachment solution Detachin
(Genlantis, San Diego, CA, USA). CD33+ cells were isolated from
each culture using anti-CD33 magnetic microbeads and LS column
separation (Miltenyi Biotec, Bergisch Gladbach, Germany) per the
manufacturer’s instructions.

The concentration of hCHST15 siRNA was 50 nM. We incubated
500 mL/well of Opti-MEMI (GIBCO, Waltham, MA, USA), siRNA,
and 7.5 mL/well of RNAiMAX-Reagent (Invitrogen, Waltham, MA,
USA) on a six-well plate at 25�C for 20 min. Isolated CD33+ cells
were suspended in 2.5 mL basic culture medium in a CO2 incubator
for 48 h (2.5 mL/well). Total RNA was extracted from each trans-
fected cell using a FastPure RNA kit (Takara Bio Inc., Kusatsu, Japan)
according to the manufacturer’s instructions. The cDNA was synthe-
sized and real-time RT-PCR was performed using SYBR premix Taq
(Takara Bio Inc.). The expression of the human CHST15 gene or IDO
was normalized by the expressed amount of RNA of human TATA
Box Binding Protein. Human BxPC-3 cells and mouse KPC cells
were treated in the same method and the expressions of human
CHST15 genes and mouse CHST15 genes were measured as previ-
ously described.26,30–34

Melting temperature analysis

Binding affinities of the antisense strand of hCHST15 siRNA to hu-
man, pig, rat, and mouse mRNAs were analyzed by melting temper-
ature using a UV/VIS absorption spectrophotometer UV-1650PC
(Shimadzu, Kyoto, Japan) connected to a temperature controller.
The thermal melting curve was prepared by measuring the absor-
bance of UV light at a wavelength of 260.0 nm in the temperature
range of 20�C–100�C (measurement interval of 1�C, temperature in-
crease rate of 1�C/min). A buffer solution containing 10 mM MOPS
(pH 7.0) and 100 mM NaNO3 was used in this experiment. Thermal
melting curves of hybridized complexes between an antisense oligo-
nucleotide (2 mL) and its target RNAs (2 mL) were measured. The
melting temperatures (Tm) were determined by the least-squares
8 Molecular Therapy: Oncology Vol. 32 June 2024
method. The melting curves are calculated using the following
equation.

A = ðAt �C � AminÞ = ðAmax � AminÞ

Detection of hCHST15 siRNA in mouse tissues

C57BL/6J mice (8 weeks old male) were purchased from CLEA Japan,
Inc. We injected 30 mL 100 nM hCHST15 siRNA directly subcutane-
ously or into the pancreas tail of normal mice. One hour and 4 h later,
mice were sacrificed (n = 2 per time point) and local tissues as well as
draining lymph nodes were snap-frozen in liquid nitrogen for further
analyses. The control group (n = 2 per time point) received PBS. Ol-
igonucleotides were purified from frozen tissue samples using Clarity
OTX methodology (Phenomenex, Inc., Torrance, CA, USA) accord-
ing to the manufacturer’s instructions.52 The concentration of
isolated oligonucleotides was then analyzed by HPLC using YMC-
Triart C18 (YMC Co., Ltd., Kyoto, Japan).

Statistical analysis

Statistical analysis was performed using GraphPad PRISM version 9.0
software. For comparison variables, data was analyzed by Wilcoxon
rank-sum test or Welch independent t test. A p value of less than
0.05 was considered to indicate statistical significance. Results were
expressed as mean ± SD.
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