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Abstract: Molecular signaling pathways involved in cancer have been intensively studied due to
their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding
homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to
ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell
migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by
microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy,
through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit
the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of
epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally,
miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we
explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular
RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and
cancer progression.
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1. Introduction

Epithelial-mesenchymal transition (EMT) process was first introduced by Greenburg and his
colleagues in 1982 [1]. To date, three major types of EMT have been identified: type I EMT, which occurs
during embryogenesis, type II EMT, which is activated during wound healing, tissue regeneration
and organ fibrosis, and type III EMT, which occurs during metastasis of cancer cells [2]. EMT is the
process of cellular transition wherein epithelial cells are bio-transformed into mesenchymal cells with
fibroblast-like properties [3–6]. In the EMT mechanism, cadherins play a significant role. Cadherins
promote cell-cell adhesion and are located at the adherens’ junctions. There are different kinds of
cadherins including E, N, P, VE, proto, desmosomal, and FAT cadherins, but N-cadherin and E-cadherin
are the most important ones in EMT mechanism. A decrease in E-cadherin levels, and an increase
in N-cadherin levels lead to stimulation of EMT, and enhanced migratory ability of cancer cells [7,8].
Additionally, upon EMT stimulation, morphology changes and alterations in cytoskeleton occur
in cells and affect their migratory ability and adhesion to neighboring cells. These molecular and
structural changes promote the dissemination of cells into other sites [9]. Essentially, this increased cell
migration is beneficial in normal cells to accelerate physiological processes such as wound healing
and embryogenesis. It has been reported that EMT occurs to provide the required flexibility for
mesoderm and neural crest formations [10,11]. However, cancer cells can exploit the EMT mechanism
for metastasis to distant sites [12–14]. There is increased attention towards the EMT mechanism
in cancer therapy not only because of its contribution toward metastasis, but also due to the fact
that the EMT mechanism can trigger chemoresistance of cancer cells, and decrease sensitivity to
apoptosis [15,16]. Therefore, understanding the molecular pathways regulating EMT is a crucial in the
field of cancer studies.

EMT is regulated by a variety EMT-promoting transcription factors (EMT-TFs) such as Snail, Slug,
Twist, TBX-2, SIX, transforming growth factor–β (TGF-β), and Zinc finger E-box-binding homeobox
protein (ZEB) [17]. These upstream EMT-TFs can induce EMT and promote the biotransformation of
cells from epithelial phenotype into mesenchymal phenotype by affecting levels of cadherins. Different
studies have shown the involvement of ZEB proteins in modulating EMT during normal development
and in pathological conditions [18–21]. Our aim in the present review is to 1) show that ZEB proteins
are able to regulate metastasis of cancer cells via affecting EMT, 2) understand how different microRNAs
(miRs) can regulate the ZEB/EMT axis, and 3) demonstrate how other upstream mediators can regulate
the miR/ZEB/EMT axis.

2. ZEB Family

The ZEB family, which was first discovered in Drosophila melanogaster, consists of two key
members ZEB1 and ZEB2 [22]. Both ZEB1 and ZEB2 possess the amino-terminal (NZF) and
carboxy-terminal zinc finger cluster (CZF), thereby allowing them to bind to regulatory DNA sequences
in their target promoters [23–25]. This has led to their involvement in different biological events, such as
embryogenesis, hematopoiesis, and more importantly, EMT. In fact, ZEB proteins are well-known due
to their ability in stimulation of EMT [20]. In this section, we provide an overview of ZEB1 and ZEB2
proteins to shed some light on their role in cancer cells.

2.1. ZEB1

ZEB1 gene is located on chromosome 10p11.2, and its protein is made up of two zinc-finger
clusters at N- and C-terminal ends, while the middle portion of the ZEB1 protein contains three
distinct parts including a homeodomain, a Smad interaction domain and a C-terminal binding protein
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(CtBP). The CtBP is involved in the regulation of ZEB1 function [26,27]. Primarily, the zinc-finger
clusters allow ZEB1 to bind to E-boxes. ZEB1 regulates its downstream effectors through binding
to E-promoter DNA sequence (5′-CANNTG-3′) [28]. Various publications have also highlighted
ZEB1′s association with enhanced viability and invasiveness of cancer cells. In colorectal cancer
(CRC) cells, it was found that tumor suppressor death domain-associated protein (DAXX) is able
to prevent ZEB1 modulation on E-cadherin to inhibit the invasion and proliferation of tumor cells.
Down-regulation of DAXX enhanced ZEB-1 suppression of E-cadherin, leading to the enhanced
proliferation and malignancy of cancer cells [29]. It has also been highlighted that EMT may contribute
to chemoresistance of cancer cells [30,31]. In pancreatic cancer, Rho associated coiled coil containing
protein kinase 2 (ROCK2) enhances the expression of ZEB1. This in turn leads to ZEB1-mediated
EMT induction, which contributes to gemcitabine resistance in pancreatic cancer cells [32]. In CRC
cells, TCF4 enhances expression of ZEB1 to promote stemness and migration of cancer cells, thereby
promoting chemotherapy resistance [33]. In prostate cancer cells, ZEB1 stimulates up-regulation of
ATP-binding cassette subfamily C member 10 (MRP4) to export docetaxel out of cancer cells, resulting
in their decreased sensitivity to chemotherapy [34]. These studies support the modulation of ZEB1,
and highlights that it may be beneficial in enhancing the efficacy of chemotherapy and in reducing
the migratory ability of cancer cells. Overall, ZEB1 is an important mediator to enhance the invasion
and proliferation of tumor cells. More importantly, ZEB1 may significantly reduce the efficiency
of chemotherapy.

2.2. ZEB2

ZEB2 is another member of ZEB family and is located on chromosome 2q22.3 [25]. Structurally, the
N-terminal end of ZEB2 consists of four zinc fingers, while the C-terminal end has three zinc fingers [25].
Similar to ZEB1, ZEB2 appears to play a crucial role in migration and invasion. In non-small cell
lung cancer (NSCLC), MDM2 binding protein (MTBP) behaves as an oncogene to increase EMT
through ZEB2 up-regulation [35]. This in turn enhanced the migration and metastasis of NSCLC
tumor cells. In bladder cancer, it was found that indoleamine-2,3-dioxygenase-1 (IDO1) induces ZEB2
overexpression, which in turns increases the viability and proliferation of cancer cells [36]. ZEB2 has
also been found to increase the expression of ETS proto-oncogene 1 (ETS1) to up-regulate other EMT
proteins such as matrix metalloproteinase 9 (MMP-9) and Twist [37]. Importantly, ZEB2 is also capable
of inducing chemoresistance via EMT activation. Phosphatidylinositol 3-kinase (PI3K)/protein kinase-B
(Akt) pathway is a down-stream pathway of ZEB2 that induces EMT by reducing the level of E-cadherin
protein, leading to the generation of cisplatin resistance in NSCLC cells [38] In all, ZEB2 appears to
mediate EMT, and may be a potential therapeutic target in cancer treatment.

3. MicroRNAs

Non-coding RNAs (ncRNAs) comprise a huge part of human genome and are involved in
various molecular pathways and processes [39–48]. They are divided into two characteristic groups:
house-keeping and regulatory molecules [49]. They play a remarkable role in vital biological processes
such as apoptosis, autophagy, differentiation, cell cycle, proliferation, and migration by targeting
various down-stream molecular pathways [50,51]. Additionally, they contribute to the transcription,
post-transcriptional modifications, and signal transduction networking. MiRs are house-keeping
molecules belonging to the small nucleolar RNAs (SnoRNAs) family [52–54]. In this section, we first
provide an introduction about miRs and their biosynthesis, followed by a highlight of their potential
roles in cancer.

MiRs are single-stranded RNA molecules with a length of 19–24 nucleotides and may possess
regulatory functions [55,56]. In total, 60% of all human genome has a binding site for miRs.
This highlights the influence of miRs as they control many cellular processes and their dysregulation is
related to the development of diseases [57–61]. MiRs are capable of post-transcriptional regulation
of their target through RNA interference. These small RNA molecules bind to their target via
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3′-untranslated region (3′-UTR). It has been demonstrated that the level of miRs has a negative
relationship with the expression of their down-stream targets [62–64]. Moreover, one miR is able
to target more than one messenger RNA (mRNA), again highlighting their widespread influence
in many cellular processes [65]. In the synthesis of miR, a primary miR (pri-miR) is first produced
by the action of RNA polymerase. The pri-miR is long with more than 500 nucleotides. It is then
processed by Drosha/Pasha and DICER1 proteins, which cleave the pri-miR to generate a mature miR.
Next, the mature miR is incorporated in a complex to form miR-RNA-induced silencing complex
assembly [66–70].

MicroRNAs in Cancer Metastasis

When focusing on the cancer context, miRs can have oncogenic, or tumor suppressing properties.
Onco-suppressor miRs that inhibit invasion of cancer cells undergo down-regulation during cancer
development. Enhancing the expression of such miRs can aid in the down-regulation of factors
involved in migration of cancer cells such as PRMT5 [71]. Additionally, MiR-506-3p up-regulation
considerably reduces the viability and proliferation of ovarian cancer cells and stimulates apoptotic cell
death. Investigation of underlying molecular pathways shows that miR-506-3p inhibits Akt/Forkhead
box O3 (FOXO3a) by inhibition of sirtuin 1 (SIRT1) [72]. Elevating the expression of miR-506-3p is
a potential strategy in ovarian cancer treatment. In the gastric cancer model, it was also observed
that a reverse relationship between miR-612 and nin one binding protein (NOB1) helped reduce the
migration and invasion of cervical cancer cells [73]. Similarly, in pancreatic cancer, it was also found
that overexpression miRs could lead to better prognosis. Enhancing the expression of miR-519 appears
to sensitize pancreatic cancer cells to apoptosis and inhibits their proliferation and migration. This miR
prevents the activation of programmed death ligand 1 (PD-L1), under hypoxic conditions to suppress
tumorigenesis [74]. In all, various studies have shown that miRs are efficient upstream mediators that
target various molecular pathways. Enhancing the expression of tumor suppressor miRs may prove
to be an advantageous strategy and extensive research is currently being performed to exploit this
strategy [74–78]. Conversely, oncogenic miRs are able to elevate the malignancy and proliferation
of cancer cells and are associated with poor prognosis. Their downregulation is of interest in cancer
therapy [79,80]. For instance, miR-424-5p is able to induce anoikis resistance to promote migratory
ability of cancer cells [81]. The targeting of miRs may therefore be considered a promising candidate in
cancer therapy. Interestingly, EMT-TFs are considered as potential down-stream targets of miRs in
cancer metastasis. MiR-582-3p and miR-582-5p suppress migration of cancer cells via down-regulation
of TGF-β in cancer cells [82]. This concurs that miRs can play a significant role in the regulation of
metastasis via targeting different pathways and mechanisms. In the following sections, we focus on the
regulation of ZEB proteins by miRs and their association with cancer metastasis and chemoresistance.

4. MicroRNA, ncRNA, and ZEB: Role in EMT and Cancer Metastasis

This section specifically demonstrates the impact that miRs have on cell migration and invasion,
through their targeting of ZEB proteins. Upstream modulators of miRs such as lncRNAs and circRNAs
are also extensively discussed. As mentioned, miRs are able to act as both onco-suppressor as well
as promoter of cancer dissemination. Particularly, they are able to exert these effects through their
modulation of ZEB proteins, to result in changes in the EMT mechanism. For instance, it appears that
miR-200c plays a dual role in cancer therapy. Some studies have demonstrated that miR-200c elevates
the viability and proliferation of tumor cells, while another study showed that miR-200c sensitizes
cancer cells into chemotherapy by targeting neurophilin 1 and reducing cancer malignancy [83–86]. It is
believed that miR-200c exerts an inhibitory impact on TGF-β-mediated EMT through down-regulation
of both ZEB1 and ZEB2 proteins [87].
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4.1. ZEB1

4.1.1. MiRs as Modulators of ZEB1

Breast cancer is one of the leading causes of death among females [88]. Importantly, metastasis is
a prevalent concern in breast cancer development [89]. Notably, ZEB1 has been identified as a key
player in migration of breast cancer cells. MiR-200a was found to down-regulate ZEB1 in suppressing
cancer cell migration. It appears that by down-regulating ZEB1, miR-200a can enhance E-cadherin
levels and inhibit EMT [90]. This study demonstrates that the relationship between miRs and ZEB
proteins is crucial in the regulation of metastasis. Additionally, other onco-suppressor miRs have also
been identified to regulate the migration of cancer cells. MiR-1271 have been found to significantly
decrease the viability and proliferation of tumor cells [91–93]. In ovarian cancer cells, miR-1271 inhibits
EMT via ZEB1 down-regulation (binding into 3′-UTR), leading to the decreased viability, proliferation,
invasion, and migration of tumor cells. As a consequence of ZEB1 down-regulation by miR-1271,
levels of E-cadherin undergo up-regulation, accompanied by a decrease in the levels of N-cadherin [94].
In gastric cancer cells, expression of miR-203 undergoes down-regulation, resulting in an up-regulation
of ZEB1 and resistance of cancer cells to radiotherapy. It has been suggested that enhancing the
expression of miR-203 is a potential strategy in sensitizing cancer cells to radiotherapy, since miR-203
binds to the 3′-UTR of ZEB1 to repress its expression. This then results in a decrease in the malignancy
of cancer cells and an increased sensitivity to radiotherapy [95]. Additionally, inhibition of ZEB1
by miRs such as miR-101-3p, miR-525-5p and miR-186-5p is also corelated with a diminution in
metastasis of cancer cells due to EMT inhibition by E-cadherin up-regulation [96–98]. Taken together,
the miR/ZEB1 axis is an important factor in cancer dissemination and may be an important and relevant
target in cancer therapeutics. A newly published study has investigated efficacy of ursolic acid in
affecting miR-220c/ZEB1 axis. Ursolic acid enhances expression of miR-200c, as an onco-suppressor
factor that, in turn, reduces expression of TGF-β1, providing the condition for down-regulation of
ZEB1 and inhibiting metastasis of CRC cells [97].

As aforementioned, EMT-TFs such as TGF-β can stimulate EMT. ZEB1 engages in a feedback
loop with TGF-β and miR, thereby promoting metastasis of cancer cells. Normally, miR-33a-5p
suppresses TGF-β to inhibit ZEB1 activation, leading to suppression of metastasis. However, in cancer
conditions, TGF-β and ZEB1 cooperate with each other to promote migration of cancer cells. TGF-β can
enhance copy numbers of ZEB1, while ZEB1 suppresses miR-33a-5p, an inhibitor of TGF-β signaling.
This cooperation between ZEB1 and TGF-β leads to inhibition of miR-33a-5p, and stimulation of
EMT [99]. This once again highlights that onco-suppressor miRs may suppress ZEB1 via affecting
other EMT-TFs such as TGF-β, and that ZEB1 can form a negative feedback loop with onco-suppressor
miRs in promoting metastasis of cancer cells.

The Akt/mammalian target of rapamycin (mTOR) signaling pathway is another pathway that is
commonly deregulated in cancer [100–102]. Phosphorylated Akt can induce mTOR to promote the
motility and invasion of tumor cells [103–108]. It appears that miR-205 is able to target the Akt/mTOR
signaling pathway to regulate malignancy and progression of cancer cells [109]. By suppressing
Akt/mTOR signaling pathway, miR-708 acts as an anti-tumor agent to inhibit ZEB1, leading to the
suppressing EMT mechanism [110]. Finally, miR-126 was also found to inhibit ZEB1 to suppress
MMP-2, MMP-9, and oncogenic JAK2/STAT3 signaling pathway, leading to the reduced migration and
metastasis of cervical cancer cells [111].

Additionally, Wnt signaling pathway contributes to cancer cell growth and dissemination.
Abnormal expression of Wnt signaling pathway can be observed in cancers [112–117]. Wnt/β-catenin
signaling pathway can promote EMT through ZEB1 up-regulation to elevate the invasion and
malignancy of tumor cells. Enhancing the expression of miR-33b effectively inhibits Wnt/β-catenin/ZEB1
axis to suppress cancer malignancy through EMT inhibition [118]. Similarly, miR-200a is capable of
decreasing gastric adenocarcinoma invasion via down-regulation of Wnt/β-catenin and subsequent
suppressing of ZEB1 and ZEB2 [119]. In malignant meningioma, miR-4652-3p down-regulates the
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expression of ZEB1 by suppressing Wnt and nuclear translocation of β-catenin. Conversely, lncRNA
LINC00702 can activate Wnt/β-catenin signaling pathway by sponging miR-4652-3p to induce ZEB1
and promote the metastasis and invasion of malignant meningioma [120]. These studies highlight
the fact that firstly, Wnt can promote metastasis of cancer cells via ZEB1 up-regulation; secondly,
the Wnt/ZEB1 axis can be inhibited by onco-suppressor miRs; thirdly, miRs affect both expression of
Wnt and nuclear translocation of β-catenin; and finally, lncRNAs can regulate miR/Wnt/ZEB1 axis.
The mediation of the miR/ZEB1 axis by lncRNAs will be more extensively discussed in the next section.

4.1.2. LncRNAs as Modulators of miR/ZEB1 Axis

Long non-coding RNAs (lncRNAs) belong to a category of ncRNAs with regulatory effect on
biological events [121,122]. They consist of at least 200 nucleotides and they are able to function as
upstream mediators of miRs [111]. LncRNAs suppress the expression of miRs via acting as competitive
endogenous RNA (ceRNA) [123]. The effect of lncRNAs on miR/ZEB1 axis has been investigated in
cancer cells. For instance, miR-429 was found to inhibit EMT through ZEB1 inhibition and its expression
is typically down regulated in pancreatic cancer cells. MiR-429 can be regulated by lncRNA XIST,
which is up-regulated in pancreatic cancer cells to reduce miR-429 levels. This in turn increases ZEB1
expression and promotes EMT. Additionally, through targeting the miR-429/ZEB1 axis, XIST also affects
morphology of cancer cells, such that silencing XIST results in a change in cell morphology, from the
original spindle shape to a rounded one [124]. In another instance, LncRNA IUR is a onco-suppressor
factor that has shown a great capability in suppressing tumorigenesis [125]. LncRNA IUR can inhibit
the migration and metastasis of prostate cancer cells via enhancing the expression of miR-200, which
in turn inhibits ZEB1 [126].

Conversely, lncRNA TDRG1 is an oncogenic factor that is able to regulate miRs in cancer cells [127,128].
In lung cancer cells, TDRG1 enhances the migration, metastasis, and malignancy of cancer cells by
promoting ZEB1 expression through miR-873-5p down-regulation [129]. LncRNA TTN-AS1 is also
considered an oncogenic factor that induces ZEB1 through miR-4677-3p down-regulation, leading to the
enhanced migration and metastasis of NSCLC cells [130]. LncRNA (Nuclear Enriched Abundant Transcript
1) NEAT1 contributes to enhancing the malignancy of cancer cells [131]. It has been demonstrated that
NEAT1 can target miRs to regulate cancer proliferation and migration [132]. In breast cancer cells, NEAT1
reduces the expression of miR-448 to elevate the metastasis and invasion of cancer cells through ZEB1
up-regulation [133]. LncRNA TP73-AS1 reduces the expression of miR-200a to up-regulate ZEB1, leading
to the enhanced progression and malignancy of tumor cells. There appears to be a feedback loop, wherein
TP73-AS1-activated ZEB1 has a stimulatory effect on the expression of TP73-AS1 to enhance its inhibitory
activity on miR-200a, leading to increased induction of ZEB1 [90].

In renal cell carcinoma (RCC), miR-429 typically reduces the expression of ZEB1 to suppress RCC
progression. However, miR-429 can be inhibited by SCAMP1, a lncRNA that is activated by oxidative
stress [134]. This highlights that stimulation of oxidative stress negatively impacts cancer therapy.
Generally, it is believed that enhancing level of oxidative stress can lead to a reduction in the viability
of cancer cells by predisposing them into apoptosis [135,136]. However, as mentioned, increasing
levels of oxidative stress may also activate lncRNAs involved in cancer metastasis. Therefore, careful
considerations are warranted before using oxidative stress in cancer therapy, keeping in mind the
possible adverse effects of this treatment method.

MiR-139-5 was also found to suppress ZEB1 levels. However, lncRNA human leukocyte antigen
(HLA) complex 5 (HCP5) is able to induce ZEB1 and EMT by suppressing miR-139-5 [137]. LncRNA
MAGI2-AS3 has also been explored in cancer and it appears that MAGI2-AS3 is able to modulate
molecular pathways such as Fas/FasL to suppress breast cancer, bladder cancer, and hepatocellular
carcinoma [138,139]. Particularly, in gastric cancer cells, miR-141/200a diminishes the invasion and
migration of tumor cells via suppressing ZEB1. LncRNA MAGI2-AS3 down-regulates the expression
of miR-141/200a to induce ZEB1, leading to the stimulation of EMT and enhanced invasion of tumor
cells [125].
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LncRNA LINC00511 is located on chromosome 17q24.3 and has been associated with increased
malignancy in cancer [140]. In glioblastoma (GBM) cells, miR-524-5p inhibits ZEB1 to suppress
GBM invasion and migration. LINC00511 has been found to decrease the expression of miR-524-5p
to up-regulate YB1 [141]. YB1 is a transcription factor that can enhance the expression of ZEB1 in
cancer [128]. The inhibition of miR-524-5p by LINC00511 promotes ZEB1 expression through YB1
up-regulation, leading to enhanced EMT and malignancy of GBM cells [141]. These studies again
demonstrate that lncRNAs can disrupt inhibitory effects of miRs on ZEB1 to promote metastasis of
cancer cells. In glioma cells, miR-205-3p inhibits TGF-β, while lncRNA linc00645 functions as an
upstream mediator and activates TGF-β via suppressing miR-205-3p, leading to an increase in ZEB1
levels and subsequent EMT activation [137].

LncRNA MALAT1 located on the chromosome 11q13, is also suggested to be involved in elevating
the malignancy of cancer cells. A variety of factors act as down-stream mediators for lncRNA MALAT1
and it appears that MALAT1 is capable of targeting miRs in cancer cells [105,142,143]. MALAT1 was
found to enhance the expression of ZEB1 through miR-143-3p down-regulation, resulting in elevated
migration and metastasis of tumor cells [144]. Another downstream target of MALAT1 is miR-429,
which is considered as a potential biomarker for diagnosis of different cancers [145]. MALAT1 was
found to inhibit miR-429 to accelerate the malignancy and invasion of cervical cancer cells [146].
Notably, miR-429 can inhibit the metastasis of cancer cells and stimulate apoptotic cell death through
ZEB1 down-regulation [110]. Interestingly, it has been demonstrated that fine particulate matter (PM2.5,
aerodynamic diameter, 2.5 µm) is able to induce oxidative stress, inflammation, genetic mutations, and
DNA damage [147,148]. It has been found that miR-204 can reduce the expression of ZEB1 to suppress
EMT. PM2.5 activates MALAT1 via stimulation of NF-κB, as an inflammatory pathway. MALAT1 in
turn induces ZEB1 through miR-204 down-regulation to enhance the malignancy and invasion of
tumor cells via EMT induction [149]. These two studies demonstrate that lncRNAs can affect more
than one downstream miR to mediate ZEB1 levels, and that other molecular pathways such as NF-κB
can act as upstream mediator of lncRNA/miR/ZEB1 axis.

HOXA distal transcript antisense RNA (HOTTIP) is located at the distal end of HOXA gene
cluster [150]. This lncRNA undergoes abnormal expressions in different cancers and it has been shown
that HOTTIP is related to the increased proliferation and progression of cancer cells [120]. It is held
that lncRNA HOTTIP down-regulates the expression of miR-101 to elevate ZEB1 levels, leading to
an increase in EMT [151]. A study has also shown that miR-205 down-regulates the expression of
ZEB proteins and HOXD9 to suppress the malignancy and invasion of cancer cells through EMT
inhibition [152]. Finally, it has been demonstrated that lncRNA HOXC-AS2 induces ZEB1 by sponging
miR-876-5p, leading to the stimulation of EMT and enhanced migration and invasion of tumor
cells [153]. Taken together, the relationship between lncRNAs and miRs in the regulation of ZEB1 in
cancer cells are dynamic and complicated, and understanding these pathways is an essential part of
effective cancer therapy.

4.1.3. CircRNAs as Modulators of miR/ZEB1 Axis

Circular RNAs (circRNAs) are endogenous, conserved ncRNAs that are sometimes employed
as biomarkers for cancer diagnosis [154,155]. Similar to lncRNA, circRNAs are able to modulate the
expression of their targets [156]. In lung cancer cells, hsa-circ-0023404 decreases the expression of
miR-217 to enhance the expression of its target, ZEB1, leading to the increased migration and invasion
of cancer cells [157]. The laryngeal carcinoma is considered as one of the common cancers among
head and neck tumors and is mainly diagnosed in elder people [158]. In spite of the low incidence
rate, this cancer results in high mortality worldwide [159]. It was discovered that miR-200c is capable
of inhibiting ZEB1 to prevent the metastasis and invasion of laryngeal cancer cells. Hsa-circ-005748
up-regulates ZEB1 by sponging miR-200c, leading to the metastasis of these cancer cells [160].
Therefore, inhibition of hsa-circ-005748 may in turn increase miR-200c expression to suppress ZEB1
and cancer metastasis. Similarly, in lung adenocarcinoma (LUAD) cells, miR-665 is able to inhibit
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cancer metastasis via ZEB1 down-regulation. The circ-TSPAN4 enhances the expression of ZEB1 by
miR-665 down-regulation to promote the metastasis of LUAD cells [161]. These studies concur that
down-regulation of onco-suppressor miRs in cancer cells may also be mediated by upstream circRNAs.
This in turn promotes up-regulation of ZEB1 and enhanced metastasis of cancer cells.

4.2. ZEB2

4.2.1. MiRs as Modulators of ZEB2

MiR-124 is suggested to be an onco-suppressor miR. Recently, an effort has been made to suppress
the prostate cancer invasion. It is held that cationic polymer nanoparticles are able to deliver miR-124
in prostate cancer cells to inhibit their proliferation, motility, and colony formation [162]. In TNBC cells,
miR-124 effectively decreases the malignancy and invasion of tumor cells by EMT inhibition through
ZEB2 down-regulation [163]. Similarly, miR-145 has been widely established as a tumor suppressor.
It negatively affects the invasion and migration of thyroid carcinoma cells by down-regulation of
NF-κB signaling pathway [164]. Furthermore, lncRNA-ROR down-regulates the expression of miR-145
to remove its inhibitory impact and induce EMT in tumor cells [165]. Importantly, it was found that
miR-145 decreases the expression of ZEB2 to inhibit EMT, and consequently, suppress the proliferation,
progression, and migration of NSCLC cells [166]. These studies demonstrate that the downregulation
of ZEB2 by onco-suppressor miRs can lead to a decrease in the metastasis of cancer cells.

Another onco-suppressor miR is miR-30a. In breast cancer cells, miR-30a suppresses the nuclear
translocation of β-catenin to attenuate cancer proliferation and progression, and is associated with
favorable prognosis of patients with breast cancer [167]. Furthermore, miR-30a appears to be beneficial
in sensitizing cancer cells to chemotherapy via affecting Akt signaling pathway [168]. MiR-30a
was found to inhibit ZEB2 to result in a reduction of triple negative breast cancer (TNBC) cells
malignancy [169]. Finally, miR-3653 is an onco-suppressor that is down-regulated in hepatocellular
carcinoma (HCC) cells [170]. MiR-3653 was found to bind to the 3′-UTR of ZEB2 to diminish its
expression, leading to the reduced invasion and malignancy of colon cancer cells [171]. MiR-138-5p
uses a same strategy in inhibition of lung adenocarcinoma cell malignancy, by suppressing EMT
through ZEB2 inhibition to attenuate metastasis of tumor cells [172].

Osteosarcoma typically has a high recurrence rate and low survival rate [173,174]. Therefore,
understanding the pathways involved in malignancy and cancer progression may pave the road
for improved treatment of this type of cancer. Investigation of molecular pathways has shown
that miR-101 up-regulation inhibits ZEB2 and affects proliferation and metastasis of osteosarcoma
cells [175]. Unfortunately, miR-101 is down-regulated in osteosarcoma cells compared to the normal cells.
Enhancing the expression of miR-101 may reduce malignancy and progression of osteosarcoma cells.

4.2.2. LncRNAs as Modulators of miR/ZEB2 Axis

In the previous section, we demonstrated that lncRNAs are able to function as ceRNA in affecting
miR expression. Notably, increasing evidence has also demonstrated that lncRNAs can effectively
target ZEB2 via affecting miRs. For instance, LncRNA HOTAIRM1, which has dual properties as it
interacts with both onco-suppressor and oncogenic miRs. HOTAIRM1 is located on human HOXA
gene cluster and suggested to be involved in myeloid cell development [176]. A newly published
article has shown the anti-tumor activity of lncRNA HOTAIRM1 by up-regulation of ARHGAP24
through miR-106a-5p inhibition [177]. However, it has been found that HOTAIRM1 is related to the
elevated migration and invasion of tumor cells [178]. It is held that lncRNA HOTAIRM1 diminishes
the expression of miR-873-5p to induce ZEB2, resulting in an increase in cancer cell proliferation and
suppressing apoptotic cell death [179].

MiR-505 is also considered an onco-suppressor miR that interacts with IGF-1 and HMGB1 to
suppress the growth and malignancy of tumor cells [180–182]. Various studies have demonstrated
that lncRNAs such as lncRNA CRAL, LEF-AS1, and DLX6-AS1 are able to target miR-505 in different



Biomolecules 2020, 10, 1040 9 of 48

cancers such as gastric cancer, CRC, and breast cancer [183–185]. In cervical cancer, lncRNA CTS
was found to target miR-505. MiR-505 down-regulates ZEB2 levels to inhibit EMT and invasion
of cervical cancer cells. LncRNA CTS, therefore, stimulates ZEB2-mediated EMT through miR-505
sponging, leading to the enhanced viability, proliferation, and malignancy of cervical cancer cells [186].
Taken together, stimulation of ZEB2 by lncRNAs not only enhances metastasis of cancer cells via EMT
induction, but also promotes cell proliferation. This decrease in apoptosis by ZEB2 induction is of
importance in chemotherapy, since cancer cells can attain chemoresistance via reducing their sensitivity
into chemotherapy-mediated apoptosis. As such, targeting miR/ZEB2 axis may be a promising strategy
in cancer therapy, as it increases the sensitivity of cancer cells toward chemotherapy.

In gastric cancer cells, miR-203 diminishes cancer metastasis through ZEB2 down-regulation.
LncRNA UCA1 enhances the progression and metastasis of tumor cells through disrupting the
miR-203/ZEB2 axis [187]. Particularly, lncRNAs can affect upstream transcription factors of ZEB2 in
cancer metastasis. In NSCLC cells, slug was found to behave as an upstream mediator to induce
EMT through increasing ZEB2 levels. MiR-218 was able to disrupt the Slug/ZEB2 axis to suppress
NSCLC migration. Conversely, miR-218 undergoes down-regulation by lncRNA SNHG12 to stimulate
Slug/ZEB2 and promote metastasis of NSCLC cells [188].

Glioma is an intracranial tumor that emanates from neuroglial stem or progenitor cells [189].
Again, this is an alarming cancer with high mortality and morbidity rate [190,191]. The migration and
invasion of cancer cells into neighboring cells and tissues reduces the survival time of patients [192,193].
It has been demonstrated that lncRNA SNHG5 can inhibit miR-205-5p expression. Reduced miR-205-5p
expression triggers the induction of ZEB2, which in turn enhances the migration ability of tumor
cells [194]. Up-regulation of miR-205-5p may therefore be beneficial in reducing glioma malignancy.

4.2.3. CircRNAs as Modulators of miR/ZEB2 Axis

Increasing evidence highlights the role of miR-377 as an onco-suppressor in cancer cells. MiR-377
can target Akt signaling to suppress the proliferation and invasion of tumor cells, and induce cell
cycle arrest [195]. Normally, miR-377 reduces the expression of ZEB2. In bladder cancer cells,
the expression of miR-377 undergoes down-regulation by circZFR to promote cancer metastasis through
ZEB2 stimulation [196]. MiR-653 also appears to be an onco-suppressor miR in bladder cancer cells.
CircRNA ciRs-6 reduces miR-653 expression to induce March1, leading to the increased proliferation
of tumor cells [110]. MiR-653 is similarly suppressed in breast cancer cells, by another circRNA
hsa-circ-0004771. Knockdown of hsa-circ-0004771 sensitizes cancer cells to apoptosis and inhibits
their progression through miR-653 up-regulation and subsequent inhibition of ZEB2 [197]. Evidently,
ZEB2 induction dually enhances proliferation and metastasis of cancer cells. Hence, targeting the
circRNA/miR/ZEB2 axis can pave the way into effective inhibition of proliferation and migration of
cancer cells.

In renal cancer, patients typically have poorer survival rates and treatment strategies can be
improved [198–200]. MiR-153 was found to exert inhibitory impact on ZEB2 expression to suppress renal
cancer, while circPCNXL2 stimulates ZEB2 expression via miR-153 sponging to elevate the invasion
and proliferation of renal cancer cells [201]. Therefore, decreasing the expression of circPCNXL2 may
yield an up-regulation of miR-153 and suppresses ZEB2 expression to eliminate renal cancer.

In all, these studies highlight the extensive influence that miRs have on ZEB proteins (Figures 1
and 2). Across a wide range of cancers, different miRs work to inhibit ZEB and halt cancer progression.
Additionally, lncRNAs and circRNAs are able to act as upstream mediators of miRs to affect ZEB2
expression. Through the revealing of these molecular pathways, we may better understand these
promising candidates in cancer therapy.
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5. MicroRNAs, ZEB, and Their Role in Tumor Resistance

Multidrug resistance (MDR) is a complicated and challenging phenomenon accounting for
cross-resistance towards structurally unrelated drugs [202,203]. It is estimated that approximately 70%
of solid and hematological tumors demonstrate MDR. This percentage elevates after chemotherapy,
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since cancer cells are able to switch among molecular pathways to obtain chemoresistance, and frequent
application of chemotherapeutic agents speeds up MDR [204,205]. Therefore, when trying to understand
the role of miR and ZEB proteins in cancer, it also important to explore how miR’s modulation on ZEB
can affect tumor resistance. Particularly, miR is implicated in tumor resistance. For instance, cisplatin
is a potential chemotherapeutic agent with the ability of inhibiting the proliferation and viability of
various cancers [206]. In ovarian cancer, it has been reported that miR-137 reduces the expression
of MCL1 to sensitize tumor cells into cisplatin-induced apoptosis [207]. In this section, we seek to
understand how miR modulation on ZEB can contribute to tumor resistance.

5.1. ZEB1

5.1.1. Paclitaxel Resistance

Paclitaxel (PTX) is a chemotherapeutic agent that is frequently employed in cancer therapy to
prevent cell proliferation due to its anti-mitotic capabilities [208]. Unfortunately, PTX resistance is
an important obstacle, which has reduced the feasibility of this agent [209–212]. Notably, ZEB1 can
promote cancer cells resistance towards PTX, and down-regulation of ZEB1 may be a key toward
re-sensitizing cancer cells to PTX chemotherapy [213]. MiR-124-3p suppresses ZEB1 to sensitize gastric
cancer cells into PTX therapy. Circular RNA Circ-PVT1 reverses this axis by sponging miR-124-3p
and elevating the expression of ZEB1 to induce PTX resistance in gastric cancer cells [214]. LncRNA
NEAT1 was also found to mediate PTX resistance in ovarian cancer cells. Normally, miR-194 undergoes
up-regulation to inhibit ZEB1 and subsequently, reduce the malignancy and invasion of cancer cells.
LncRNA NEAT1 suppresses the inhibitory effect of miR-194 on ZEB1 to induce the resistance of ovarian
cancer cells into PTX chemotherapy [215].

5.1.2. Gemcitabine Resistance

Gemcitabine is a chemotherapeutic agent isolated from deoxycytidine, which is frequently applied
in the treatment of breast cancer [216]. Gemcitabine triggers cell cycle arrest by binding into DNA or
suppressing ribonucleotide reductase [217,218]. It appears that ZEB1 contributes to the gemcitabine
resistance in TNBC cells. This study found that ZEB1 associates with Yes associated protein (YAP) to
enhance cancer progression and proliferation and induces chemoresistance. Importantly, ZEB1 was
found to be a target of miR-873, and that increasing miR-873 expression down-regulates the expression
of YAP and ZEB1, and sensitizes tumor cells into gemcitabine therapy [219].

5.1.3. Cisplatin Resistance

Another important factor to consider when exploring acquired tumor resistance is lncRNA, which
can regulate miR, to in turn affect ZEB levels. Prostate cancer-associated transcription 1 (PCAT1)
undergoes up-regulation in cancer cells to suppress cell death [220]. In gastric cancer cells, PCAT-1
induces the resistance of cancer cells into cisplatin therapy by stimulation of ZEB1 through miR-128
inhibition, leading to the enhanced progression and malignancy of gastric cancer cells [221]. Therefore,
targeting the miR/ZEB1 axis may alleviate cisplatin resistance.

5.1.4. 5-Fluorouracil

The most common chemotherapeutic agent in treatment of cancer is 5-FU [222]. Different molecular
pathways are involved in resistance into 5-FU, and miRs are key players [223,224]. LncRNA NEAT1
have been found to possess oncogenic activity and enhance the progression and malignancy of cancer
cells via targeting miRs such as miR-144-3p and miR-410 [225,226]. In CRC cells, NEAT1 is involved in
5-FU resistance through miR-34a regulation [227] (Figure 3).
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5.2. ZEB2

In osteosarcoma, miR-200b diminishes the progression and motility of tumor cells by inhibition
of PI3K/Akt and AMPK signaling pathways, leading to the downregulation of vascular endothelial
growth factor (VEGF). LncRNA CCAT2 reverses this axis by induction of VEGF through miR-200b
inhibition [228]. It is worth mentioning that enhancing the expression of miR-200b is beneficial in
sensitizing cancer cells into chemotherapy, so that arrestin domain containing 3 (ARRDC3) elevates
the efficacy of chemotherapy in TNBC cells via miR-200b up-regulation [229]. It appears that
up-regulation of miR-200b enhances apoptosis in lung cancer cells and remarkably increases the efficacy
of chemotherapy [230]. Another member of miR-200 family, known as miR-200c, sensitizes gastric
cancer cells to cisplatin and enhances chemotherapeutic efficacy by suppressing ZEB2 expression [215].

6. MicroRNAs Target ZEB Family in Immune Cells

Other than ZEB’s prevalent role in EMT, ZEB’s involvement with the tumor microenvironment
and immune system is also crucial in its mediation of cancer dissemination and development. Tumor
cells use immunosuppressive cells such as CD4+ T cells to escape from the anti-cancer activity of
CD8+ T cells [231–233]. Notably, it has been demonstrated that cytotoxic CD8+ tumor infiltrating
lymphocytes (CD8+ TILs) are able to eliminate cancer cells [234], while sustained exposure of tumor
cells into CD8+ TILs reduces their anti-tumor activity [235]. It is worth mentioning that PD-1/PD-L1
axis may be involved in driving CD8+ T cell exhaustion and therapies targeting PD-L1 have been
explored [236–240]. PD-L1 binds to PD-1 to induce apoptotic cell death in CD8+ T cells and ensure the
survival of cancer cells [241–244].

In diffuse large B cell lymphoma (DLBCL) cells, miR-8890-3p is capable of suppressing ZEB1, while
lncRNA SNHG14 conversely reduces the expression of miR-8890-3p to activate ZEB1. Consequently,
ZEB1 stimulates PD-L1 to protect cancer cells against the cytotoxic effects of immune cells, resulting in
promoting the survival and migration of DLBCL cells [245].

In another instance, it has been reported that ZEB1 is an efficient factor in elevating the malignancy
of tumor cells, through the induction of PD-L1 expression to enhance the levels of CD8+ T-cell
immunosuppression and cancer metastasis. Enhancing the expression of miR-200 disrupts ZEB1
expression to suppress PD-L1 and immunosuppression, resulting in decreased metastasis and invasion
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of cancer cells [246]. ZEB1 can induce EMT in breast cancer cells via activation of PD-L1. It has been
reported that miR-200 overexpression reduces the levels of ZEB1 to inhibit EMT through interfering
with PD-L1 activation, as an immunosuppressive factor [247]. Unfortunately, there are currently no
reports about the relationship between miRs and ZEB2 in cancer immunotherapy, and further studies
can focus on revealing relationship between miR/ZEB2 axis and cancer immunotherapy. Tables 1–6
demonstrate the regulation of ZEB1 and ZEB2 by various miRs proteins in mediating cancer metastasis.
Upstream mediators of miR such as lncRNAs and circRNAs are also highlighted in Table 1 through
Table 6. Figure 4 further summarizes the effect of miR/ZEB axis on immune system.
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Table 1. ZEB1 regulation by miRs in different cancers.

MiR Down-Stream Target Cancer Type Major Outcomes Refs

MiR-23a ZEB1 Intraocular tumor A negative feedback loop between miR-23a and ZEB1 regulates EMT and
overexpression of miR-23a inhibits EMT by ZEB1 down-regulation [248]

MiR-23b ZEB1 Bladder cancer MiR-23b induces apoptosis and cell cycle arrest, and decreases the invasion
and EMT through ZEB1 inhibition [249]

MiR-33b ZEB1 Melanoma
Cordycepin enhances the expression of miR-33b to inhibit ZEB1 and

induces mesenchymal-epithelial transition in cancer cells, resulting in
decreased invasion and migration of cancer cells

[250]

MiR-126 ZEB1 Osteosarcoma Inhibition of EMT, migration, and metastasis of cancer cells through ZEB1
down-regulation [251]

MiR-128 ZEB1 Prostate cancer
MiR-128 sensitizes cancer cells into cisplatin chemotherapy by ZEB1

down-regulation and decreasing the malignancy and invasion of
cancer cells

[252]

MiR-130b ZEB1 Endometrial cancer The miR-130b down-regulates the expression of ZEB1 to inhibit the
malignancy and invasion of cancer cells [253]

MiR-139-5p ZEB1/2
Hepatocellular carcinoma Reduced invasion, migration, metastasis, and EMT by ZEB1/2

down-regulation through miR-139-5p [254]

Glioblastoma multiforme Suppressing the invasion and migration of cancer cells through
ZEB1/2 inhibition [255]

MiR-141 and
miR-146b-5p AUF1/ZEB1 Osteosarcoma

These miRs are able to down-regulate the expression of AUF1 to repress
ZEB1, resulting in an increase in epithelial markers (E-cadherin and Epcam)

and a decrease in mesenchymal markers (N-cadherin and Vimentin)
[256]

MiR-144
MiR-144

ZEB1/2
Breast cancer MiR-144 is an onco-suppressor that inhibits EMT and migration invasion

through ZEB1/2 down-regulation [257]

Thyroid cancer MiR-144 down-regulates the expression of ZEB1/2 to prevent cancer
progression and proliferation [258]
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Table 1. Cont.

MiR Down-Stream Target Cancer Type Major Outcomes Refs

MiR-150 ZEB1

Esophageal squamous cell
carcinoma

MiR-150 degrades ZEB1 to induce mesenchymal-epithelial transition
(MET), resulting in a decrease in tumor depth, lymph node metastasis, and

lymphatic invasion
[259]

Ovarian cancer Suppressing the malignancy and invasion of cancer cells through
ZEB1 inhibition [260]

MiR-199a-3p ZEB1 Melanoma
The administration of gambogic acid is associated with up-regulation of

miR-199a-3p and subsequent inhibition of ZEB1 to suppress cancer
progression both in vitro and in vivo

[261]

MiR-199b ZEB1 Non-small cell lung cancer Suppressing the proliferation, migration, and invasion of cancer cells
through ZEB1 down-regulation [262]

MiR-200

ZEB1-FAK/Src Human lung cancer
The miR-200 up-regulation decreases the invasion and malignancy of

cancer cells through enhancing ZEB1 expression and subsequent activation
of FAK/Src

[263]

ZEB1

Endometrial carcinoma
The expression of miR-200 undergoes down-regulation in endometrial
carcinoma cells to induce ZEB1 and subsequently, EMT mechanism to

elevate the invasion and malignancy of cancer cells
[264]

Lymphoma Generation of a less aggressive behavior by ZEB1 inhibition through
miR-200 [265]

Insulinoma mouse model Overexpression of miR-200 is associated with ZEB1 inhibition and
decreased migration and proliferation of cancer cells [266]

MiR-200b ZEB1
Osteosarcoma Overexpression of miR-200b is associated with down-regulation of ZEB1

and decreased invasion and malignancy of cancer cells [267]

Human hepatocellular
carcinoma By down-regulation of ZEB1, miR-200b reduces the stemness of cancer cells [268]

MiR-200b and
miR-141 ZEB1 Non-small cell lung cancer The overexpression of miR-200b and miR-141 is related to the inhibition of

ZEB1 and sensitizing cancer cells into nintedanib [269]
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Table 1. Cont.

MiR Down-Stream Target Cancer Type Major Outcomes Refs

MiR-200c ZEB1

Human colon cancer Suppressing the invasion and migration of cancer cells through ZEB1
down-regulation [270]

Gastric carcinoma Overexpression of miR-200c is related to the ZEB1 down-regulation and
enhanced levels of E-cadherin protein [271]

Human bladder cancer Administration of sulforaphane is associated with miR-200c induction and
subsequently, inhibition of ZEB1 and malignancy of cancer cells [272]

Non-small cell lung
carcinoma

The cyclamen pseudibericum extract up-regulates miR-200c to induce
ZEB1 down-regulation, resulting in suppressing cancer progression

and proliferation
[273]

Non-small cell lung cancer MiR-200c sensitizes cancer cells to the gefitinib-mediated apoptosis by
down-regulation of ZEB1 [274]

Lung cancer MiR-200c sensitizes lung cancer cells into crizotinib chemotherapy by
inhibition of ZEB1, and subsequently, EMT inhibition [275]

MiR-200c and
miR-141

ZEB1 Glioma cell The miR-200c and -141 synergistically inhibit ZEB1 to prevent the
malignancy and invasion of cancer cells [276]

ZEB1/2 Gastric cancer MiR-200c/141 significantly decreases ZEB1/2 expression to suppress
cancer malignancy [277]

MiR-203 ZEB1 Non-small cell lung cancer
The administration of silymarin enhances the expression of miR-203 to

inhibit ZEB1 and elevate the levels of E-cadherin, resulting in
suppressing cancer

[278]

MiR-204 ZEB1 Prostate cancer MiR-204 up-regulation sensitizes cancer cells into docetaxel-mediated
apoptosis through ZEB1 down-regulation [279]

MiR-205 ZEB1

Ovarian cancer
MiR-205 enhances the invasion and migration of cancer cells via ZEB1

up-regulation. Reducing the expression of miR-205 is of interest in
suppressing the malignancy of cancer cells

[280]

Prostate cancer By inhibition of ZEB1, miR-205 sensitizes cancer cells into radiotherapy
and induces DNA damage [281]

Breast cancer MiR-205 sensitizes cancer cells into radiotherapy and prevents DNA repair
by ZEB1 down-regulation [282]
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Table 1. Cont.

MiR Down-Stream Target Cancer Type Major Outcomes Refs

MiR-205-5p ZEB1 Prostatic carcinoma Suppressing the migration and invasion of cancer cells by ZEB1
down-regulation [283]

MiR-340
ZEB1/TGF-β Breast cancer MiR-340 inhibits ZEB1 to suppress TGF-β-mediated cancer progression [284]

ZEB1 Osteosarcoma MiR-340 down-regulates the expression of ZEB1 to sensitize cancer cells
into cisplatin-mediated apoptotic cell death [285]

MiR-409-3p ZEB1 Breast cancer MiR-409-3p binds to the 3′-UTR of ZEB1 to inhibit the progression and
metastasis of cancer cells [286]

MiR-429 ZEB1

Ovarian cancer
Down-regulation of miR-429 is related to the resistance of cancer cells into

cisplatin chemotherapy. Up-regulation of miR-429 suppresses ZEB1 to
sensitize cancer cells into apoptosis

[287]

Oral squamous cell
carcinoma

MiR-429 suppresses the viability and progression of cancer cells via ZEB1
down-regulation [288]

Human thyroid cancer MiR-429 binds to the 3′-UTR to inhibit ZEB1, resulting in suppressing
invasion of cancer cells [110]

MiR-431 ZEB1 Hepatocellular carcinoma MiR-431 suppresses the migration and invasion capabilities of cancer cells
through inhibition of ZEB1-mediated EMT [289]

MiR-448 ZEB1/2 Breast cancer The miR-448 significantly reduces the expressions of ZEB1/2 to inhibit the
malignancy and invasion of cancer cells via EMT down-regulation [290]

MiR-455 ZEB1 Non-small cell lung cancer The miR-455 reduces the expression of ZEB1 to inhibit the malignancy of
cancer cells [291]

MiR-484 Smad2/ZEB1 Cervical cancer Overexpression of miR-484 inhibits Smad2/ZEB1 to suppress cancer
malignancy and miR-484 expression can be considered as a biomarker [292]

MiR-508 ZEB1 Renal cell carcinoma Up-regulation of miR-508 significantly reduces the expression of ZEB1 to
inhibit EMT, leading to a decrease in cancer migration and metastasis [293]

MiR-508-3p ZEB1 Triple negative breast cancer Suppressing the invasion and EMT of cancer cells by down-regulation
of ZEB1 [294]
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Table 1. Cont.

MiR Down-Stream Target Cancer Type Major Outcomes Refs

MiR-574-3p ZEB1 Human gastric carcinoma
MiR-574-3p reduces the expression of ZEB1 by binding into 3′-UTR to
decrease the malignancy of cancer cells, and simultaneously, sensitize

cancer cells into cisplatin therapy
[295]

MiR-590-3p ZEB1/2 Glioblastoma multiforme Decreased invasion and migration of cancer cells by ZEB1/2
down-regulation [296]

MiR-641 ZEB1 Cervical cancer Negatively affecting the proliferation, migration, and invasion of cancer
cells through ZEB1 down-regulation [297]

MiR-652 ZEB1 Pancreatic cancer
Acidic microenvironment of tumor cells induces EMT through ZEB1

up-regulation. Enhancing the expression of miR-652 inhibits
acidic-mediated EMT and ZEB1 induction

[298]

MiR-655 TGF-β/ZEB1 Pancreatic cancer MiR-655 inhibits TGF-β/ZEB1 axis to suppress EMT in cancer cells [299]

MiR-675-5p UBQLN1/ZEB1/miR200 Pancreatic cancer The miR-675-5p reduces the malignancy of cancer cells and ZEB1 protein
by up-regulation of UBQLN1 and down-regulation of miR-200 [300]

MiR-873-5p ZEB1 Colorectal cancer The inhibitory effect of miR-873-5p on the migration, EMT formation, and
invasion of cancer cells is mediated through ZEB1 down-regulation [301]

MiR-875-5p EGFR/ZEB1 Prostate cancer By suppressing EGFR/ZEB1 axis, miR-875-5p inhibits EMT mechanism and
sensitizes cancer cells to radiotherapy [302]

MiR-1271 ZEB1 Pancreatic cancer Suppressing the invasion, progression, and EMT in cancer cells by ZEB1
down-regulation [303]

MiR-1236-3p ZEB1 High-grade serous ovarian
carcinoma

There is a negative relationship between miR-1236-3p and ZEB1 to
suppress the migration and invasion of cancer cells [304]

MiR-1236-3p ZEB1 Breast cancer ZEB1 inhibition by miR-1236-3p contributes to the inhibitory effect of this
miR on the migration and invasion of cancer cells [305]

MiR-3662 ZEB1 Melanoma Amelioration of invasiveness and malignancy of cancer cells by ZEB1
down-regulation [306]
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Table 2. miR/ZEB1 regulation by lncRNAs in different cancers.

LncRNA MiR Down-Stream
Target Cancer Type Major Outcomes Refs

LncRNA DANCR MiR-33a-5p ZEB1
Esophageal

squamous cell
carcinoma

MiR-33a-5p suppresses cancer malignancy via reducing ZEB1
expression. LncRNA DANCR sponges miR-33a-5p to enhances

the invasion via ZEB1 induction
[307]

LncRNA SNHG6 MiR-101-3p ZEB1 Hepatocellular
carcinoma

LncRNA SNHG6 down-regulates the expression of miR-101-3p
to induce ZEB1 and enhance the malignancy of cancer cells [308]

LncRNA PTAR MiR-101-3p ZEB1 Serous ovarian
cancer

LncRNA PTAR decreases the expression of miR-101-3p to induce
ZEB1 and EMT mechanism, leading to the invasion and

metastasis of cancer cells
[309]

LncRNA NNT-AS1 MiR-142-3p ZEB1 Breast cancer Enhancing the progression of cancer cells by sponging
miR-142-3p and induction of ZEB1 [310]

LncRNA TUG1 MiR-142-3p ZEB1 Hepatocellular
carcinoma

By down-regulation of miR-142-3p, lncRNA TUG1 enhances the
expression of ZEB1 to ensure the proliferation and malignancy of

cancer cells
[311]

LncRNA SNHG16

MiR-140-5p ZEB1
Esophageal

squamous cell
carcinoma

The lncRNA SNHG16 functions as an oncogenic factor and
neutralizes the inhibitory effect of miR-140-5p on ZEB1 to induce

EMT and enhance the migration and invasion of cancer cells
[312]

MiR-205 ZEB1 Osteosarcoma
SNHG16 reduces the expression of miR-205 to elevate the
expression of ZEB1, resulting in an increase in the viability,

proliferation, and migration of cancer cells
[313]

LncRNA HOTAIR
MiR-217 ZEB1 Osteosarcoma By reducing the expression of miR-217, lncRNA HOTAIR

enhances the expression of ZEB1 and improves their malignancy [314]

MiR-23b-3p ZEB1 Hepatocellular
carcinoma

The miR-23b-3p inhibits ZEB1 and lncRNA HOTAIR prevents
the inhibitory effect of miR-23b-3p on ZEB1 to induce EMT [315]

lncRNA UCA1
Has-miR-145 ZEB1/2-FSCN1 Bladder cancer

There is a reverse relationship between lncRNA UCA1 and
has-miR-145. Decreased expression of has-miR-145 enhances the

expression of ZEB1/2 and FSCN1 to elevate the migration and
invasion of cancer cells

[316]

MiR-204-5p ZEB1 Glioma cells By sponging miR-204-5p, lncRNA UCA1 stimulates ZEB1 and
activates EMT mechanism [317]
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Table 2. Cont.

LncRNA MiR Down-Stream
Target Cancer Type Major Outcomes Refs

LncRNA ZEB1-AS1

MiR-200c/141 ZEB1 Glioma cancer
LncRNA ZEB1-AS1 down-regulates the expression of

miR-200c/141 to induce ZEB1 and enhance the malignancy and
invasion of cancer cells

[318]

MiR-409-3p ZEB1 Non-small cell lung
cancer

A feedback loop is involved, so that lncRNA ZEB1-AS1 induces
ZEB1 through miR-409-3p down-regulation, leading to the

metastasis and survival of cancer cells
[319]

MiR-101 ZEB1 Colorectal cancer
Elevating the proliferation and migration of cancer cells via
down-regulation of MiR-101 and up-regulation of ZEB1 by

lncRNA ZEB1-AS1
[320]

LncRNA MIAT MiR-150-5p ZEB1 Osteosarcoma The miR-150-5p is down-regulated by MIAT to induce ZEB1 and
enhance the malignancy of cancer cells [321]

LncRNA
MAGI1-IT1 MiR-200a ZEB1/2 Ovarian cancer

Via competitively binding into miR-200a, lncRNA MAGI1-IT1
enhances the expression of ZEB1/2 to ensure the invasion and

metastasis of cancer cells
[293]

LncRNA HULC MiR-200a-3p ZEB1 Hepatocellular
carcinoma

By sequestering miR-200a-3p, lncRNA HULC stimulates ZEB1 to
enhance the malignancy and progression of tumor cells [322]

LncRNA NEAT1 MiR-204 ZEB1 Nasopharyngeal
carcinoma

MiR-204 inhibits EMT through ZEB1 down-regulation, and
lncRNA NEAT1 reverse this axis to enhance the proliferation and

viability of cancer cells
[323]

LncRNA MINCR MiR-223 ZEB1-Akt/PI3K Nasopharyngeal
carcinoma

MINCR induces ZEB1 by sponging miR-223, resulting in
activation of Akt/PI3K and resistance of cancer cells

into radiotherapy
[324]

LncRNA CAT104 MiR-381 ZEB1 Gastric carcinoma

LncRNA CAT104 down-regulates the expression of miR-381 to
enhances ZEB1 levels, resulting in enhanced invasion of cancer
cells. Additionally, there is a negative feedback loop between

ZEB1 and miR-381.

[325]

LncRNA ZNF469-3 MiR-574-5p ZEB1 Triple negative
breast cancer

The reverse relationship between ZNF469-3 and miR-574-5p
paves the road for up-regulation of ZEB1 and subsequent

activation of EMT, leading to the cancer progression
and malignancy

[326]
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Table 3. miR/ZEB1 regulation by various molecular pathways in different cancers.

Upstream Mediator MiR Down-Stream
Target Cancer Type Major Outcomes Refs

ELF3 MiR-141-3p ZEB1 Hepatocellular
carcinoma

Overexpression of miR-141-3p down-regulates ZEB1. The ELF3 reduces
the expression of miR-141-3p to induce ZEB1 and EMT mechanism [327]

SPROUTY-2 MiR-200/miR-150 ZEB1 Colon cancer By reducing the expression of miR-200/miR-150, SPROUTY-2 induces
ZEB1 to facilitate the mesenchymal phenotype acquisition of cancer cells [286]

STAT3 MiR-200 ZEB1 Invasive breast
carcinoma

ZEB1 stimulation by miR-200 down-regulation via STAT3-dependent
manner enhances the EMT acquisition in cancer cells [328]

TGF-β1 MiR-200 ZEB1/2 Non-small cell lung
cancer

The administration of decitabine induces miR-200 expression through
TGF-β1 inhibition to down-regulate ZEB1/2, leading to the suppressing

EMT and migration of cancer cells
[329]

GRHL2 MiR-200b/a ZEB1 Ovarian cancer GRHL2 down-regulates the expression of ZEB1 by miR-200a/b
overexpression to preserve the epithelial phenotype [330]

53BP1 MiR-200b and
miR-429 ZEB1 Breast cancer

The 53BP1 enhances the expression of miR-200b and miR-429 to elevate
E-cadherin levels and suppress EMT mechanism through ZEB1

down-regulation
[331]

Mel-18 MiR-205 ZEB1/2 Breast cancer Mel-18 enhances the expression of miR-205 to inhibit ZEB1/2, resulting in
decreased progression and invasion of cancer cells [332]

∆Np63α MiR-205 ZEB1 Cervical squamous
cell carcinoma

∆Np63α alleviates cancer progression and malignancy by enhancing the
expression of miR-205, subsequently down-regulating of ZEB1, and
consequently, inhibition of EMT, and enhancing E-cadherin levels

[333]

KCNQ1OT1 MiR-217 ZEB1 Colorectal cancer
KCNQ1OT1 inhibits miR-217 to stimulate ZEB1 and EMT mechanism in

cancer cells. There is a feedback loop, so that ZEB1 also enhances the
expression of KCNQ1OT1 to elevate its inhibitory effect on miR-217

[334]

Circ008913 MiR-889 DAB2IP/ZEB1 Skin carcinogenesis
Arsenite down-regulates the expression of circ008913 to up-regulate

miR-889. Then, a decrease occurs in DAB2IP to induce ZEB1 and
carcinogenesis

[335]

Pituitary
tumor-transforming

gene 1
MiR-3666 ZEB1 Cervical cancer

The expression of miR-3666 reduces to neutralize its inhibitory impact of
ZEB1, and consequently, elevate the metastasis and progression of

cancer cells
[289]
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Table 4. ZEB2 regulation by miRs in different cancers.

MiR Down-Stream Target Cancer Type Major Outcomes Refs

MiR-29b TET1/ZEB2 Breast cancer The miR-29b is an oncogene miR that inhibits TET1 to induce ZEB2
expression, leading to the EMT and colony formation of cancer cells [336]

MiR-30a-5p ZEB2 Renal cancer The miR-30a-5p reduces the expression of ZEB2 to be related with
desirable prognosis of cancer cells [337]

MiR-101 ZEB2 Osteosarcoma Suppressing the invasion and proliferation of cancer cells through ZEB2
down-regulation [175]

MiR-124 ZEB2 Triple negative breast
cancer

MiR-124 diminishes the expression of ZEB2 to inhibit the EMT and
invasion of cancer cells [338]

MiR-129 Wnt-β-catenin/ZEB2 Non-small cell lung
cancer The miR-129 disrupts Wnt/ZEB2 axis to inhibit EMT [339]

MiR-132 ZEB2
Colorectal cancer Reducing the invasion and metastasis of cancer cells through ZEB2

down-regulation [340]

Lung cancer Diminishing the migration and invasion of cancer cells through
ZEB2 inhibition [341]

MiR-138 ZEB2 Bladder cancer The miR-138 binds to the 3′-UTR of ZEB2 to inhibit the metastasis and
invasion of cancer cells [289]

MiR-141 ZEB2

Hepatocellular
carcinoma

The miR-141 decreases the expression of ZEB2 to induce apoptosis and
diminish viability and proliferation of cancer cells [342]

Renal cancer
The administration of honokiol is associated with miR-141 induction and

subsequent downregulation of ZEB2 to inhibit the malignancy of
cancer cells

[343]

MiR-145 ZEB2

Non-small cell lung
cancer

MiR-145 acts as an onco-suppressor miR that negatively affects the
expression of ZEB2 to inhibit the progression and malignancy of

cancer cells
[166]

Prostate cancer
There is a negative feedback loop between miR-145 and ZEB2, so that
overexpression of miR-145 down-regulates the expression of ZEB2 to

ensure the reduced viability and proliferation of cancer cells
[344]
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Table 4. Cont.

MiR Down-Stream Target Cancer Type Major Outcomes Refs

MiR-145-5p ZEB2 Gastric cancer The miR-145-5p decreases the levels of N-cadherin by ZEB2
down-regulation [345]

MiR-153 ZEB2 Ovarian cancer Acting as an onco-suppressor miR and reduces ZEB2 expression to
EMT inhibition [346]

MiR-154 ZEB2

Non-small cell lung
cancer The miR-154 exerts an anti-tumor impact by ZEB2 down-regulation [347]

Hepatocellular
carcinoma

The miR-154 functions as an onco-suppressor miR by inhibition ZEB2
expression and reducing cancer malignancy and proliferation [348]

MiR-155 and
FOXP3 ZEB2 Colorectal cancer The miR-155 and FOXP3 inhibit ZEB2 expression to suppress EMT via

E-cadherin level up-regulation and Vimentin level downregulation [307]

MiR-187 ZEB2 Osteosarcoma The miR-187 decreases the expression of ZEB2 to inhibit the malignancy
and migration of tumor cells [349]

MiR-200
ZEB1/2 Ovarian cancer

The cancer cells acquire an epithelial phenotype by enhancing the
expression of miR-200 and subsequent inhibition of ZEB1 and

ZEB2 proteins
[350]

ZEB2 Breast cancer As an onco-suppressor miR, miR-200 decreases the expression of ZEB2
and its targets gene Snail1 to induce mesenchymal to epithelial transition [351]

MiR-200a ZEB2

Nasopharyngeal
carcinoma

Suppressing the growth and invasion of cancer cells through ZEB2
down-regulation [352]

Hepatocellular
carcinoma

The miR-200a diminishes the expression of ZEB2 to suppress EMT and
invasion of cancer cells [353]

Ovarian cancer The miR-200a increases the levels of E-cadherin by EMT inhibition and
ZEB2 down-regulation [354]

MiR-200b ZEB2
Gastric carcinoma Inhibition of ZEB2 by miR-200b suppresses invasion, metastasis, and

migration of cancer cells [355]

Glioma Reducing the growth and metastasis of ZEB2 inhibition [356]
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Table 4. Cont.

MiR Down-Stream Target Cancer Type Major Outcomes Refs

MiR-200c ZEB2

Ovarian cancer MiR-200c reduces the expression of ZEB2 to inhibit EMT by enhancing
E-cadherin levels and reducing Vimentin levels [357]

Non-small cell lung
cancer The miR-200c inhibits EMT mechanism by ZEB2 down-regulation [358]

MiR-200c-3p ZEB2 Prostate carcinoma The miR-200c-3p functions as an anti-tumor miR that inhibits the
progression and invasion of cancer cells through ZEB2 down-regulation [359]

MiR-203 ZEB2
Lung adenocarcinoma
and nasopharyngeal

carcinoma

MiR-203 enhances the efficacy of cisplatin in chemotherapy and
eradication of cancer cells, and also inhibits their invasion by EMT

down-regulation through ZEB2 inhibition
[360,361]

MiR-205 ZEB2 Renal cell carcinoma The miR-205 is related to the favorable prognosis and reduced invasion
of cancer cells through ZEB2 down-regulation [362]

MiR-206 ZEB2 Renal cancer Decreasing the proliferation of tumor cells through ZEB2
down-regulation [363]

MiR-211-5p ZEB2 Hepatocellular
carcinoma

The miR-211-5p suppresses the metastasis of cancer cells via ZEB2
down-regulation [215]

MiR-215 ZEB2 Non-small cell lung
cancer

The in vitro and in vivo experiments demonstrate the potential of
miR-215 in down-regulation of ZEB2 and suppressing the invasion,

progression, and malignancy of cancer cells, and induction of apoptotic
cell death

[364]

MiR-335 ZEB2
Colorectal cancer The inhibition of metastasis and invasion of cancer cells through ZEB2

down-regulation [365]

Papillary thyroid cancer Through reducing the expression of ZEB2, miR-335 suppresses the
growth and metastasis of cancer cells [366]

MiR-338-3p ZEB2 Gastric cancer MiR-338-3p diminishes the expression of ZEB2 to inhibit EMT in
cancer cells [367]

MiR-454-3p and
miR-374b-5p ZEB2 Bladder cancer Reducing the expression of ZEB2 significantly decreases the migration

and invasion of cancer cells [325]
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Table 4. Cont.

MiR Down-Stream Target Cancer Type Major Outcomes Refs

MiR-506 ZEB2 Gastric carcinoma The miR-506 suppresses metastasis through ZEB2 down-regulation [130]

MiR-545 Wnt-β-catenin/ZEB2 Non-small cell lung
cancer

The miR-545 reduces the expression of Wnt/β−catenin to down-regulate
the expression of ZEB2, leading to the decreased migration and invasion

of cancer cells
[368]

MiR-598 ZEB2 Non-small cell lung
cancer

The in vitro experiment demonstrated that miR-598 decreases the
expression of ZEB2 to inhibit the migration and metastasis of cancer cells [369]

MiR-622 ZEB2 Glioma The increased expression of miR-622 is related to the desirable prognosis
via ZEB2 down-regulation [370]

MiR-769-3p Wnt-β-catenin/ZEB2 Glioma
The miR-769-3p down-regulates the expression of Wnt and inhibits
nuclear translocation of β−catenin to suppress ZEB2, leading to the

decreased viability, proliferation and invasion of cancer cells
[371]

MiR-940 ZEB2 Glioma Inhibition of cancer progression and EMT through ZEB2 down-regulation [372]

MiR-1179 ZEB2 Hepatocellular
carcinoma

The miR-1179 reduces the expression of ZEB2 to inhibit cancer
progression and malignancy [373]

MiR-3653 ZEB2 Colon cancer Suppressing metastasis and EMT by inhibition of ZEB2 [171]
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Table 5. MiR/ZEB2 regulation by lncRNAs in different cancers.

LncRNA MiR Down-Stream
Target Cancer Type Major Outcomes Refs

LncRNA TUG1 MiR-142 ZEB2 Bladder cancer The lncRNA TUG1 stimulates ZEB2 through miR-142 down-regulation to
inhibit apoptosis and enhance the proliferation of cancer cells [374]

LncRNA ROR MiR-145 ZEB2 Hepatocellular
carcinoma

The lncRNA ROR elevates the expression of ZEB2 through miR-145
sponging to inhibit the EMT and malignancy of cancer cells [375]

LncRNA MALAT1
MiR-200s ZEB2 Kidney carcinoma The lncRNA MALAT1 induces ZEB2 via miR-200s sponging, predisposing

cancer cells into growth and proliferation [376]

MiR-204 ZEB2 Breast cancer The negative relationship between MALAT1 and miR-204 results in ZEB2
induction to enhance the migration and invasion of cancer cells [377]

LncRNA UCA1 MiR-203 ZEB2 Gastric cancer This lncRNA sponges miR-203 to induce ZEB2, leading to the enhanced
malignancy, invasion, and proliferation of tumor cells [187]

LncRNA SNHG5 MiR-205-5p ZEB2 Glioma LncRNA SNHG5 stimulates ZEB2 by sponging miR-205-5p to elevate the
proliferation of cancer cells [194]

LncRNA UICLM MiR-215 ZEB2 Colorectal cancer
The in vivo and in vitro experiments demonstrated that lncRNA induces

ZEB2 via miR-215 down-regulation to enhance the migration and
malignancy of cancer cells

[378]

LncRNA SNHG12 MiR-218 Slug/ZEB2 Non-small cell lung
cancer

MiR-218 inhibits Slug/ZEB2 axis to suppress EMT in cancer cells. LncRNA
SNHG16 activates Slug/ZEB2 axis through miR-218 sponging [188]

LncRNA XIST MiR-367 and
miR-141 ZEB2 Non-small cell lung

cancer
The lncRNA XIST up-regulates the expression of ZEB2 by inhibition of

miR-367 and miR-141, leading to the TGF- β-induced EMT [379]

LncRNA UCA1 MiR-498 ZEB2 Esophageal cancer The lncRNA UCA1 inhibits ZEB2 via miR-498 down-regulation to
suppress the migration, proliferation, invasion, and EMT [7]

LncRNA CTS MiR-505 ZEB2 Cervical cancer Down-regulation of miR-505 by CTS is associated with increased
malignancy of cancer cells through ZEB2 induction [186]

LncRNA
HOTAIRM1 MiR-873-5p ZEB2 Glioma

LncRNA HOTAIRM1 decreases the expression of miR-873-5p by sponging
to up-regulate the expression of ZEB2, leading to an increase in

progression of glioma cells and a decrease in apoptotic cell death
[179]
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Table 6. miR/ZEB2 regulation by various molecular pathways in different cancers.

Upstream Mediator MiR Down-Stream
Target Cancer Type Major Outcomes Refs

P53 MiR-30a ZEB2 Breast cancer
P53 stimulates the expression of miR-30a to upregulate ZEB2,
resulting in reduced viability, proliferation, and invasion of

cancer cells
[169]

EZH2-DNMT1 MiR-142-3p ZEB2 Nasopharyngeal
carcinoma

The EZH2-DNMT1 induces ZEB2 through miR-142-3p sponging,
resulting in an increase in cancer progression [380]

CircNUP214 MiR-145 ZEB2 Thyroid cancer CircNUP214 induces ZEB2 through miR-145 down-regulation to
enhance the malignancy and progression of cancer cells [381]

CircPCNXL2 MiR-153 ZEB2 Renal cancer
The circPCNXL2 stimulates the expression of ZEB2 through
miR-153 down-regulation to suppress the malignancy and

invasion of cancer cells
[201]

FOXP3 MiR-155 ZEB2 Human breast
cancer

FOXP3 and miR-155 synergistically down-regulate the
expression of ZEB2 to diminish the invasiveness of cancer cells [382]

Akt/ERK MiR-200c ZEB2 Gastric cancer
The inhibition of Akt/ERK enhances the expression of miR-200c

to suppress IGF-I-mediated ZEB2, leading to the reduced
invasion and EMT of cancer cells

[383]

β1 integrin TGF-β/miR-200 ZEB2 Triple negative
breast cancer

Enhancing the expression of β1 integrin reduces the metastasis of
cancer cells into lung. This is followed by disrupting

TFG−β/miR-200/ZEB2, elevating the E-cadherin levels, and
restoring the cohesion of cells

[384]

CircZFR MiR-377 ZEB2 Bladder cancer
Enhanced progression and malignancy of cancer cells result from

down-regulation of miR-377 by circZFR and subsequent
induction of ZEB2

[196]

Hsa-circ-0004771 MiR-653 ZEB2 Breast cancer

MiR-653 reduces the expression of ZEB2 and is associated with
desirable prognosis. Hsa-circ-0004771 diminishes miR-653

expression to induce ZEB2, leading to the inhibition of apoptosis
and enhanced migration and invasion of cancer cells

[197]
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7. Conclusions

In this article, we provided a comprehensive review about the relationship between miRs and
ZEB family in cancer cells and how this relationship affects the progression and metastasis of tumor
cells. After miRs discovery, an exponential amount of research has been performed to understand their
role in different biological processes such as cell differentiation, apoptosis, and migration. We typically
observe aberrant miR expression in cancer cells and restoring the normal expression of miRs may be
crucial in cancer therapy. It is also vital to explore the relevance of ZEB1 and ZEB2 proteins in cancer
therapy. It has been reported that ZEB proteins are able to enhance the proliferation and malignancy of
tumor cells. One of the most important pathways affected by ZEB proteins is the EMT mechanism.
It appears that induction of EMT by ZEB proteins not only enhances the progression and metastasis
of cancer cells, but also stimulates drug resistance. Therefore, revealing the underlying molecular
pathways involved in ZEB regulation can be beneficial for further studies in the field of cancer therapy
and elevating the efficacy of chemotherapy. In this review, we also detailed how and which miRs
affect ZEB proteins in various cancers. We consolidated the factors that may function as upstream
modulators to negatively affect miRs, leading to the induction of ZEB expression. As it is shown in
Tables 1–6, lncRNAs and circRNAs can act as oncogenic factors. These upstream mediators induce and
enhance the expression of ZEB1 and -2 through sponging their target miRs, resulting in an increase in
malignancy and invasion of tumor cells. Identification of these factors and further targeting of them
can significantly diminish the malignancy of tumor cells and pave the road for the effective cancer
therapy. Finally, we highlighted ZEB1’s role in immunosuppression. Through it, we identified a crucial
knowledge gap wherein the relationship between miRs, ZEB2, and immune cells in the cancer context
is still a mystery. In all, we dissected the different effects of miR on ZEB proteins, which may in turn
help us develop better treatment strategies in attenuating metastasis of cancer cells.
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finger E-box-binding homeobox; CZF, carboxy-terminal zinc finger cluster; CtBP, C-terminal binding protein; CRC,
colorectal cancer; DAXX, death domain-associated protein; ROCK2, Rho associated coiled-coil containing protein
kinase 2; NSCLC, non-small cell lung cancer; MTBP, MDM2 binding protein; IDO1, indoleamine-2,3-dioxygenase-1;
MMP, matrix metalloproteinase; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; ncRNAs, non-coding
RNAs; SnoRNAs, small nucleolar RNAs; 3′-UTR, 3′-untranslated region; mRNA, messenger RNA; pri-miR, primary
miR; SIRT1, sirtuin 1; FOXO3a, Forkhead box O3; NOB1, nin one binding protein; PD-L1, programmed death ligand
1; OSCC, oral squamous cell carcinoma; mTOR, mammalian target of rapamycin; lncRNAs, long non-coding RNAs;
ceRNA, competitive endogenous RNA; NEAT1, Nuclear Enriched Abundant Transcript 1; RCC, renal cell carcinoma;
HLA, human leukocyte antigen; HCP5, HLA complex 5; HOTTIP, HOXA distal transcript antisense RNA; α-SMA,
α-smooth muscle actin; circRNAs, circular RNAs; LUAD, lung adenocarcinoma; TNBC, triple negative breast
cancer; HCC, hepatocellular carcinoma; MDR, multidrug resistance; P-gp, P-glycoprotein; PTX, paclitaxel; YAP,
Yes-associated protein; PCAT1, prostate cancer-associated transcription 1; VEGF, vascular endothelial growth
factor; ARRDC3, arrestin domain containing 3; CD8+ TILs, CD8+ tumor infiltrating lymphocytes; DLBCL, diffuse
large B cell lymphoma.
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