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Abstract

Lung cancer (LC) represents most of the cancer incidences in the world. There are many

types of LC, but Lung Adenocarcinoma (LUAD) is the most common type. Although RNA-

seq and microarray data provide a vast amount of gene expression data, most of the genes

are insignificant to clinical diagnosis. Feature selection (FS) techniques overcome the high

dimensionality and sparsity issues of the large-scale data. We propose a framework that

applies an ensemble of feature selection techniques to identify genes highly correlated to

LUAD. Utilizing LUAD RNA-seq data from the Cancer Genome Atlas (TCGA), we employed

mutual information (MI) and recursive feature elimination (RFE) feature selection techniques

along with support vector machine (SVM) classification model. We have also utilized Ran-

dom Forest (RF) as an embedded FS technique. The results were integrated and candidate

biomarker genes across all techniques were identified. The proposed framework has identi-

fied 12 potential biomarkers that are highly correlated with different LC types, especially

LUAD. A predictive model has been trained utilizing the identified biomarker expression pro-

filing and performance of 97.99% was achieved. In addition, upon performing differential

gene expression analysis, we could find that all 12 genes were significantly differentially

expressed between normal and LUAD tissues, and strongly correlated with LUAD according

to previous reports. We here propose that using multiple feature selection methods effec-

tively reduces the number of identified biomarkers and directly affects their biological

relevance.

Introduction

Detecting the most correlated genes to a specific disease has been a major computational prob-

lem. Standard statistical methods such as t-test, linear regression, or negative binomial distri-

bution are used to identify differentially expressed genes, providing a large number of

candidate genes [1–3]. However, only a few of these candidates contribute significantly to the
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pathology and response to treatment. Therefore, feature selection (FS) techniques have been

utilized to identify potential gene biomarkers whose expression profiling can help in pheno-

typic differentiation [4–8]. FS techniques are used to identify genes whose transcriptomic pro-

filing varies significantly across sample groups. Feature selection reduces the dimensionality of

the input data before constructing a predictive model without losing relevant information.

Additionally, it increases the speed of learning, facilitates generalization, and improves perfor-

mance [9]. Utilizing feature selection with large scale data such as RNA-seq allows important

feature extraction and overcomes the “curse of dimensionality” problem. The curse of

dimensionality appears when the number of data features increases, along with much smaller

data size, as in the RNA-seq data case. Although a higher number of features should allow

more information, practically, it includes more redundant and possibly noisy data. More com-

plex models are required to handle such high dimension data, which can lead to overfitting

[10–12]. Thus, employing multiple feature selection techniques effectively decreases the num-

ber of utilized features and identifies the most significant ones.

Different studies have utilized feature selection to detect the transcriptomic signature of dif-

ferent diseases. Huijuan et al. introduced a hybrid FS technique that combines both mutual

information maximization and adaptive genetic algorithm. DNA microarray data of six cancer

sets have been analyzed. The authors showed that utilizing multiple techniques increased clas-

sification accuracy and reduced feature dimensionality [4]. Tabl et al. used Chi-square and

Info-Gain along with a tree-based model to predict the 5-year survivability of breast cancer

patients [11]. Li et al. utilized the mutual information method and then the incremental feature

selection along with a support vector machine (SVM) classifier and selected 23 discriminative

genes for Osteoarthritis, where 97.1% accuracy was achieved [13]. Chen et al. utilized the

Monte-Carlo feature selection method with SVM classifier to identify gene expression signa-

tures in multiple types of neural stem cells [14] (the hybrid feature selection methods are

reviewed in [11]).

Developing a reliable computational approach to determine gene expression signature

improves the diagnosis of complex diseases, as a small number of correlated genes can be

exploited and further investigated in clinical settings. This is especially important for develop-

ing countries, where RNA-seq and transcriptome profiling of patients’ samples are not afford-

able to decide on the best therapeutic approach. Thus, analyzing a small set of candidate genes

will contribute to more accurate therapy prescription, in a cost-efficient manner.

In this article, we are proposing a framework where a combination of feature selection

methods and a prediction model are utilized to detect biomarker profiling that differentiates

between normal and lung adenocarcinoma cancer patients. We selected Lung cancer (LC) as it

is one of the most prevalent malignancies worldwide and the most common cause of global

cancer-associated mortality, with a five-year survival rate. Lung adenocarcinoma (LUAD) is a

subtype of lung cancer whose causes are still ambiguous. One of the possible causes might be

deficiencies in therapeutic methods and difficulties in early diagnosis. The early diagnosis of

cancer contributes to increasing the survival rate, which makes it important to create other

diagnostic tools for LUAD [15].

In an attempt to identify the most significantly correlated genes to LUAD, we utilized

mutual information (MI) [16] and recursive feature elimination (RFE) feature selection tech-

niques along with the SVM classification model [17]. In addition, we have also utilized Ran-

dom Forest (RF) as an embedded FS technique [17].

Our framework takes advantage of filter, wrapper, and embedded feature selection meth-

ods. As filter techniques focus mainly on the statistical characteristics of the input data, the fea-

tures are selected based on the correlation between the feature and the target class

independent of a classification model. MI was utilized to measure the relevance of the features
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to the classes and the redundancy among them, which reduces the number of highly correlated

features. However, it produces a relatively large number of features. Utilizing a wrapper-based

technique where MI was employed with SVM as a classification model significantly reduced

the selected features. In this case, the features are selected based on the SVM performance.

RFE is another well-known feature reduction technique widely used in machine learning to

reduce high dimensional data despite its high computational time [17–22]. Finally, Random

Forest (RF) is used as an embedded technique where feature selection is a part of the classifier

construction process. RF is not sensitive to outliers, it reduces feature correlations, but it is

prone to overfitting [23, 24]. All previous methods have been utilized to identify a specific sub-

set of features as candidate biomarkers. Utilizing multiple FS techniques maximizes their

advantages and alleviates their disadvantages. We hypothesize that consensus features among

all FS methods yield the most significant biomarkers.

Interestingly, we could observe noticeable variations in each technique’s candidate genes

but identifying the common candidates between all techniques yielded 12 genes that are

strongly correlated with LUAD, as illustrated later in the discussion section. DEseq2 [25] has

been utilized for results verification. It is a standard pipeline that is very commonly used by

biologists. Its results are reliable and robust to outliers [26, 27]. Upon performing differential

gene expression analysis using DEseq2, the 12 genes were found to be significantly differen-

tially expressed between LUAD and normal samples. Our predictive model trained on gene

biomarker profiling achieves an accuracy of 97.99% and is capable of identifying candidates

that are highly correlated to LUAD.

Results

A framework to identify genes highly correlated to LUAD

In this study, we propose a framework that applies three feature selection techniques to iden-

tify genes highly correlated to LUAD (Fig 1). The LUAD RNA-seq data was obtained from

The Cancer Genome Atlas (TCGA-LUAD). Each technique was utilized separately along with

SVM classification model (in case of MI and RFE), to obtain the key features with high diag-

nostic values. Then, the results were integrated and candidate biomarker genes across all tech-

niques were identified.

Twelve potential biomarker genes are identified by MI-SVM, RFE-SVM,

and random forest models

Mutual information selection is used to obtain the best subset of features that can generate the

highest accuracy score in differentiating between normal and LUAD/tumor samples. MI rank

Fig 1. An overview of our proposed framework.

https://doi.org/10.1371/journal.pone.0269126.g001
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the genes in the dataset from the most to the least correlated to the two classes (normal and

tumor). Utilizing the MI method, 45292 features (gene expression values) have been selected

and ranked according to its importance. As a filtering technique, the MI produced an enor-

mous number of features that did not minimize the feature space as expected.

According to the ranked feature list, we followed a wrapping method utilizing SVM. We

focused on the highest 1000 ranked features from the MI results. SVM was applied to consecu-

tive feature subsets starting with the highly ranked two features. The first 19 MI-ranked fea-

tures recorded the best weighted accuracy score of 98.64%. Fig 2A illustrates the accuracy

achieved by the SVM classifier along with the different feature sets. The highest accuracy was

achieved at 19 features, then a gradual decline happened with adding more features. The full

list of the 19 MI-SVM features is listed in (S1 Table).

RFE is a wrapper technique in which data is split continuously until a desired subset of fea-

tures is reached based on the chosen predictive model. We performed 1000 iterations to deter-

mine the best subset of features starting with one feature. The weighted accuracy score

achieved with the least number of features was 97.73%, utilizing 76 features. Fig 2B illustrates

the accuracy scores against the number of RFE-SVM features. The full list of the 76 candidate

biomarkers is illustrated in (S2 Table).

Random forest is an embedded FS technique, where both feature selection and classification

are performed together. In order to determine the best number of trees, we utilized different

Fig 2. The incremental feature selection curves for the MI-SVM, RFE-SVM, and random forest models. The

number of genes along with the corresponding SVM model weighted accuracy are shown (A and B) while the number

of trees versus the RF achieved accuracy is shown in (C). (A) The peak of the curve is achieved at 19 genes with an

accuracy of 98.64%. (B) The peak of the curve is achieved at 76 genes with an accuracy of 97.73%. (C) Utilizing 345

trees, the random forest model identified 1261 features and achieved an accuracy of 98.64%.

https://doi.org/10.1371/journal.pone.0269126.g002
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numbers of trees (up to1000 trees). Utilizing 345 trees, a performance of 98.64% was achieved.

The resulting incremental feature selection curve is illustrated in Fig 2C. The random forest

was generated using 1261 features, which are listed in (S3 Table). The different techniques

used were compared in terms of precision, recall, specificity, balanced accuracy, and F1-score

(Table 1). The Receiver Operating Characteristic (ROC) metric with stratified 5-fold cross-val-

idation has also been calculated (Fig 3). The results are comparable, although the set of bio-

marker genes identified through each method is not quite identical. Most of the testing results

of each feature selection method returned a high classification performance of over 93%. Spec-

ificity metric has ranged from 87% to 91%, indicating that the model had samples misclassified

as LUAD. This can be due to the small number of the normal samples.

The selected features reported by the MI-SVM, RFE-SVM, and RF were integrated as

shown in (Fig 4). Overall, 12 features are reported as common between all methods. However,

44 features were additionally reported as common between at least two of the FS techniques.

Table 1. A detailed evaluation table of MI-SVM, RFE-SVM, and RF models in terms of precision, recall, specific-

ity, F1 score, and the mean AUC.

Technique MI-SVM RFE-SVM RF

Number of Features 19 features 76 features 1261 features

Precision 0.9866 0.9778 0.9865

Recall (Sensitivity) 0.9864 0.9773 0.9864

Specificity 0.8773 0.9167 0.8773

Balanced Accuracy 0.9318 0.9470 0.9318

F1-Score 0.9859 0.9775 0.9859

Mean AUC 0.9940±0.0037 0.9880±0.0089 0.9949±0.0004

https://doi.org/10.1371/journal.pone.0269126.t001

Fig 3. ROC and AUC analysis for different feature selection techniques. (A) MI-SVM model. (B) RFE-SVM model.

(C) RF model.

https://doi.org/10.1371/journal.pone.0269126.g003
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The MI-SVM and RF have 18 common features, which represent most of the features gener-

ated from the MI-SVM algorithm.

Regarding the 76 RFE-SVM features, 12 features are common with MI-SVM while 50 are

common with RF features (Fig 4). As random forest has yielded the largest number of features,

It was expected to have more features in common with other methods. Utilizing multiple well-

known FS techniques maximizes the advantages of methods. The list of genes identified by all

three methods or at least by two of the methods is presented in Table 2.

To evaluate our candidate biomarkers reported by all techniques, an SVM model was con-

structed using only the 12 identified biomarker genes. The model achieved an accuracy score

of 0.9799± (0.0069) using stratified 5-fold cross-validation. Other evaluation measures have

also been computed (Table 3). The proposed model has achieved a mean AUC value of 0.9934

±0.0022 with stratified 5-fold cross-validation (Fig 5). Furthermore, another SVM classifica-

tion model was developed using the 56 features. This classifier achieved 97.27% accuracy. It is

clear that utilizing only 12 genes yields comparable results with individual FS methods, but

with a much smaller number of genes. Although Mutual information method performed well

with relatively a small number of features, utilizing multiple methods reduces the number of

candidate biomarkers with more biological relevance. An external dataset (GSE81809) was

used to evaluate the proposed model (Table 3). Overall, all evaluation metrics indicate higher

Fig 4. A Venn diagram illustrating the number of features of each model and the common features across all

techniques.

https://doi.org/10.1371/journal.pone.0269126.g004
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Table 2. List of features common between all selection techniques or common between at least two selection techniques.

Features common between all selection techniques Features common between at least two selection techniques

ADRB2 AC009093.3 CLDN18 LANCL1-AS1 SMAD6

AGER AC025048.1 CLEC4M LINC00656 SOX17

CAVIN2 AC104984.4 EPAS1 LINC00968 SPAAR

CLEC3B ADGRE3 ERCC6L NCAPGP2 SPOCK2

C10orf67 ADRB1 FCN3 NCKAP5 SSTR4

FABP4 ALAS2 FMO2 OTC TEK

FAM107A/DRR1 ANGPT4 GPM6A RGS9 TMEM100

LOC105376453 CAV1 GYPE RTKN2 TNNC1

RGCC CD300LG HBA2 S1PR1 TOP2A

SFTPC CD5L HBB SEMA3G VIPR1

SLC6A4 CHRM1 HBM SH3GL3 WNT3A

STX11

https://doi.org/10.1371/journal.pone.0269126.t002

Table 3. Evaluation statistics of the proposed model with the candidate biomarker using the testing samples and the external dataset.

Precision Recall (Sensitivity) Specificity Accuracy Balanced Accuracy F1-Score AUC

Proposed model (Testing) 0.9768 0.9773 0.8359 0.9799± 0.0069 0.9066 0.9765 0.9934±0.0022

Proposed model (External dataset) 0.9649 0.9629 0.9259 0.9629 0.9444 0.9623 1.0000

https://doi.org/10.1371/journal.pone.0269126.t003

Fig 5. ROC and AUC analysis. Using the proposed model of the 12 candidate biomarkers with stratified 5-fold cross-

validation.

https://doi.org/10.1371/journal.pone.0269126.g005
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performance with over 92%. Fig 6 illustrates the ROC analysis with AUC value of 1.0000 using

stratified 5-fold cross-validation.

To further support the output of our framework, we have developed a random labeled

model where the training set labels have been randomized. Five-fold cross-validation was con-

ducted where a balanced accuracy of 0.4990± 0.0020 was achieved. The mean AUC value of

0.5203± 0.0669 using 5-fold cross-validation has also been reported along with the ROC curves

(Fig 7). Moreover, we have generated 100 random labeled models. The mean balanced accu-

racy of the generated models was 0.5208. Fig 8 is a summary figure to illustrate the balanced

accuracy achieved by the random models.

The candidate genes identified by the feature selection techniques are

differentially expressed between normal and tumor samples

To confirm the output of our framework, we performed differential expression analysis using

DESeq2 [25]. We identified 5911 differential expressed genes (DEGs) between normal (N) and

tumor (T) samples (S4 Table). Among the identified DEGs, we found that the 12 common

genes obtained by the three different feature selection techniques are downregulated in tumor

samples; this was also evident upon plotting the normalized counts of normal versus tumor

samples (Fig 9). Similarly, upon plotting the normalized counts for the 44 genes identified by

at least two selection techniques, we could find a trend where the majority of the genes are

downregulated in tumors in comparison to normal samples. With the exception of TOP2A

and ERCC6L, which were upregulated in tumor samples (S4 Table and Figs 10–12).

Upon plotting heatmaps for the 12 common genes across all models (Fig 13) and the 44

genes common between at least two models (Fig 14), we could find that the tumor and normal

Fig 6. ROC and AUC validation of the proposed model using the external dataset (GSE81809).

https://doi.org/10.1371/journal.pone.0269126.g006
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samples appeared in separate clusters. This supports that our framework provides candidate

genes that are highly correlated to LUAD and that can significantly differentiate between nor-

mal and tumor samples.

Fig 7. ROC and AUC analysis for a randomized version of the proposed model.

https://doi.org/10.1371/journal.pone.0269126.g007

Fig 8. The balanced accuracy scores that were achieved by running 100 random labeled models. The X-axis is the

attempt number. Y-axis indicates the balanced accuracy score.

https://doi.org/10.1371/journal.pone.0269126.g008
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Discussion

Previous studies have employed feature selection and machine learning methods for cancer

diagnosis. For example, in [28], authors have used the same concept of overlapping feature

selection techniques to identify biomarkers between lung adenocarcinoma and lung squamous

cell carcinoma. Cai et al. [29] have focused on other significant types of lung cancer to identify

DNA methylation markers utilizing ensemble-based feature selection techniques. Ma et al.

[30] identified candidate biomarkers based on survival analysis data utilizing feature selection

and classification. In [31], different types of data have been utilized, such as copy number vari-

ation (CNV) data, single nucleotide polymorphism (SNP), along with RNA-seq data. In this

study, we applied a framework that combines feature selection methods and a prediction

model to detect biomarker genes that differentiate between LUAD and normal samples. Our

framework could identify 12 genes to be common between three different selection techniques.

In addition, 44 genes were identified as common between at least two different selection tech-

niques. We could further confirm the association of the 56 genes to LUAD via differential

expression analysis. They were all identified as DEGs between LUAD and normal samples.

Importantly, the vast majority of the 56 genes were previously correlated to LC in general or

LUAD in different studies.

To evaluate the diagnostic potential of the twelve identified biomarkers, we have performed

ROC curve analysis for each biomarker (Fig 15). All of the genes had areas under the curve

(AUC) of over 0.95, with AGER being the highest, which suggests its most significant

Fig 9. Boxplots representing the expression level of the 12 common candidate genes in LUAD patients in

comparison to normal samples. N represents normal tissues and T represents tumor tissues.

https://doi.org/10.1371/journal.pone.0269126.g009
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diagnostic potential in classifying LUAD. It has been shown that advanced glycosylation end-

product specific receptor (AGER) is downregulated according to the subsequent downregula-

tion of its regulator long non-coding RNA (lncAGER). Both AGER and lncAGER have an

antitumor response; they cause apoptosis induction, inhibition of cell migration, invasion, and

cell proliferation of the NSCLC cell line [32, 33]. Moreover, AGER has been reported to have a

strong correlation with the tumor stage and overall survival rate of LUAD patients. Therefore,

AGER is proposed to be a strong biomarker and prognostic agent for LUAD [33–35]. The

high polymorphism of AGER is also considered a biomarker in the early diagnosis of LC. Fur-

thermore, several genetic mutations in AGER are responsible for lung cancer development

[36]. Polymorphism in ADRB2/β2-adrenergic receptor is also associated with lung cancer in

the Chinese Han population [37].

We have repeated the same analysis using the external dataset GSE81089 for external vali-

dation to ensure that these results were reproducible. AUC and ROC were also used to analyze

the 12 genes in the validation dataset (Fig 15). Primarily consistent with our results, all genes

show AUC values well above 0.97.

In agreement with our results, we investigated the known association of our candidate

genes with lung cancer. previous reports could show that FAM107A/DRR1 expression is sig-

nificantly decreased in LUAD and non-small cell lung cancer (NSCLC) patients [34, 38].

CAVIN2 is also a tumor suppressor gene for NSCLC and its overexpression inhibits cancer

proliferation. In addition, CAVIN2 expression increases the sensitivity of lung cancer cells to

anticancer drugs [39]. SLC6A4 was also identified in a previous study as one of the most

Fig 10. Boxplots representing the expression level of the MI-RF common genes in LUAD patients in comparison

to normal samples. N represents normal tissues and T represents tumor tissues.

https://doi.org/10.1371/journal.pone.0269126.g010

PLOS ONE A feature selection framework to identify biomarkers for lung adenocarcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0269126 September 6, 2022 11 / 23

https://doi.org/10.1371/journal.pone.0269126.g010
https://doi.org/10.1371/journal.pone.0269126


downregulated genes in LC [40]. CLEC3B is also downregulated in many lung cancer types

(adenocarcinoma, squamous cell carcinoma, and large cell carcinoma) and its expression is

correlated with the inhibition of LC proliferation. Therefore, it is suggested that it might act as

a tumor suppressor gene for lung cancer. CLEC3B regulates immune infiltrating cells and

since its regulation occurs at the early stages of lung cancer, it was suggested that it plays an

important role in early prognosis [41]. RGCC was also shown to be downregulated in lung

cancer patients according to the differential gene expression analysis of three different datasets;

GSE18842, GSE19188, and GSE27262 [42]. STX11 and C10orf67 were downregulated in

NSCLC patients as identified by bioinformatics analysis of several GEO datasets. In squamous

cell lung carcinoma (SCC), ADRB2 was reported to be downregulated and its low levels were

associated with lower survival [43]. Another study identified ADRB2 to be dysregulated in

NSCLC [44].

In addition, SFTPC is one of the surfactant proteins in pneumocytes, which is essential for

surfactant regulation in normal lung tissue. Its deletion was detected in NSCLC samples [45].

Other contrary to the other genes, FABP4 was reported to be highly expressed in NSCLC and

it was associated with tumor node metastasis. It has been suggested as a lung cancer biomarker

genes and its high expression is correlated with better NSCLC prognosis [46]. For

LOC105376453, we did not find any reports about its association with lung cancer.

A large number of the 44 genes identified via at least two selection methods are also highly

correlated with the prognosis or tumorigenesis of LC. For example, FMO2 was suggested as a

Fig 11. Boxplots representing the expression level of the RFE-MI common genes in LUAD patients in comparison

to normal samples. N represents normal tissues and T represents tumor tissues.

https://doi.org/10.1371/journal.pone.0269126.g011
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Fig 12. Boxplots representing the expression level of the RFE-RF common genes in LUAD patients in comparison

to normal samples. N represents normal tissues and T represents tumor tissues.

https://doi.org/10.1371/journal.pone.0269126.g012

Fig 13. A heatmap representing the expression level of the 12 common candidate genes in LUAD patients in

comparison to normal samples. Red represents up-regulation and blue represents down-regulation.

https://doi.org/10.1371/journal.pone.0269126.g013
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tumor suppressor gene in LUAD [47]. SOX17 promoter is also highly methylated in NSCLC

patients and it has a strong correlation with the overall survival rate of NSCLC patients [48].

TNNC1 was also validated as a tumor suppressor, which is downregulated in LUAD patients.

Its low expression is strongly correlated with the invasiveness of LUAD cell lines and the

increasing mortality rate among LUAD patients [49]. SPOCK2 was recently revealed to be a

prognostic marker for LUAD. Low expression of SPOCK2 is correlated with a poor survival

rate of LUAD patients [50]. According to differential expression analysis of microarray data-

sets, FCN3 was proposed to be a prognostic marker of LUAD due to its downregulation in

tumors [51]. Moreover, VIPR1 was proposed as a prognostic marker for NSCLC. Its expres-

sion was downregulated in tumors, according to bioinformatics analysis and real-time PCR. In

addition, it has been shown that VIPR1 expression is inhibited in metastatic LC [52].

TMEM100 was also reported to be downregulated in NSCLC and lung cancer cell lines. It acts

as a tumor suppressor, where its knockout induces NSCLC proliferation and migration, and

its activity promotes apoptosis in A549 and H460 cells through inhibiting the PI3K/AKT sig-

naling pathway [53, 54]. CLDN18 was also proposed to be a tumor suppressor gene for LUAD.

It regulates various oncogenic pathways and suppresses multiple malignant phenotypes in
vitro. In addition, it inhibits tumor growth in vivo [55]. CAV1 is also highly correlated with the

overall survival rate of LUAD. Its overexpression significantly suppresses the proliferation of

LUAD cell lines; A549 and H157 [56]. GPM6A was suggested to be associated with apoptosis

in small cell lung cancer (SCLC) [57]. SH3GL3 was also suggested to be a tumor suppressor of

LC as its overexpression significantly suppresses cell proliferation and migration of LC cells.

Additionally, SH3GL3 is negatively associated with the survival rate of LC patients [58].

In agreement with our results, TOP2A was reported to be overexpressed in LUAD, and its

overexpression was correlated to LUAD progression. Results suggest that TOP2A act as a

Fig 14. A heatmap representing the expression level of all genes obtained by at least two models. Red represents

up-regulation and blue represents down-regulation.

https://doi.org/10.1371/journal.pone.0269126.g014
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prognostic biomarker for LUAD as cell proliferation, migration, and invasion are significantly

inhibited in A549 and GLC82 cells lacking TOP2A [59]. In disagreement with our findings,

RTKN2 gene was shown to be upregulated in NSCLC. Its knockout inhibits cell proliferation

of NSCLC cells and colony formation [60]. S1PR1 upregulation is also involved in various

Fig 15. ROC curve analysis demonstrates the discriminating potential for the identified biomarkers. X-axis is the

false positive rate (FPR). Y-axis indicates the true positive rate (TPR). Higher AUC suggests a higher discriminating

potential for the gene. (A) The proposed model. (B) External dataset.

https://doi.org/10.1371/journal.pone.0269126.g015
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tumorigenesis processes, cell proliferation, and invasion [61, 62]. Furthermore, EPAS1 is over-

expressed in PC14HM NSCLC cell line and by knocking it out, the proliferation of PC14HM

cells and the tumorigenesis were inhibited [63]. SMAD6 was reported to support the growth

and survival of lung cancer. Therefore, it was suggested to be a target for inactivation as a new

treatment approach [64]. The remaining genes; CD5L, WNT3A, CLEC4M, RGS9, SEMA3G,

ERCC6L were also highly correlated to tumors, but little or no evidence for association with

lung cancer is reported [65–70]. We believe further investigation can reveal strong connec-

tions, as interestingly the association of SH3GL3, TNNC1, SPOCK2, VIPR1, and RTKN2 with

LC was reported in very recent years [49, 50, 52, 58, 60].

In summary, we believe the combination of the three feature selection techniques provides

more reliable outcomes and could help in identifying novel biomarkers. Consequently,

improving the current diagnostic approaches and enabling better tailoring for precision medi-

cine. All 12 genes have a strong correlation with LC as well as a large number of the 44 genes.

All our candidate genes were downregulated in this study, with the exception of TOP2A and

ERCC6L. However, other studies reported the overexpression of some of the genes. This could

be owed to biological differences between the patients’ samples analyzed in this study and pre-

vious studies [71]. Analysis of cell lines versus a cohort of patients can also result in output var-

iability [72].

Overall, the consistency between the output of our framework, differential expression anal-

ysis, and previous reports gives confidence in our approach and supports the usage of the three

different feature selection techniques together to identify biomarkers, instead of relying on a

single selection method.

Methods

Data retrieval

LUAD RNA-seq data used in this study was obtained from The Cancer Genome Atlas

(TCGA). To eliminate any bias or distortion in the data, we only used normal and primary

tumor samples; no recurrent tumor samples. Moreover, only tumor samples with disease type

“adenomas and adenocarcinomas” were used. We used the raw transcriptome profiling data

(HTSeq–Counts). The used phenotypes were divided into two classes, which were “Solid Tis-

sue Normal” and “Primary Tumor”. The number of the normal samples and tumor samples

were 54 and 495, respectively with a total number of 549 samples. A total of 60,488 genes have

been included and analyzed.

We also retrieved another dataset of primary non-small cell lung cancer and their normal

tissues from GEO for external validation. Raw counts were retrieved under the accession num-

ber of GSE81089 [73] selecting only LUAD samples. The LUAD dataset consists of 54 samples;

36 tumor samples extracted from tumor and 19 normal samples. A representation for the data

cohort has been shown in Table 4.

Data preprocessing

Features were normalized to have zero mean and unit variance as follows: z ¼ x� u
s , where z is

the normalized expression value, x is the expression value of each gene, u is the mean of the

Table 4. A graphical overview of the data cohort.

Cancer Type Source Description Tumor samples Normal samples Total samples

LUAD TCGA Used for model establishment (Standard training and testing) 495 54 549

LUAD GEO (GSE81089) Used for model external validation (selecting only LUAD samples) 36 19 54

https://doi.org/10.1371/journal.pone.0269126.t004
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expression values across the gene samples, and s is its standard deviation [74–76]. Data was

split into 60% (329 samples) for training and 40% (220 samples) for testing.

Mutual information

Mutual information (MI) algorithm measures the relevance of the features to the classes and

the redundancy of the features with each other. It can measure the association of a random fea-

ture based on another. In case of genes, a higher mutual information value amongst two genes

means that those two genes are associated with each other in a non-random manner. MI was

modified to avoid the binning problem by using a k-neighbors estimator. The MI K-neighbors

method can be used to detect discrete classes (cancerous or non-cancerous) based on continu-

ous values (expression levels) [16].

The MI k-neighbors method was applied to our data with k = 3 and features were sorted

according to its MI feature importance values. Many features had very low or zero MI values.

Features with zero values were eliminated. The top 1000 features were evaluated iteratively

with SVM to decide the best subset of features.

Support vector machine

SVM is a supervised learning technique and is considered to be one of the powerful tools for

classification [77]. It identifies the decision boundary between the data as a hyperplane which

is designed to be as far as possible to the closest samples of each class; those samples are known

as support vectors [78]. For any dataset, where ðx1; y1Þ ! ðxn; ynÞ; xi 2 Rd and yi 2 ð� 1;þ1Þ.

X represents the feature set and Y represents the class labels. To obtain the maximum margin

hyperplane through training an SVM model, we seek to solve the following convex quadratic

programming problem [79]:

L að Þ ¼
Xn

i¼1

ai �
1

2

Xn

i:j

aiajyiykKðxi; xjÞ

Under the constraints

Xn

k¼1

akyk ¼ 0; ak � 0

Where n is the number of data points, α0s are the Lagrange multipliers, and K is the kernel func-

tion. We applied SVM with a linear kernel with features selected using MI and RFE methods

for our framework. All other parameters have been set to default.

Recursive feature elimination

Recursive feature elimination (RFE) is one of the commonly used wrapper-based FS tech-

niques. RFE is a greedy algorithm to find the best subset of features giving the highest perfor-

mance. It generates a subset of the features while keeping the best subset at each iteration. A

rank of all features based on their elimination order is then obtained. The elimination criterion

is based on the chosen predictive model. SVM with linear kernel have been used here as the

predictive model. The methodology of SVM-RFE was proven to be very efficient in feature

selection to eliminate redundant genes [17].

In our framework, a step has been set to 0.5. That means 50% of the features were elimi-

nated at each iteration. The algorithm splits the training data into two equal parts at each itera-

tion and keeps the part that outputs the higher score based on the SVM estimator. RFE has

been employed iteratively with the number of features ranges from (1–1000) to determine the
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best set of features that achieves the highest accuracy. Other parameters have been set to

default.

Random forest model

Unlike filter and wrapper-based techniques, embedded method selects significant features as

part of constructing the model. Random forest is constructed utilizing multiple decision trees

for prediction [80]. Classification and Regression Trees (CART) is utilized along with the bag-

ging technique [81]. As RF is built with many decision trees, each tree outputs a specific pre-

diction. The majority vote of the resulted predictions is taken into consideration. We have

utilized RF with a different number of decision trees (up t0 1000 trees) to identify the optimal

subset of features. Other parameters have been set to default.

Differential expression analysis and candidate genes visualization

Differential expression analysis was performed via DESeq2. Only solid tissue normal and

LUAD primary tumor samples were selected. The adjusted p-value (padj) and log fold change

(LFC) were utilized to detect the statistically significant DEGs with a threshold padj < 0.05

and LFC > 2. The normalized counts were implemented by estimateSizeFactors of DESeq2.

Visualization of boxplots and heatmaps were implemented using ggplots [82] and pheatmap

(https://cran.r-project.org/web/packages/pheatmap/index.html) packages in R.

Conclusion

Identifying gene expression signature that differentiates between tumor and normal samples

from differential expression analysis of RNA-seq data is a major challenge. The analysis reveals

a huge number of genes and thus, extracting the disease-associated genes from such data accu-

rately is a difficult task. Utilizing an ensemble of FS techniques has proven its robustness and

reliability in identifying accurate and biologically relevant biomarker genes. In our framework,

we utilized mutual information and recursive feature elimination methods along with the

SVM classifier model. We have also utilized random forest as an embedded FS technique. Our

framework has identified 12 candidate biomarkers across all methods where a previous associ-

ation with LC has been shown. The differential expression analysis also confirmed their dysre-

gulation in LUAD. We propose that our framework can be applied to different types of

cancers and other complex diseases to enable the identification of novel biomarkers. This is

especially important for developing countries, where narrowing down the candidate genes for

personalized assessment is needed to diagnose patients in a cost-effective manner. Such an

approach also fits well to population data, where identifying the most correlated genes in a spe-

cific population and investigating them further on an individual patient level would greatly

improve diagnosis and decrease disease burden.
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