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Alopecia areata (AA) is an autoimmune disease typified by nonscarring hair loss with a variable clinical course.
In this study, we conducted whole genome gene expression analysis of 96 human scalp skin biopsy specimens
from AA or normal control subjects. Based on gene expression profiling, samples formed distinct clusters based
on the presence or absence of disease as well as disease phenotype (patchy disease compared with alopecia
totalis or universalis). Differential gene expression analysis allowed us to robustly demonstrate graded immune
activity in samples of increasing phenotypic severity and generate a quantitative gene expression scoring
system that classified samples based on interferon and cytotoxic T lymphocyte immune signatures critical for
disease pathogenesis.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Alopecia areata (AA) is an autoimmune skin disease in which the
hair follicle is the target of immune attack. Patients characteristically
present with round or ovoid patches of hair loss usually on the scalp
that can spontaneously resolve, persist, or progress to involve the
scalp or the entire body (Gilhar et al., 2012). The threemajor phenotypic
variants of the disease are patchy-type AA (AAP), which is often
localized to small areas on the scalp or in the beard area, alopecia totalis
(AT), which involves the entire scalp, and alopecia universalis (AU),
which involves the entire body surface area. There are currently no
FDA approved drugs for AA. Treatment is often empiric and typically
involves observation, intralesional steroids, topical immunotherapy or
broad immunosuppressive treatments of variable efficacy. Themore se-
vere forms of the disease, AU and AT, are often recalcitrant to treatment.
Despite its high prevalence and the need for effective treatments, the
molecular and cellular effectors of AA have not been well studied. It is
currently unclear if distinct pathogenic mechanisms drive these more
severe forms of the disease, or whether those disease mechanisms are
exacerbated in AU and AT compared to AAP.
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Histologically, AA is characterized by an immune infiltrate centered
around the hair bulb. This infiltrate is made up of predominantly CD4
andCD8T cells (Ito et al., 2008), although other cell types, includingnat-
ural killer cells (Ito et al., 2008; Kaufman et al., 2010), macrophages
(Castellana et al., 2014), mast cells (Bertolini et al., 2014) and eosino-
phils (Elston et al., 1997) may also be present. Substantial differences
in histological appearance have not been described when comparing
AAP, AT, and AU samples, although others have cited that disease dura-
tion may impact the amount of peribulbar infiltrate, with more acute
cases being reported as having relatively more robust inflammation
and chronic cases having less (Whiting, 2003a).

Recent strides in the field have transformed our understanding of
disease pathogenesis, drug targets, and potential therapeutic solutions.
The results of our initial genome wide association study (GWAS)
(Petukhova et al., 2010) and, more recently, of a large GWAS meta-
analysis (Betz et al., 2015) have identified numerous loci that imply a
strong role for variants in genes that direct and influence immune
responses. Interestingly, almost all of the implicated immune genes
have been associated with other autoimmune diseases, including type
1 diabetes, rheumatoid arthritis, and celiac disease, lending further
support for the common-cause hypothesis of autoimmune diseases
(Gregersen and Olsson, 2009). Of particular note, single nucleotide
polymorphisms in the ULBP3 and ULBP6 genes confer an increased
risk for developing the disease and are uniquely associated with AA.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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The ULBP family of genes encodes proteins that serve as ligands for
NKG2D and, when expressed, mark a cell for immune targeting by nat-
ural killer cells or NKG2D-expressing CD8 T cells. These data led to the
recognition of NKG2D-bearing CD8 T cells in the peribulbar infiltrate
in skin sections of lesional scalp biopsy specimens of patients with AA
as well as in affected skin and skin-draining lymph nodes from the
C3H/HeJ mouse model of spontaneous AA (Petukhova et al., 2010;
Xing et al., 2014). Adoptive transfer of this population of cells from
C3H/HeJ mice with alopecia into unaffected C3H/HeJ mice led to the
induction of alopecia, substantiating a pivotal role for these effector
cells in the mouse AA model (Xing et al., 2014).

We previously identified prominent interferon (IFN) and common
gamma chain cytokine (γc) signatures in AA, both of which we postu-
lated contributed to disease pathogenesis (Xing et al., 2014). Based on
these findings, a therapeutic strategy based on inhibition of critical
members of a family of signaling molecules, Janus kinases (JAKs), was
found to be effective at treating AA in a mouse model of disease and a
small series of human patients. Gene expression profiling played a
critical role in our selection of small molecule JAK inhibitors for AA,
andwe reasoned that gene expression studies that include the different
AA phenotypes have the potential to provide additional insights into
novel therapeutic solutions as well as pathogenic mechanisms.

Here, we profiled scalp biopsy samples collected from a total of 96
patients with a range of AA phenotypes and normal control patients.
Patient samples were collected from the National Alopecia Areata
Registry sites across the United States after phenotypic classification
by dermatologists who specialize in hair disorders. Skin biopsy samples
were then interrogated using microarray-based gene expression analy-
sis to identify the AA-specific gene expression signature. We found a
striking level of immune activity in AT/AU samples by gene expression
analysis. Despite the lack of consistently effective treatments in AT
and AU, these data suggest that drugs that disrupt this immune activity
may be useful for therapeutic purposes. Furthermore, based on our data,
we created an Alopecia Areata Disease Severity Index (ALADIN), a gene
expression metric that effectively distinguishes AT/AU samples, AAP
samples, and normal control (NC) samples from each other. ALADIN
may be used to accurately track disease activity in patients undergoing
conventional or experimental treatments.

2. Materials and Methods

2.1. Experimental Design

The objective of this study was to identify immune and nonimmune
signaling pathways as well as biomarkers in the affected skin from
patients with AA. The overall design was to use whole genome based
gene expression techniques on skin samples from patients with AA of
variable severity and compare those with skin samples from healthy
controls. Sample collection, sample processing and data analysis are
described below.

2.2. Human Patient Demographics

Two independent datasets were collected from four National
Alopecia Areata Foundation (NAAF) registry sites. Our discovery dataset
consisted of samples from 63 patients (20 AAP, 20 AT/AU, and 23
normal controls). Our validation dataset was comprised of samples
from 33 patients (8 AAP, 12 AT/AU, and 13 Normal controls). A more
complete description of the datasets broken down by disease status,
gender, age, and NAAF registry site is provided in Supplemental Table 1.

2.3. Ethics Statement

All studies have been approved by the Institutional Review Boards at
the Columbia University Medical Center, the University of Minnesota,
the University of California, San Francisco, and the M.D. Anderson
Cancer Center and were conducted under the Declaration of Helsinki
principles. Informed written consent was received from participants
prior to inclusion in the study.

2.4. Human Tissue Sampling and Processing

Skin punch biopsy specimens were fixed in the PAXgene Tissue
Containers and shipped overnight to Columbia University. Samples
were bisected,with one half of the sample processed using the PAXgene
tissue miRNA kit to extract RNA. Library prep was performed for micro-
array analysis using Ovation RNA Amplification System V2 and Biotin
Encore kits (NuGen Technologies, Inc., San Carlos, CA). Samples were
subsequently hybridized to Human Genome U133 Plus 2.0 chips
(Affymetrix, Santa Clara, CA) and scanned at the Columbia University
Pathology Core or the Yale Center for Genome Analysis.

Microarray data were deposited in Gene Expression Omnibus,
accession GSE68801.

2.5. Analysis Packages

Quality control ofmicroarrayswasperformedusing the affyAnalysisQC
package from http://arrayanalysis.org/. Differential expression in
these studies was defined by an absolute fold change threshold of
1.5 with a Benjamini–Hochberg-corrected significance threshold of
0.05. Clustering and principal component analysis was done using
the modules provided in the Bioconductor R package. Network im-
ages were generated with Cytoscape.

2.6. Microarray Preprocessing and Quality Control

Microarray preprocessing was performed using BioConductor in
R. Preprocessing of the two datasets, discovery dataset (63 samples)
and the validation dataset (33 samples), were performed separately
using the same pipeline. Quality control was performed using the
affyanalysisQC package from http://arrayanalysis.org/. The discovery
dataset and the validation dataset were normalized separately using
GCRMA and MAS5. The Affymetrix HGU-133Plus2 array contains
54675 probe sets (PSIDs). Filtering was performed so that PSIDs that
were on the X or Y chromosome, that were Affymetrix control probe
sets, or that did not have Gene Symbol annotation were removed from
all arrays for further downstream analysis. For the 3D plot of the
ALADIN scores, all 96 samples fromboth datasetswere combined before
performing GCRMA normalization and correcting for batch effects.

2.7. Sample Filtering and Batch Correction

In order to perform analysis on the 63 AA lesional (both AT/AU and
AAP) and NC samples in the discovery data set, PSIDs were further
filtered to remove PSIDs that had not been called present on at least
one of the 63 arrays resulting in 36954 PSIDs. Correction for batch ef-
fects was performed using the implementation of the function ComBat
available in the sva package with gender and AA group (AT/AU, AAP,
and normal) used as covariates. No batch correction was required for
the validation set.

2.8. Differential Expression Analysis

Differential analysiswas performedon the batch correcteddiscovery
data set using linear models as implemented in the limma package
in Bioconductor (Smyth, 2004). Two-sample comparisons were
performed separately to identify PSIDs differentially expressed in AA
patients versus normal controls, in AAP patients versus normal controls,
and in AT/AU patients versus normal controls treating gender as a fixed
factor.

http://arrayanalysis.org
http://arrayanalysis.org
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2.9. Principal Component Analysis

Principal component analysis was performed on all 36954 PSIDs that
were used to perform differential expression analysis. The probability
density of the first two principal components was estimated for each
group (AT/AU, AAP, and NC) assuming a bivariate distribution.

2.10. Calculation of ALADIN Scores

The CTL, IFN andKRT ALADIN scoreswere calculated for each sample
as described previously (Xing et al., 2014). Briefly, z-scores are calculat-
ed for each PSID relative to the mean and standard deviation of normal
controls. Z-scores for each gene are obtained by averaging z-scores of
PSIDs mapping to that gene. Signature scores are then calculated aver-
ages of the z-scores for genes belonging to the corresponding signature.

2.11. Funding

This work was supported in part by US Public Health Service
National Institutes of Health NIAMS grants R01AR056016 (to AMC),
R21AR061881 (to AMC and RC), U01AR067173 (to AMC) and
P30AR044535 (the Columbia University Skin Disease Research
Center), as well as the Locks of Love Foundation and the Alopecia
Areata Initiative. JEC and JCC are supported by the T32GM082771
Medical Genetics Training Grant (issued to AMC). AJ is supported by a
NIAMS grant (K08AR069111), a Physician Scientist Career Develop-
ment Award from the Dermatology Foundation, the Louis V. Gerstner
Jr Scholars Program, and the Irving Scholars Program from the Irving In-
stitute for Clinical and Translational Research at the Columbia Universi-
ty Medical Center.

Additional Materials and Methods are presented in the Supplemental
Materials.

3. Results

3.1. AA Gene Expression Signatures

Gene expression profiling was performed on samples from 96
patients, divided into a discovery dataset of 63 patients and an external
validation dataset of 33 patients (for a more complete description refer
to Methods section and Supplemental Table 1). Microarray-based gene
expression analysis was conducted on the discovery dataset, consisting
of 20 AAP, 20 AT/AU, and 23 normal control scalp skin biopsy
specimens. Differentially expressed genes were identified based on
the comparison of AA samples versus normal controls. From this set of
analyses, a disease specific gene expression profile was generated,
based on differentially expressed genes selected with an absolute fold
change (FC) N1.5 and false discovery rate (FDR) b0.05. The AA-specific
disease signature was comprised of 1083 Affymetrix probes that
showed increased expression and 919 Affymetrix probes that showed
decreased expression in AA (Supplemental Table 2). In order to ensure
the robustness of the data from this initial set of samples, external vali-
dationwas performed using an additional 8 AAP, 12 AT/AU, and 13 nor-
mal control scalp skin biopsy specimens as a validation set.

Of note, genes associated with cell mediated cytotoxicity, including
PRF1 and several granzymes, as well as immune cell trafficking che-
mokine genes were among the top genes listed as showing increased
expression, while hair keratin associated genes and developmental
genes, such as DSMG4, FGF18, and GPRC5D, were among those
genes showing decreased expression. Patterns of gene expression
distinguished the phenotypic groups from each other, with normal con-
trols and AT/AU samples showing the greatest disparity (Fig. 1a).
Plotting the samples in a terrain expressionmap revealed three clusters
corresponding to healthy controls, AAP patients, and AT/AU patients
(Fig. 1b, Supplemental Table 3). These patient groups fell along a
near-linear path through the terrain map.
To more concisely represent this multidimensional data, we gener-
ated a single score evaluating the relative risk of any given sample
being AAP or AT/AU based on its location in this terrain. This score is a
scalar representation of normalized deviation that any given patient
has from an “unaffected” molecular state, based on a consensus of all
differentially expressed genes between AA and healthy controls (see
Materials and Methods section). The resulting score is bounded
between 0–10 (represented as the color bar in Fig. 1b), 10 representing
risk of maximal severity (AT/AU, red), and 0 representing minimal risk
of disease (healthy controls, white). AAP samples on the whole fell in
between these two extremes (blue). Control samples in the dataset
had a cohort median score of 1.08; AAP, a median of 3.83; and AT/AU,
a median of 7.26 (Fig. 1b box-and-whiskers plot). Both disease groups
were statistically significant from unaffected controls by nonparametric
statistics (p b 0.05), and AT/AU patients were additionally separable
from AAP patients (p b 0.05). The differentially expressed genes from
the discovery data set were able to distinguish the AA samples from
normal samples by hierarchical clustering in our validation set
(Supplemental Fig. 1). These data suggest the pathology of AA can
be expressed at the level of molecular gene expression, and that AAP
samples exhibit an AA-specific molecular state that is intermediate
between AT/AU and normal controls.

3.2. AT/AU Skin Samples Are Immunologically Active

The linear presentation of molecular classification between controls,
AAP, andAT/AU in global gene expression analyses, in combinationwith
the presence of immune-related genes in the disease signature, led us to
question whether the AT/AU samples were immunologically active.
Since AT/AU samples seemed to exhibit a more severe AA-specific
signature than those of AAP based on both the level of differential
expression and the number of differentially expressed genes, we sepa-
rately examined the gene expression profiles of AT/AU compared with
normal as well as that for AAP compared with healthy controls.The
AT/AU-specific disease signature, based on FC N1.5 and FDR b0.05,
was comprised of 2242 probesets with increased expression and 1651
probesets with decreased expression (Supplemental Table 4). The
AAP-specific disease signature, based on similar thresholds, exhibited
much lower numbers of differentially expressed genes, with only 416
probesets with increased expression and 550 probesets with decreased
expression (Supplemental Table 5). Comparison of theAT/AU- andAAP-
specific genes lists showed overlap of AAP-specific genes among the
two lists, with few AAP-specific genes not contained within the AT/
AU-specific gene list (Fig. 2a). These data indicate that the gene expres-
sion perturbations in AT/AU are more complex and more severe than
the AAP form of the disease.

Pathway analysiswas performed for signatures thatwere upregulat-
ed in either AAP or AT/AU samples (Supplemental Tables 6 and 7).
Interestingly, the shared set of pathways that were upregulated in
both AAP and AU/AT (Fig. 2b, c), including “Graft-versus-host disease,”
“Type I diabetes mellitus,” “Allograft rejection,” “Cell adhesion
molecules,” and “Antigen processing and presentation,” were made up
of antigen presentation genes, supporting the pathogenic theme of
loss of immune privilege of the hair follicle microenvironment and im-
mune activation (Chen et al., 2015) in AA. Interestingly, the “Chemokine
signaling pathway”was also found to be significantly upregulated, rais-
ing the possibility of targeting these intercellular trafficking molecules
for therapeutic purposes, as has been proposed for other autoimmune
skin diseases (Rashighi et al., 2014). These results indicate that the ma-
jority of the active immune pathways in AA are the same in the milder
as well as the more severe forms of the disease.

3.3. Infiltrate Gene Expression Signatures Correlate With AA Phenotype

The presence of immune-related marker genes in our gene expres-
sion array cohorts led us to interrogate whether or not these infiltrates



Fig. 1. Alopecia areata disease-specific signature. (a) Heat map of the 50 most
differentially expressed genes with increased expression and 50 most differentially
expressed genes with decreased expression within the AA-specific disease
signature among AT/AU, AAP, and NC samples in the training set. (b) Expression
terrain map of samples arrayed along the principal components of differential gene
expression. The dots represent the location of each sample in the expression space
(black = NC, blue = AAP, red = AT/AU), and the size of the peaks are generated
based on the number of samples in the region (more juxtaposed samples produce
higher, wider peaks). The principal component space can be condensed into a
single numeric score reflecting the risk of a sample being a control, AAP, or AT/AU
based on its location in the terrain space. This consensus score provides statistically
significant separation control, AAP, and AT/AU sample cohorts (box-and-whiskers
plot). Box denotes the interquartile range and median, whiskers denote the 5th and
95th percentiles, * indicates statistical significance against NC, † indicates statistical
significance versus AAP.
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could be detected directly in microarray analysis. The ability to detect
infiltrating populations would prove informative to understanding the
pathogenesis and characterization of AA. To identify infiltrating im-
mune cell signatures, we adopted unique gene expression signatures
defining each of several infiltrating immune cells from a work studying
infiltration in cancers (Bindea et al., 2013) and used this as our Immune
Gene Signature (IGS). This approach yielded gene markers for several
immune types including but not limited to B-cells, T-cells,macrophages,
natural killers, and mast cells. We built numeric relative measurements
of the relative infiltration of each of these tissue types as a function of
the expression of the corresponding IGS (Fig. 3a). Using this metric,
we were able to quantitate the relative infiltration of each immune tis-
sue on a patient-by-patient basis and test them for correlation with AA
severity (Supplemental Fig. 2). Of the infiltrates tested, only ranking of
CD8 T-cells and natural killer cells had sufficient power to segregate
NC from AAP or AT/AU. Ranking by CD8 activity produced a dose-
dependent separation between the three clinical presentations, signifi-
cantly separating the three populations (hashes represent the medians
of each cohort). NK-specific markers did not mirror the power of CD8 T
cell-specific markers, indicating that the correlation is not likely the re-
sult of NK infiltrates or shared NK/CD8 T cell genes.

Using the IGS metrics, we also estimated the overall infiltrate signal
within the AAP samples (Fig. 3b, left), and the AT/AU samples (Fig. 3b,
right). The overall estimated changes in infiltration of each immune tis-
sue type are also presented (Fig. 3b, chart). From the gene expression
data, we observed an estimated immune infiltrate burden of 0.8–1.4%,
correlating with increased clinical severity of AA. Concordantly, CD8+

infiltrates consisted of greater than 65% of the total infiltrate density
only in samples from AAP or AT/AU patients. The absolute change in
each immune tissue infiltrate across the three presentations is also
shown (Fig. 3c), indicating that only CD8+ infiltrates change significant-
ly across the three populations. These results indicate that although
there is some expression-based evidence for multiple infiltrating tissue
types, the most significantly abundant cell type associated with AA is
non-NK, CD8+ cells. In addition, we detected elevated levels of markers
associated with macrophages, total CD4+ T cells, CD4+ T cell subsets,
NK cells and B cells, though these represented minor fractions com-
pared to the CD8 T cell fraction.

Furthermore, we used the IGS scores to estimate the relative Th1
and Th2 fractions detected in patient samples (Fig. 3d). For each
patient (AA or unaffected control), we represented the Th load
within the sample biopsy as a ratio of Th1:Th2 signal, and observed
that AA patient samples exhibit a shift to higher Th1 ratios compared
to normal controls. The rank shift of Th1:Th2 associated with AA
presentation was statistically significant by the Mann–Whitney
U-test (p = 1.02 × 10−4) indicating that, on the whole, skin from
AA patients contains elevated levels of Th1 signatures relative to
Th2 signatures as compared with unaffected patients, though there
are AA patients with both Th1 and Th2 signatures.

3.4. ALADIN Scores Correlate With Disease Phenotype

One of the goals of this studywas to generate ametric that identified
the most prominent features of the AA disease signature that would
allow for a quantitative assessment of disease status. Weighted gene
co-expression analysis (WGCNA) of the genes differentially expressed
between AA and healthy controls revealed 20 clusters of co-expressed
genes (Fig. 4a). These gene sets represent co-expressedmodules and in-
dicate the possibility of co-regulation, shared biological function,
and/or shared pathways. For each of these modules we defined
color-coded eigengenes, or metagenes, using the first principal compo-
nent of the gene expression signature derived from the genes within
each module. Gene set enrichment analysis (GSEA) of these modules
with ranked lists of genes that were differentially expressed between
AA and NC cohorts, as well as tests of association between module
metagenes and disease phenotype revealed that the green and brown



Fig. 2. Increased gene expression complexity and sustained inflammation in alopecia totalis and universalis. (a) Venn diagram of differentially expressed gene probesets in AT/AU
compared with normal (“AT/AU”) and AAP compared with normal (“AAP”). Shown are the numbers of differentially expressed genes within each section of the Venn diagram. (b) List
of KEGG pathways shared between AT/AU versus normal controls and AAP versus normal controls. (c) Network map of KEGG pathways upregulated in AT/AU versus normal controls
(red), AAP versus normal controls (blue), or shared pathways in both AT/AU versus normal and AAP versus normal controls.
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modules are the most significantly associated with disease phenotype
(Fig. 4b, Supplemental Fig. 3a, b). These contain immune and immune
response signatures (green) and structural keratins (brown).

In our earlier work, we developed an original scoring system, the
Alopecia Areata Disease Activity Index (ALADIN), a three-dimensional
quantitative composite gene expression score, for potential use as a
biomarker for tracking disease severity and response to treatment
(Xing et al., 2014). The metric scores patients along a combination of
cytotoxic T lymphocyte infiltration (CTL), IFN-associated markers
(IFN), and a hair keratin panel (KRT). Interestingly, the CTL signature
contains the two genes, CD8A and PRF1, which are found in the CD8
T-cell signature referenced above (Fig. 3). Inspection of the components
of the green module revealed the presence of genes contained in both
the ALADIN CTL and IFN signatures, and the brown signature contained
the genes that made up the ALADIN KRT signature (Supplemental
Table 8). Statistically significant differences were found between AU/
AT, AAP, and normal control sample groups for all three scores (Supple-
mental Fig. 4). A three-dimensional plot of the ALADIN scores for the
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combined discovery and validation dataset of 96 AT/AU, AAP, and NC
samples showed that AT/AU samples clustered farthest away from NC
samples, with AAP samples positioned in an intermediate position be-
tween both of these sets (Fig. 4c). A subsequent GSEA showed statisti-
cally significant enrichment of the original ALADIN gene sets in both
AAP and AT/AU cohorts samples compared with normal controls (Sup-
plemental Fig. 3c).

Spurred by previous work that described decreased immune infil-
trates among skin samples from patients with chronic disease when
compared with those from patients with acute disease (Whiting,
2003a), we assessed whether or not the duration of disease influenced
the ALADIN score. Skin samples from AT/AU patients with 5 or more
years of disease exhibited statistically significant decreases in IFN and
CTL scores when compared with samples from AT/AU patients of
shorter duration (Fig. 4d). This relationship was not seen between
long- and short-duration AAP samples (Supplemental Fig. 5). These
data indicate that the ALADIN scoremaydistinguishAA forms that differ
in severity, and, further, that inflammatory and immune infiltrate scores
diminish among the more severe forms of AA over time.

4. Discussion

Here, we have utilized microarray based whole genome gene ex-
pression assays to generate new fundamental insights into the biology
of AA. Our work here includes the use of scalp skin biopsy specimens
from 60 patients with AA and 36 healthy controls. While other prior
studies using microarrays in human AA have been published by our
group and others (Xing et al., 2014; Carroll et al., 2002; Subramanya
et al., 2010; Suárez-Fariñas et al., 2015), here we studied a larger cohort
of subject samples and identify several critical features of disease
pathogenesis.

First, AT/AU exhibits a high level of immune activity compared with
normal controls and AAP samples. The notion held by some dermatolo-
gists that patients with longstanding AT/AU have lost the ability to
regrow hair likely stems from a historical difficulty in treating these
patients with previously available topical and oral medications
(Alkhalifah et al., 2010) and difficulty in identifying appreciable
numbers of rudimentary hairs in skin biopsy specimens of patients
with severe disease. However, our data challenge this idea by providing
evidence for sustained high levels of immunological activity in AT/AU
samples that is greater than that seen in AAP. This immune activity in
patients with AT/AU implies that a sufficiently strong immunosuppres-
sant or treatment targeting a pathway necessary for themaintenance of
the immune response may indeed be efficacious for these types of
patients. Indeed, reports exist of use of deep penetrating ultraviolet
light A treatment in combination with a photosensitizing agent can be
effective in severe forms of AA (Claudy and Gagnaire, 1983; Ito et al.,
2009). Furthermore, as supported by others (Whiting, 2003b), the im-
mune activity in AU/AT samples diminishes over time, although we
Fig. 3. Immune cell infiltrate gene expression signatures correlate with AA phenotype.
(a), Relative estimates of the indicated infiltrating immune cells on a patient-by-patient
basis based on consensus expression of corresponding immune markers (heatmap,
right). More intense red indicates increasing amounts of infiltrate. Patients are ranked
by CD8 infiltration. The box-and-whiskers plot reflects the distribution of the indicated
clinical presentations according to CD8 infiltration rank (lower rank indicates higher
levels of infiltration). Box denotes the interquartile range and median, whiskers denote
the 5th and 95th percentiles, * indicates statistical significance p = 0.005, ** indicates
p b 1 × 10−5. (b) Using the consensus expression, infiltration burden of the biopsy
samples is estimated for each presentation cohort, AAP = patchy, (left) AT/AU =
totalis/universalis (right), as well as the relative share of each immune tissue type in the
total infiltration density compared to unaffected controls (line chart). (c) Differences in
estimated infiltration of each indicated immune type expressed as a fraction of total
sample signal across NC, AAP, and AT/AU. (d) Using these derived immune scores, the
relative load of Th1 vs Th2 cells infiltrating in each patient sample biopsy can be
measured as a log-ratio (Th1:Th2). Positive values indicate greater levels of Th1, and
negative values indicate greater levels of Th2 signal. On the whole, AA patients (AA or
AT/AU) exhibit an overall increase in the Th1:Th2 log-ratio compared to unaffected
controls, p = 1.02 × 10−4 by U-test.



Fig. 4.ALADIN scores parallels disease phenotype. (a) Co-expression analysis of the genes differentially expressed between AA and healthy controls reveals 20modules of genes. (b) GSEA
of all 20 genesmodules for enrichment in significant differential expression between AA and controls reveals that the green and brownmodules aremost highly enriched in comparisons.
(c) The ALADIN score classifies patient samples in three dimensions integrating immune infiltration and structural changes reflected by gene expression to identify relative risk of AA
severity in patients (Black: NC, Green: AAP, Red: AT/AU). (d) CTL (top panel), IFN (middle panel), and KRT (bottom panel) signature scores from patients with AU/AT with respect to
disease duration.
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did not observe the same relationship among AAP samples. Additional-
ly, our recent mechanistic data have supported a role for Janus kinase-
mediated pathways in AA (Xing et al., 2014; Jabbari et al., 2015), and
several additional case reports have corroborated that small molecule
JAK inhibitors appear to be a promising class of drugs for AA, even in
cases of severe or widespread disease (Higgins et al., 2015; Pieri et al.,
2015; Craiglow and King, 2014). Of note, our analysis identified upreg-
ulation of the Jak-STAT pathway in AAP but not AU/AT samples, which
may be due to gene expression variance observed within the AU/AT
sample set.

Second, themolecular definition of AA supports a prominent role for
CD8 T cells in the pathogenesis of the human disease. Progressively
increasing gene expression signatures for CD8 T cells is seen when
comparing NC, AAP and AT/AU samples. Previous studies by our group
(Xing et al., 2014) and others (McElwee et al., 2005) have shown that
CD8 T cells are necessary and sufficient in a mouse model of AA, and
our prior GWAS study (Petukhova et al., 2010) implicated a role for
CD8 T cells, by virtue of expression of NKG2D and the association
found between AA and NKG2DL, in AA pathogenesis. The role of other
cell types, including NK cells that may play a regulatory role in AA, has
recently been assessed (Kaufman et al., 2010), and our data confirm
that NK cells are indeed associated with the presence of disease in AA.
Our data not only corroborate a role for CD8 T cells in the pathogenesis
of disease, but further draws a correlation between the level of CD8 T
cell density and disease severity/phenotype.

Third, the relative contribution of Th1 cells to disease pathogenesis
in AA appears to be greater than that for other T-helper subtypes. Our
data as well as work by others (Suárez-Fariñas et al., 2015) support
the notion that the T cell infiltrate is composed of a mixed population
of T helper cells. In fact, some samples in our set showed upregulation



247A. Jabbari et al. / EBioMedicine 7 (2016) 240–247
of Th1, Th2 and Th17 signatures simultaneously. However, our analysis
here indicates that a predominant Th1 signature is more often seen
among AA samples, and a Th1 signature is seen at a higher frequency
in AA skin samples than in the normal control samples. The interactions
and contributions of these separate T helper cell populations has yet to
be fully investigated, although our data would indicate that targeting
Th1 cells or cell signatures would likely be useful to a larger proportion
of AA patients.

Finally, our analysis of gene expression among samples from a range
of AA phenotypes led to the development of the ALADIN metric. We
have previously shown use of this tool in case reports describing treat-
ment of AA patients with JAK inhibitors (Xing et al., 2014; Jabbari et al.,
2015), and we have shown here the ability of this multifactorial tool at
distinguishing the milder AAP patient samples from the more severe
AU/AT phenotype. Future work will examine the utility of ALADIN in
the context of clinical trials for AA. For example, a set of biomarkers
from a baseline skin biopsy or a biopsy early after the initiation of a
particular treatment that could predict treatment response or, possibly
more importantly, failure, preventing unnecessary exposure to
potential side effects would indeed be a useful tool.

This study establishes a molecular definition of the AA specific
disease process in the skin and may be interrogated for signatures
corresponding to signaling mediators or cellular participants. These
data serve as a rich resource for investigators pursuing pathogenic
disease mechanisms and therapeutic targets in AA.
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