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Abstract: Background: Helicobacter pylori transmission routes are not entirely elucidated. Since yeasts
are postulated to transmit this pathogen, this study aimed to detect and genotype intracellular
H. pylori harbored within vaginal yeast cells. Methods: A questionnaire was used to determine
risk factors of H. pylori infection. Samples were seeded on Sabouraud Dextrose Agar and horse
blood-supplemented Columbia agar. Isolated yeasts were identified using and observed by optical
microscopy searching for intra-yeast H. pylori. Total yeast DNA, from one random sample, was
extracted to search for H. pylori virulence genes by PCR and bacterial identification by sequencing.
Results: 43% of samples contained yeasts, mainly Candida albicans (91%). Microscopy detected bacteria
such as bodies and anti-H. pylori antibodies binding particles in 50% of the isolated yeasts. Total
DNA extracted showed that 50% of the isolated yeasts were positive for H. pylori 16S rDNA and the
sequence showed 99.8% similarity with H. pylori. In total, 32% of H. pylori DNA positive samples were
cagA+ vacAs1a vacAm1 dupA−. No relationship was observed between possible H. pylori infection risk
factors and vaginal yeasts harboring this bacterium. Conclusion: H. pylori having virulent genotypes
were detected within vaginal yeasts constituting a risk for vertical transmission of this pathogen.

Keywords: intracellular H. pylori; genotypes; C. albicans; transmission; vaginal discharge

1. Introduction

H. pylori, a Gram-negative bacterium infecting 50% of the world population, possesses
multiple virulence factors, such as proteins CagA, VacA and DupA [1–4], making it a
primary pathogen associated to various gastric pathologies including peptic ulcer, mucosa-
associated gastric lymphoma and gastric cancer [5]. This pathogen has also been associated
to extra-gastric pathologies, such as hyperemesis gravidarum, ischemic stroke, Alzheimer’s
disease, rosacea and iron deficiency anemia, Non-alcoholic fatty liver disease and open-
angle glaucoma [6–11].

The way in which H. pylori persists in the environment, as well as the factors facilitating
its entry into human gastric epithelial cells and its transmission mechanism from person to
person, remains unknown. The chronic nature of the infection produced by H. pylori, the
high prevalence of asymptomatic infected individuals, the difficulties to culture H. pylori
and the impossibility to culture it from some environments where it has been detected by
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molecular techniques have hindered the knowledge on how this bacterium is able to reach
the human stomach [12,13].

On the other hand, intracellular life of prokaryotes within eukaryotic cells is con-
sidered a major evolutionary phenomenon which led to the adaptation of prokaryotes
to a wide range of environmental niches. However, largely due to the inability to cul-
ture these intracellular bacteria, the details of this type of relationship have not been yet
elucidated [14,15].

H. pylori resides predominantly on the surface of gastric epithelial cells and in the
overlying mucus and only few H. pylori cells enter into host’s epithelial and immune
cells [16,17]. Microscopic observations have detected the presence of H. pylori within
vacuoles of epithelial cells, macrophages and dendritic cells [17–20]. Thus, H. pylori has
been described as a facultative intracellular bacterium which has evolved to make use
of vacuoles of eukaryotic cells as a protective niche, allowing it to multiply and persist
there during a long time [13,15,21]. Amoebae and yeasts have been reported as other
eukaryotic cells whose vacuoles are used by H. pylori as a protective niche. Yeasts are
highly sophisticated organisms with a remarkable ability to adapt to environmental stress
and to the antimicrobial activity of the host’s immune system [21–23]. Yeasts of the genus
Candida are commonly found in the skin and mucous membranes of humans, including
the gastric mucosa [23–25], while H. pylori is found in the human stomach and duodenum.
Therefore, both microorganisms are well adapted to the gastric environment [23,26,27].
The interaction of these microorganisms may have started a long time ago, leading to the
internalizing of H. pylori into vacuoles of yeasts as a prior adaptation to invade and persist
inside human immune and epithelial cells.

In Chile, the infection rate by H. pylori is high, starts at young ages and it has a
strong association with gastric cancer [28].There is solid evidence to support the view
that the principal reservoir of H. pylori are other humans and that the principal mode
of transmission is from person to person within the family group [29–31]. However, the
exact timing of bacterial transmission is unknown. Therefore, this work was aimed to
detect, identify and genotyping intracellular H. pylori within yeasts of vaginal origin in
term pregnant women and also to correlate this association with possible H. pylori infection
risk factors.

2. Materials and Methods
2.1. Ethical Considerations

This study was approved on July 2015 by the Scientific Ethical Committee of the
Concepción, Health Service, Chile under the code 06/15–22. The purpose of this study and
the sampling procedure were duly informed to the prospective participants. In addition,
women participating in this study were notified that their participation was voluntary and
that they could withdraw at any stage of it. Written informed consent was obtained from
all participants.

2.2. Patients

Samples were collected during the final stage of pregnancy from the posterior fornix
of 102 pregnant women being controlled at three state Family Health Centres (O’Higgins,
Tucapel and Dr. Víctor Manuel Fernández) at Concepción, Chile. Since patients were
randomly selected and it was unknown if they were infected with H. pylori or not, a
questionnaire was prepared to determine if women had risk factors or symptoms of
the infection with this pathogen. The questionnaire included the following questions:
Have you had previous spontaneous abortions? Do you or the father of your child have
received treatment against H. pylori? During pregnancy, have you been diagnosed as having
H. pylori? During pregnancy, have you received treatment against vaginal candidiasis? Do
you suffer some of the following pathologies: hyperemesis gravidarum, pre-eclampsia or
iron-deficiency anemia? Which of the following types of sex do you practice: vaginal sex,
oral sex, anal sex.
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2.3. Sample Processing

Samples were obtained, using a cotton swab, from the posterior fornix and trans-
ferred into tubes containing Stuart transportation medium (Deltalab, Barcelona, Spain) to
be transported to the Bacterial Pathogenicity Laboratory, University of Concepción, for
their analysis. Each sample was inoculated onto plates containing Sabouraud Dextrose
Agar (SDA) (Merck, Darmstadt, Germany) supplemented with chloramphenicol (OXOID,
Basingstoke, UK), following the directions of the manufacturer. The purpose of adding
chloramphenicol was to eliminate extracellular bacterial contamination, including H. pylori
sensitive to this antibiotic [32,33]. Samples were disseminated covering all the surface of the
plate using a swab and incubated at 37 ◦C for 24 h under aerobic conditions. Following in-
cubation, all colonies on the chloramphenicol supplemented SDA plates were Gram stained
to verify the presence of yeast cells and to confirm the absence of extracellular bacteria. In
order to decrease the risk of contamination, each primary culture was reseeded four times
in plates containing the same medium than the primary culture (chloramphenicol supple-
mented SDA) and incubated under the same conditions. Then, the yeasts isolated from
the vaginal samples were identified by means of the CHROMagar Candida medium (Difco,
Wokingham, UK) and the API Candida identification system (BIOMÉRIEUX, Craponne,
France) following the instructions of the manufacturers. In addition, a Gram staining was
performed to each reseeded colony to confirm the purity of the culture. Each sample was
also inoculated in Columbia agar (OXOID, Basingstoke, UK) supplemented with DENT
(OXOID, Basingstoke, UK) following the directions of the manufacturer to discard that
H. pylori could have been present in the vagina outside of yeasts. These samples were
incubated under microaerobic conditions (10% CO2) at 37 ◦C for 5 days.

2.4. Search for Bacteria-Like Bodies (BLBs) within Vaginal Yeasts

From all the pure cultures grown four times on plates containing SDA plus chlo-
ramphenicol, inocula were obtained from randomly chosen colonies and placed on slides
containing 20 µL of 0.9% saline solution. Then, coverslips were placed on the samples and
observed using an optical microscope (Leica, Wetzlar, Germany) equipped with a 100× oil
immersion objective lens and camera to search for the presence of BLBs.

2.5. Amplification of H. pylori Specific Genes from the DNA of Yeasts

DNA from vaginal yeasts and from control strains [H. pylori ATCC (American Type
Culture Collection) 43504 as positive control and C. albicas ATCC 90028 as negative control]
was extracted by means of the UltraClean Microbial DNA Isolation kit (M.O. BIO, Carlsbad,
CA, USA) following the instructions of the manufacturer. H. pylori genes were amplified
using the Sapphire-Amp Fast PCR Master Mix kit (TAKARA BIO INC, Otsu, Japan). For
each assay, 12.5 µL of Master Mix, 1 µL of primers specific for H. pylori genes (see Table 1),
1.5 µL of the DNA of the sample and 5.5 µL of PCR-grade water were added to obtain a
final volume of 25 µL of PCR mixture.

PCR conditions were as follows: initial denaturation at 94 ◦C/1 min, denaturation
temperature 98 ◦C/5 s, hybridization temperature for each primer as indicated in Table 1
and extension at 72 ◦C/40 s. Thirty cycles for each PCR reaction were done using an
Eppendorf thermocycler (Hauppauge, New York, NY, USA). Amplification of the genes
was confirmed after 2% agarose gel electrophoresis (Lonza, Walkersville, MD, USA) plus
1.6 µL RedGel (Biotium, San Francisco, CA, USA) run at 80 V for 90 min and the gels
were visualized under UV light using an Enduro model transilluminator (Labnet, Edison,
NJ, USA).

2.6. Detection of H. pylori by Immunofluorescence

In order to make sure that all possible extracellular bacteria were eliminated, yeasts
isolated from vaginal discharges were cultured four times in chloramphenicol supple-
mented SDA. The fourth sub-culture and controls (negative control Candida albicans ATCC
90028, positive control H. pylori 43504) were independently transferred to Eppendorf tubes
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containing 1 mL phosphate-buffered saline (PBS) 1× pH 7.4 and adjusted to a turbidity
similar to the pattern of a number 2 tube of the McFarland scale. Two hundred µL of
each sample were added to a well of a 96-wells plate and then 1 µL of 5 mg mL−1 flu-
orescein isothiocyanate (FITC)-labeled anti-H. pylori polyclonal IgG antibodies (Abcam,
Cambrige, UK) was added to each well and incubated for 1 h at room temperature in the
dark. Then, each sample was independently transferred to 1.5 mL Eppendorf tubes and
washed twice to eliminate unbound antibodies. This was accomplished adding 500 mL
PBS 1×, vortexing for 5 s and centrifuging at 10,000 rpm for 2 min. A total of 10 µL of
each sample were added to a slide and observed at a wavelength of 528 using a LSM780
NLO spectral confocal microscope (ZEISS, Berlin, Germany) achieving fluorescence with a
laser excitation at 488 nm and emission between 490–560 nm. Images were obtained using
differential interference contrast (DIC) microscopy (transmitted light images).

Table 1. Primers used for detecting and genotyping H. pylori contained within Candida yeasts.

Gene Region Sequence Tm ◦C Base Pairs
(amplicon) Reference

16S rRNA F-5′CTCGAGAGACTAAGCCCTCC-3′

R-5′ATTACTGACGCTGATGTGC-3′ 53 110 [5]

cagA F-5′GATAACAGGCAAGCTTTTGAGG-3′

R-5′CTGCAAAAGATTGTTTGGCAGA-3′ 55 349 [32]

vacA s1a F-5′-GTCAGCATCACACCGCAA-3′

R-5′-CTGCTTGAATGCGCCAAAC-3′ 55 190 [33]

vacA s1b F-5′AGCGCCATACCGCAAGAG-3′

R-5′-CTGCTTGAATGCGCCAAAC-3′ 55 187 [33]

vacA s2 F-5′-GCTAACACGCCAAATGATCC-3′

R-5′-CTGCTTGAATGCGCCAAAC-3′ 55 199 [33]

vacA m1 F-5′-GGTCAAAATGCGGTCATGG-3′

R-5′-CCATTGGTACCTGTAGAAAC-3′ 50 290 [33]

vacA m2 F-5′-GGAGCCCCAGGAAACATTG-3′

R-5′-CATAACTAGCGCCTTGCAC-3′ 55 352 [33]

dupA F-5′-ACAAGGACGATTGAGCGATGG-3′

R-5′-TGGCTAGTTTGAGGTCTTAGG-3′ 61 515 [5]

2.7. Amplification and Sequencing of 16S rDNA of H. pylori

From the samples confirmed, by microscopy and PCR amplification, to be positive
for intracellular H. pylori, one sample was randomly selected, and total DNA was ex-
tracted from yeasts using the UltraClean Microbial DNA Isolation kit (M.O. BIO, Carlsbad,
CA, USA) following the instructions of the manufacturer. The 16S rDNA was amplified
by PCR using universal bacterial primers 8F-(5′-AGTTTGATCCTGGCTCAG-3′), 1492R
(5′-ACCTTGTTACGACTT-3′). The amplified fragments were purified and sequenced by
Macrogen Inc. (Seoul, Korea). To determine the taxonomic allocation of the fragments
sequenced, their phylogenetic affiliation was analysed comparing the 16S rRNA gene se-
quence. Sequences were revised and corrected using Sequencer v4.7 software (Gene Codes
Corp, Ann Arbo, MI, USA). The sequences were added to the updated and prealigned 16S
rRNA gene database Silva (http://www.arb-silva.de/projects/living-tree/), compiling
all sequences of all type strains for which an entry of high quality was found [34]. The
sequences were aligned using the ARB software package (http://www.arb-home.de) [35]
and manually improved. The tree reconstruction was performed using the neighbor-joining
algorithm implemented in the ARB software package. The sequences were submitted to
GenBank with the following access number MT477178.

http://www.arb-silva.de/projects/living-tree/
http://www.arb-home.de
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2.8. Statistical Analysis

Results of qualitative variables were incorporated into a database and processed using
SPSS 24.0 software (IBM Company, Armonk, NY, USA). Levels of the categorical variables
were expressed by their frequencies and percentages. The chi-square test was used to
determine the relationship between categorical variables. A significance level of p < 0.05
was used.

3. Results
3.1. Patients

The age of women who accepted to participate in this study ranged between 14 and
44 years old (Table 2).

Table 2. Distribution and percentages of term pregnant women positive for vaginal intra-yeast
H. pylori according to age ranges.

Negative for Intrayeast H. pylori Positive for Intrayeast H. pylori

Age (years) % %

14–20 88% 12%
21–27 85% 15%
28–34 70% 30%
35–44 67% 33%

No significant difference was observed between the positivity for vaginal intrayeast H. pylori and the age ranges
of term pregnant women n (p = 0.2306).

The Family Health Centre. “Dr. Víctor Manuel Fernández” contributed the largest
percentage of samples positive for H. pylori containing yeasts (75%) (Table 3).

Table 3. Number of samples positive for yeasts in each one of the three Family Health Centers and
percentage of positive samples from the total number of positive samples.

Family Health Center Number of Vaginal
Discharge Samples

Percentage of Samples Positive
for Presence of Yeasts

O’Higgins 24 14% (6/44)
Tucapel 16 11% (5/44)

Dr. Víctor Manuel Fernández 62 75% (33/44)
Total 102 100%

Regarding the answers provided by the patients to the survey, none of the women re-
ported spontaneous abortions nor diagnosis of H. pylori infection, hyperemesis gravidarum,
pre-eclampsia or iron-deficiency anemia. Regarding the diagnosis of vaginal candidiasis
during pregnancy, 14% of the women participating in the study reported to had been
diagnosed and treated against this infection; nevertheless, none of them reported to have
received treatment for mycotic vulvovaginitis during the last month or being treated with
an antimycotic at the moment of sampling.

3.2. Isolation and Identification of Yeasts and H. pylori

From the 102 samples of vaginal discharge obtained from term pregnant women at
the three health centers, 44 of them were positive for yeasts. According to the growth in
CHROMagar and the identification by API, the 44 samples positive for yeast included
C. albicans (40 isolates, 91%), C. glabrata (3 isolates, 7%) and C. tropicalis (1 isolate, 2%). All
samples of vaginal discharge cultured in Columbia agar were negative for the growth of
H. pylori.
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3.3. Detection of BLBs and H. pylori by Optical Microscopy

Observations using optical microscopy showed the presence of BLBs in 22 of the
44 vaginal discharges positive for yeasts. The movement of the BLBs was restricted to the
vacuolar space of yeasts (Figure 1).
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Confocal fluorescence microscopy, using FITC-labeled anti-H. pylori antibodies, showed the 
presence of intracellular H. pylori in 50% of the 44 vaginal discharge samples of pregnant women 
positive for yeasts (Figure 2). 

Figure 1. Wet mounts (objective lens magnification 100×) of yeast cells obtained from colonies
cultured on chloramphenicol-supplemented Sabouraud Dextrose Agar. (A) C. albicans ATCC 90028
strain (negative control) (objective lens magnification 100×). (B) C. albicans isolated from a vaginal
discharge sample of a term pregnant woman showing the presence of bacteria-like bodies (BLBs)
within vacuoles of yeast. Red arrows indicate BLBs, while black arrows indicate nuclei of yeast
cells. Micrograph B is a representative image of one of the triplicates of one of the vaginal discharge
samples positive for the presence of intra-yeast bacteria-like bodies.

Confocal fluorescence microscopy, using FITC-labeled anti-H. pylori antibodies, showed
the presence of intracellular H. pylori in 50% of the 44 vaginal discharge samples of pregnant
women positive for yeasts (Figure 2).

1 
 

 

Figure 2. Immunofluorescence assay using fluorescein isothiocyanate (FITC)-labeled anti-H. pylori IgG polyclonal antibodies.
(A) bright field microscopy of C. albicans ATCC 90028 strain (negative control). (B) C. albicans ATCC 90028 strain (negative
control) showing the absence of fluorescence. (C) H. pylori ATCC 43504 strain (positive control) showing fluorescence. (D)
fluorescent intracellular H. pylori within yeast cells isolated from the vaginal discharge sample, cultured in Sabouraud agar
supplemented with chloramphenicol, of a term pregnant woman. Micrograph D is a representative image of one of the
triplicates of one of the vaginal discharge samples positive for the presence of intra-yeast H. pylori.



Microorganisms 2021, 9, 131 7 of 15

The 22 samples positive for FITC-labeled antibodies were the same samples positive
for the presence of BLBs. Therefore, the term BLBs will be hereafter replaced by H. pylori
throughout the text. In addition, it was possible to observe bacteria moving within the
yeasts (Figure 3).
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Figure 3. Movement of H. pylori within yeasts of vaginal discharge origin. Confocal microscopy images taken 3 s apart
using a Zeiss LSM780 NLO confocal microscope. (A–F) show the movement of H. pylori (arrows) inside the vacuole of
a yeast cell. Light green color observed in the background represent remnants of fluorescein isothiocyanate (FITC). This
figure is representative of images of one of the triplicates of one of the vaginal discharge samples positive for the presence
of intra-yeast H. pylori.

3.4. Relationship of Intracellular H. pylori with Age or Sexual Practices of Participants

Among the yeasts isolated, 33% of them were obtained from pregnant women within
the 35–44 years age range. No significant differences in the frequency of intracellular
H. pylori harboring yeasts were found among the different age groups (Table 2). Regarding
a possible relationship between sexual practices and the percentage of women positive
for H. pylori harboring yeasts, after comparing the distribution and frequency percent-
ages the p value was above the significance limit, indicating that, at least in this study,
no relationship was found between the percentage of women positive for intracellular
H. pylori harboring yeasts and sexual practices (Table 4). Regarding the remaining ques-
tions answered by the patients, their answers were no and there was no correlation with
the presence or absence of intracellular H. pylori.

Table 4. Distribution and percentage of term pregnant women positive for yeasts harboring H. pylori
cells according to sexual practices.

Women Negative for
Intrayeast H. pylori

Women Positive for
Intrayeast H. pylori

Sexual Practice Answer n % n % p Value

Anal sex No 73 78% 21 22% 0.5159
Yes 7 88% 1 13%

Oral sex No 68 77% 20 23% 0.4757
Yes 12 86% 2 14%

n corresponds to the number of women and % corresponds to the percentage of women for each answer.

3.5. Amplification of H. pylori Specific Genes in Yeasts

Of the 44 positive samples for yeasts, 22 of them (50%) were positive for the amplifica-
tion of the H. pylori 16S rRNA gene (Figure 4).
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Figure 4. Agarose gel electrophoresis to detect the PCR amplification of the 16S rRNA gene of
H. pylori (expected size 100 pb) from the DNA of yeast cells from vaginal discharges of term pregnant
women. Lane M: molecular weight markers. Lane C+: DNA extracted from H. pylori ATCC 43504
strain (positive control). Lane C−: DNA extracted from C. albicans ATCC 90028 strain (negative
control). Lane B: blank (PCR grade water) Lanes 1–11 (A) and 12–22 (B) DNA extracted from yeasts
harboring bacteria-like bodies obtained from the vaginal discharge of term pregnant women.

Only yeast strains harboring BLBs (H. pylori) were positive for the amplification of the
H. pylori 16S rRNA gene (Figure 5).
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Figure 5. Agarose gel electrophoresis to detect the PCR amplification of the 16S rRNA gene of
H. pylori (expected size 100 pb) from the DNA of yeast cells from vaginal discharges of term pregnant
women. Lane M: molecular weight markers. Lane C+: DNA extracted from H. pylori ATCC 43504
strain (positive control). Lane C−: DNA extracted from C. albicans ATCC 90028 strain (negative
control). Lane B: blank (PCR grade water) Lanes 2, 4, 5, 10, 11, 13 and 15 correspond to yeasts
strains free of bacteria-like bodies and did not amplified the gene. Lanes 1, 3, 6, 7, 8, 9, 12, 14 and 16
correspond to yeasts strains containing bacteria-like bodies and they did amplify the gene.

It is noteworthy to emphasize that samples positive for the amplification of this
gene coincided with those samples which were positive for the observation of BLBs and
fluorescent intracellular H. pylori. Among the 22 samples positive for the H. pylori 16S
rRNA gene, 14/22 (64%) of them were positive for the cagA gene, one of the major virulence
markers of H. pylori (Figure 6), no sample amplified for the detection of the gene dupA.
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In addition, 20/22 (90%) of the PCR products of the samples amplified the signal
region s1a, coinciding with the positive control H. pylori ATCC 43504 strain (Figure 7).
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Figure 7. Agarose gel electrophoresis to detect the PCR amplification of the signal region s1a of vacA
gene of H. pylori (expected size 190 pb) from the DNA of yeast cells from vaginal discharges of term
pregnant women. Lane C+: DNA extracted from H. pylori ATCC 43504 strain (positive control). Lane
C−: DNA extracted from C. albicans ATCC 90028 strain (negative control). Lane B: blank (PCR grade
water) Lanes 1–11 (A) and 12–22 (B) DNA extracted from yeasts obtained from the vaginal discharge
of term pregnant women.
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Alleles vacAs1b and vacAs2 were not detected by PCR In relation to the middle region
of the gene vacA, 9/22 (40%) samples amplified for the region m1 All profiles obtained are
shown in Table 5.

Table 5. Frequency and percentage of genotypes of vaginal intrayeast H. pylori cells according to the
amplification of the virulence genes cagA, vacA and dupA.

Genotype Frequency Percentage (%)

cagA+, vacAs1a/m1, dupA− 7 32
cagA+, vacAs1a, dupA− 5 23
cagA+-, vacA−, dupA− 1 5
cagA+, vacAm1, dupA− 1 5
cagA−, vacAs1a, dupA− 8 35

Total 22 100

In order to check the taxonomic allocation of the bacterial strains isolated from the
yeasts of vaginal origin, we studied the phylogenetic affiliation based on 16S rRNA gene
sequence comparisons. The closest GenBank matches for 16S rDNA sequences revealed
that the strains showed a high degree of similarity (99.8%) with sequences of H. pylori
available at the GenBank database. The phylogenetic tree reconstruction performed using
the neighbor-joining algorithm, affiliated LVRM-53 (GenBank MT477178) to the genus
Helicobacter sensu stricto (Figure 8).
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4. Discussion

Due to its high prevalence and associated pathologies, H. pylori is the subject of
detailed studies. Nevertheless, the manner in which it disseminates is not yet fully un-
derstood [36–40]. So far, H. pylori genes have been amplified from different samples of
human origin, such as oral plaque, feces, nasal secretions, lacrimal fluid and saliva, the
oral cavity being considered one of the main sources of infection [41,42]. Besides having
been detected in human samples, this bacterium has also been isolated from fruits and
vegetables, processed foods, such as hamburgers and ground meat and from different
water sources. Presently, the most accepted transmission routes for this bacterium are
oral-oral, gastro-oral and oral-fecal [1,4,12,43–45].

In developing countries, H. pylori infection occurs early in life, showing the highest
infection rates before 10 years of age. Nevertheless, the age of highest susceptibility in
infants remains unknown [46], making it necessary to elaborate prevention strategies for
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children for which it is required to investigate all the possible transmission routes of this
bacterium. It is widely accepted that person-to-person transmission occurs, the intra-family
transmission being the most frequent one, and the mother, given her close contact with
all members of the family, must be considered an important risk factor [12,13]. Besides,
there is evidence showing that the vertical transmission can play an important role in the
early infection of infants and newborns with H. pylori, it being possible to acquire this
intracellular pathogen by means of yeasts during the passage through the birth canal [30].

Regarding the results reported in the present study, the largest percentage of the
vaginal discharge samples was obtained at the “Dr. Víctor Manuel Fernández” Family
Health Centre. This health centre provides health care to a large number of pregnant
women residing in the city of Concepción and its surroundings because it also receives
women from nearby rural areas. For this same reason, this centre also contributed with a
large percentage of the samples positive for yeasts from term pregnant women. Most of
pregnant women who participated in the study were in the age range of 21–34 years. This
result is in agreement with that reported by the Program of Integral Health of Adolescents
and Young People in Chile, indicating that the largest number of pregnancies in this country
occurs in this age range [47].

There is evidence that H. pylori infection during pregnancy is associated to extra-
gastric pathologies, such as hyperemesis gravidarum, pre-eclampsia or iron-deficiency
anemia [48–51].

For this reason, we attempted to determine if the presence of vaginal yeasts harbor-
ing H. pylori in term pregnant women caused in them the extra-gastric symptomatology
associated to this pathogen. Nevertheless, none of the participants of this study reported
to suffer any of the above-mentioned pathologies during their pregnancies and stated
not to be infected with H. pylori. Therefore, the present study was unable to determine
that the presence of H. pylori harboring intravaginal yeasts was related to the extra-gastric
symptomatology caused by this bacterium.

One of the questions we asked ourselves when doing this study was how does
intracellular H. pylori harbored in yeasts reach the vagina? The literature report evidences
that these two microorganisms have been detected in the same locations of the human body,
such as mouth and stomach, and both can also be detected in human faeces, implying that
both travel through the intestine [52–56]. It is also well known that microorganisms of the
intestinal microbiota reach the vagina, ascending because the anatomy of women is such
that the vagina and the anus are in close proximity [57]; perhaps this may be the possible
answer to our question. On the other hand, since the oral cavity is considered an important
source of infection and it is also a habitat for yeasts and H. pylori, and since the literature
also postulates that H. pylori infection could be acquired by sexual practices [58,59], we
considered the possibility that sexual practices may also play an important role to allow
the arrival of H. pylori harbouring yeasts to the vagina. Nevertheless, in accordance with
the data from our survey, sexual practices reported by pregnant women have no influence
on the presence of vaginal intra-yeast H. pylori (anal sex p = 0.5159, oral sex p = 0.4757).

Regarding the isolation of H. pylori from the vaginal discharge samples, all Columbia
agar cultures were negative for the growth of this bacterium. These results are consistent
with the unsuccessful attempts so far reported in the literature to isolate this pathogen
from the vaginal cavity [60].

For example, Siavoshi et al. (2013) [30] reported the presence of H. pylori in vaginal
yeasts by optical microscopy and amplified its genes, confirming that this bacterium is
capable of harboring within yeasts [30]. Thus, it can be postulated that H. pylori may not
reside extracellularly in the vagina and that it requires to harbor itself within yeast cells to
remain viable in the vaginal environment.

The genotypes of H. pylori isolated in the present study, based on the amplification of
virulence genes, varied. It must be emphasized that, among the bacterial profiles found
in our vaginal discharge samples, a high percentage (32%) corresponded to the genotype
cagA+, vacAs1a/m1, dupA−, which, in accordance with the literature, is associated to cases
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of gastric cancer [32,33,61]. It was also detected that the amplification of vacA gene regions
provided results not described in previous studies [31,33] including strains which did not
amplified any of the alleles codifying the medial region (m1 y m2), while others did not
amplify the signal region (s1a, s1b or s2). To the best of our knowledge, there is no scientific
literature explaining the causes which can influence this phenomenon in H. pylori. However,
it has been observed that Legionella pneumophila, a bacterium pathogenic for humans which
invades free living amoebas, is capable of modifying its genetic material after gaining
access into the protozoa [62]. This may also be the case when H. pylori enters into yeasts.
It has been reported that the vacA gene shows polymorphism in its medial, intermediate
and signal regions, which vary depending on H. pylori strains [63] and that a defect in one
of these regions may be an impediment for the bacterial strain to induce vacuolization
in the infected cell [33,62–64]. In this sense, it is worthy to emphasize that the VacA
protein plays an important role in the survival of H. pylori in human gastric cells because
it alters endosomal traffic and promotes the accumulation of non-functional lysosomes
and autophagosomes avoiding the elimination of this pathogen [65–68]. Since further
knowledge on this subject is still necessary, further research will allow us to ascertain the
functionality of the VacA protein variations present in the strains isolated in this study.

The phenotypic and biochemical identification of yeasts of vaginal origin harboring
intracellular H. pylori in term pregnant women showed that 91% of the yeast-positive
discharge samples contained C. albicans. The other two yeast species isolated also belonged
to the Candida genus, being C. glabrata (7%) and C. tropicalis (2%). These results are com-
parable to those reported by Siavoshi et al. (2013) [30], who indicated that C. albicans was
the vaginal yeast in which intracellular H. pylori was most frequently found (80%) but
they did not identify Candida not albicans [30]. These results, altogether with the report
of Sanchez-Alonzo et al. (2020) [33], in which it was demonstrated that H. pylori under
pH stressing conditions harbors within C. albicans, support the hypothesis that yeasts
belonging to the genus Candida can be included among the yeasts capable of protecting or
serving as a vehicle for H. pylori [33].

It has been proposed that the vacuole of yeasts provides elements useful as nutrients
for H. pylori, a proposal presently supported by numerous studies showing that H. pylori, as
well as other bacteria, may remain viable within the vacuole of yeasts belonging to various
genera [69–71]. Moreover, it was recently shown that stressing factors, such as inanition,
may cause the exit of viable bacteria of the Staphylococcus genus from yeasts [72].

5. Conclusions

From the results of this study and that of Siavoshi et al. [30] associated to those of
Matamala-Valdés [30], showing the presence of H. pylori within yeast cells isolated from
the oral cavity of newborns, it can be suggested that H. pylori can, in fact, invade vaginal
yeasts and allow the vertical transmission of this pathogen during birth.
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