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Abstract: Tissue-nonspecific alkaline phosphatase (TNAP) is known to be involved in the degrada-
tion of extracellular ATP via the hydrolysis of pyrophosphate (PPi). We investigated, using three
different computational methods, namely molecular docking, thermodynamic integration (TI) and
conventional molecular dynamics (MD), whether TNAP may also be involved in the utilization of β,γ-
modified ATP analogues. For that, we analyzed the interaction of bisphosphonates with this enzyme
and evaluated the obtained structures using in silico studies. Complexes formed between pyrophos-
phate, hypophosphate, imidodiphosphate, methylenediphosphonic acid monothiopyrophosphate,
alendronate, pamidronate and zoledronate with TNAP were generated and analyzed based on ligand
docking, molecular dynamics and thermodynamic integration. The obtained results indicate that
all selected ligands show high affinity toward this enzyme. The forming complexes are stabilized
through hydrogen bonds, electrostatic interactions and van der Waals forces. Short- and middle-term
molecular dynamics simulations yielded very similar affinity results and confirmed the stability of
the protein and its complexes. The results suggest that certain effectors may have a significant impact
on the enzyme, changing its properties.

Keywords: TNAP; alkaline phosphatase; nucleotide analogues; bisphosphonate derivatives; molecu-
lar docking; molecular dynamics; thermodynamic integration; multiple sequence alignment

1. Introduction

Human tissue-nonspecific alkaline phosphatase (h-TNAP) is a homodimeric, membrane-
located enzyme that may exist in exocytic soluble form in extracellular space, albeit it has
been also identified in mitochondria [1]. The presence of this enzyme has been detected
in numerous tissues, including the kidney, liver and bones, as well as the central nervous
system [2,3]. Numerous studies indicate its involvement in calcification disorders [4], neu-
ronal development, synaptic function [5], interactions within the brain–immune axis [3,6],
thermogenesis [1] and cancer.

TNAP is primarily known to hydrolyze pyrophosphate (PPi) to inorganic phosphate
(Pi) and therefore regulate the extracellular PPi/Pi ratio. Through participation in the
degradation of extracellular nucleotides, this enzyme is involved in the regulation of
purinergic signaling [5]. The activity of nucleotides and their analogues in the extracellular
space may be regulated by the presence and activity of the ectonucleotidases. Nucleotide
hydrolysis causes an increased level of degradation products, such as nucleosides and
pyrophosphate, as well as their analogues in the case of modified nucleotides. Such
microenvironmental changes could have serious biological consequences [5,7]. Therefore,
during the design of new nucleotides analogues, it is important to ascertain their possible
interactions with potential targets.

Biomolecules 2021, 11, 1104. https://doi.org/10.3390/biom11081104 https://www.mdpi.com/journal/biomolecules

https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0001-6862-116X
https://orcid.org/0000-0001-9924-0503
https://doi.org/10.3390/biom11081104
https://doi.org/10.3390/biom11081104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biom11081104
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom11081104?type=check_update&version=2


Biomolecules 2021, 11, 1104 2 of 16

Some of the natural and synthetic TNAP substrates have already been discovered.
Beside the pyrophosphate, identified TNAP substrates are also pyridoxal-5′-phosphate
(active form of vitamin B6), phosphocreatine and adenosine phosphates [1,5]. Apart from
the possible intracellular substrates, due to the involvement of TNAP in the development
of various pathological states, new effective TNAP inhibitors are constantly being designed
and synthesized [8–13].

In the current work, we analyze the possible interaction of TNAP with pyrophosphate
analogues containing sulfur, nitrogen, carbon atoms or hypophosphoric moiety instead of
bridging oxygen atoms. In order to verify the hypothesis that atom bridging phosphates
are fundamental for forming a complex with TNAP, we decided to perform a thorough
in silico study of pyrophosphate and its selected derivatives: monothiopyrophosphate,
imidodiphosphate, methylenediphosphonic acid and hypophosphate and three carbon
bridge-based drugs, alendronic, pamidronic and zoledronic acids. The methods that
were applied in order to address the hypothesis included homology modeling, molecular
docking and molecular dynamics simulations, both conventional and alchemical ones.
Homology modeling was applied in order to acquire the spatial structure of the protein,
as it was not available in the PDB database, and it was based on the known structure of
another enzyme, placental alkaline phosphatase. Following homology modeling, molecular
docking of the selected phosphates was performed in order to investigate the protein’s
possible binding sites and obtain the initial binding affinities for each ligand. The struc-
tures obtained through molecular docking are the starting point for alchemical (docked
pyrophosphate as the starting structure for TI mutation into other ligands) and canonical
molecular dynamics refining simulations (docked ligands as separate starting structures
for MM-GBSA). The results of these refined simulations were subsequently processed
in order to obtain ligand–enzyme free energy binding. Among the variety of thermo-
dynamic potentials, arguably the most important is the free energy G changes, which
carry the information about whether the reaction considered is a spontaneous process
or not. Of important epistemological value are not only the simple changes in the free
energy for a given system during the course of a certain reaction (∆G) but also changes in
the free energy between different systems provided the considered reaction remains the
same (∆∆G). Knowledge of the ∆∆G value allows differentiating, e.g., between ligands
of different binding strength to the active center of an enzyme. This binding capability
is of crucial interest here. There are a number of methods for obtaining (∆)∆G values
in a particular system and the reaction of interest, e.g., perturbation or nonequilibrium
methods and their more detailed descriptions are contained in the abundant literature, see
for example [14]. In this work, however, among other methods, we decided to implement
thermodynamic integration (TI). TI—first proposed by Kirkwood in the 1930s [15] and
despite having various difficulties [16,17]—remains to this day one of the most robust and
widely used methods for the accurate calculation of differences in the free energy value of
a system. The main assumption underlying the method is the possibility of a continuous
transition between the free energy surface (FES) basin of one well-defined system (state A)
to another one of a different well-defined system (state B). Assuming that the Hamiltonian
of the system in states A and B can be described by HA(p,q,λ) and HB(p,q,λ), respectively,
where the variables are the atomic linear momenta p and positions q, and λ is an artificial,
the coupling parameter added in order to enable integration along the particular path of
interest HA(λ = 0)→HB(λ = 1) in the following Equation (1) holds:

∆G =
∫ λ=1

λ=0
〈∂H(p, q, λ)

∂λ
〉

λ
dλ (1)

Most importantly, as the free energy G is a state function, in order to be able to calculate
its difference between two particular states of interest, the path connecting their respective
basins does not need to be physically but only computationally realizable and integrable
along the limits of integration. Practically, the integration is performed numerically, along
a set of several discrete states (“windows”)—each with its own, fractional value of λ. To
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obtain a sufficiently accurate description of relative ∆∆G changes in our work, we decided
to perform a set of such unphysical (so called alchemical) free energy calculations for
a system consisting of various organophosphorus ligands bound to the active center of
TNAP. Therefore, the aforementioned ∆G (Equation (1)) can be understood as a difference
of binding ability to the protein binding cavity between various ligands (∆∆Gbind). The
differences in relative binding free energy were calculated with TI, assuming that ligands
undergo alchemical interchange into one another, i.e., individual (groups of) atoms are
computationally interchanged, and λ is the parameter determining the degree of the
artificial replacement between states A and B that are understood as containing different
ligands in the active center.

An analysis of the formed complexes using one of the end-point free energy methods
based on the final state of the system—molecular mechanics generalized Born surface area
(MM-GBSA)—was also performed. This method is based on the difference between the
thermodynamic potential values of a ligand-bound and ligand-free protein in an implicit
solvent environment. In general, it can be described using the following Equation (2):

∆Gbind = Gcomplex − Gprotein − Gligand = ∆EMM + ∆Gsolv − T∆S (2)

The algorithm applied for these calculations takes into consideration the change in
the internal energy and electrostatic energies (∆Gint and ∆Gele, which create the ∆GMM
term), solvation energy ∆Gsol and the conformational entropy of the ligand when binding
to the receptor. In addition, the algorithm can also yield the contribution of each residue in
the protein of interest to the binding of the ligand that facilitates the influence of the point
mutations on binding affinity. Through canonical molecular dynamics simulations, we
observe the evolution within the selected time through a numerical solution of Newton’s
equation of motion, with forces and potential energies calculated using parameterized force
fields. Corrections related both to the solvation enthalpy and to the conformational entropic
contributions are calculated by treating the solvent as a continuous medium—this later
becomes relevant in light of our results (see Molecular Dynamics and MM/GBSA Section).

The aim of this project is to investigate the influence of the chemical modification of
the interphosphate atom of the pyrophosphate ligand on binding to TNAP using three
completely different techniques ranging from the most rudimentary (molecular docking)
through to those of medium sophistication (MM/GBSA) to the most strict ones (TI) and
to discuss the possible outcomes of such modification regarding the enzyme activity, as
well as assessing the reliability and validity of those approaches in the context of our
objectives’ references.

2. Materials and Methods
2.1. The Structure Preparation

The structure of the protein was built using homology modeling. HHpred toolkit [18]
was used for finding the homologue of the enzyme. As the closest relative, placental
alkaline phosphatase was proposed by the algorithm (PDB entry: 3MK1), with an iden-
tity of 57% yielded by T-Coffee MSA analysis [19]. Subsequently, the spatial structure
of TNAP was built using Modeller software [20], followed by its minimization using
UCSF Chimera software [21] and structure validation via SAVES6.0 and ProSA server
functionalities [22–24] (Figure 1).

The structures of alendronic (CID: 2088), pamidronic (CID: 4674) and zoledronic (CID:
68470), as well as pyrophosphoric acid (CID: 4995), were downloaded from the PubChem
database. The pyrophosphoric acid structure was used as a template for building hypophos-
phoric, methylenediphosphonic, monothiopyrophosphoric and imidobisphosphoric acids.
Molecules were subsequently minimized using the general amber force field (GAFF) in the
Avogadro 2 suite.
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2.3. Conventional Molecular Dynamics and Postprocessing 
In each case, the protocol described by [27] was followed for the molecular dynamics 

simulation. However, it was modified by adding three additional 100 ns simulations of 
the apo-protein and each protein–ligand complex to validate the results of the shorter 
simulations. For the selected drugs, the analysis was limited to only 100 ns simulations. 
All calculations were carried out using the AMBER18 suite [28]. The validation of the sim-
ulations, performed using CPPTRAJ [29], was carried out through the radius of gyration 
(Rg), the root mean square deviation (RMSD) of the protein backbone and ligand and the 
solvent accessible surface area (SASA) of the ligand throughout the simulation. The anal-
ysis was further extended with DSSP [23,30] for the identification of residues contributing 

Figure 1. Spatial structure of TNAP, based on PLAP analogue, with enlarged binding cavity. Natural substrate, pyrophos-
phate, is bound to an enzyme after molecular docking.

Molecular docking consisted of the following steps: (1) searching the space for a
potential binding site, including the whole protein structure, and (2) thorough molecular
docking with selected flexible side chains within 5 Å of the docked ligand. The protein was
converted using the pdb2pqr toolkit [25] in order to protonate the structure accordingly to
a pH of 8.0. Ligands were loaded as mol2 files into AutoDockTools, where they had partial
charges assigned and converted into pdbqt files.

2.2. Molecular Docking

The docking of molecules was performed using the AutoDockVina module [26]. The
docking grid, in search of a binding cavity, was set to X = 44.7, Y = 20.8 and Z = 10.8 with
sizes 51.8, 67.0 and 64.0, respectively. After identification of the binding cavity, the grid for
the flexible docking study was set to X = 39.9, Y = 14.8 and Z = 4.1 with 23.1, 21.5 and 21.7,
respectively. Side chains within 5 Å from the center of the grid were marked as flexible. The
number of binding modes was set to 5000, the exhaustiveness of the search set to maximum
(100) and energy range to 10 kcal/mol, and, for calculation, the 14 CPU cores were used.

2.3. Conventional Molecular Dynamics and Postprocessing

In each case, the protocol described by [27] was followed for the molecular dynamics
simulation. However, it was modified by adding three additional 100 ns simulations of
the apo-protein and each protein–ligand complex to validate the results of the shorter
simulations. For the selected drugs, the analysis was limited to only 100 ns simulations.
All calculations were carried out using the AMBER18 suite [28]. The validation of the
simulations, performed using CPPTRAJ [29], was carried out through the radius of gyration
(Rg), the root mean square deviation (RMSD) of the protein backbone and ligand and the
solvent accessible surface area (SASA) of the ligand throughout the simulation. The analysis
was further extended with DSSP [23,30] for the identification of residues contributing to
the secondary structure. In order to calculate the relative binding affinity of the selected
ligands, molecular mechanics generalized Born surface area (MM/GBSA) calculations [31]
were performed, based on each 10th frame of the merged production trajectories, with
the generalized born model (igb) set to 5 and a salt concentration of 0.15 M. For shorter
simulations, we also applied pairwise decomposition to investigate the residue contribution
to the complex formation.
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2.4. Thermodynamic Integration

The thermodynamic integration (TI) technique, in order to estimate ∆∆G differences
between the natural substrate and other phosphate derivatives, was applied. The prepa-
ration of simulations consisted of a proper selection of softcore atoms (Table 1), initial
minimization and the heating and equilibration of both ligand and complex systems, fol-
lowed by further preparation of input topologies and coordinates. Minimization consisted
of 10,000 steps, including 5000 conjugate gradient ones, with restraints put on the hydro-
gen atoms and the solvent of 5 Å2, followed by 500 ps heating from 50 K to 300 K and
equilibrated for 20 ns, with timestep 1 fs.

Table 1. Binding affinities of selected ligands toward TNAP. All ∆G and ∆∆G values are in [kcal/mol].

Method Molecular Docking Molecular Dynamics

Average Free Energy
of Binding ∆G

Lowest Free Energy
of Binding ∆G

TI ∆∆G in Relation
to Pyrophosphate

Total Relative ∆G
10 × 10 ns Analysis

Total Relative ∆G
3 × 100 ns Analysis

1 −4.3 ± 1.9 −7.7 − −306 ± 51 −309 ± 54
2 −4.3 ± 1.9 −7.7 −225.8 ± 31 −478 ± 83 −462 ± 24
3 −4.1 ± 1.8 −7.6 −47.8 ± 36 −626 ±77 −627 ± 101
4 −4.3 ± 1.8 −7.8 −7.2 ± 3 −209 ± 26 −205 ± 24
5 −4.2 ± 1.8 −7.3 − −149 ± 27 −126 ±26
6 −6.8 ± 0.4 7.6 −112.8 ± 161.3 − −60 ± 69
7 −6.8 ± 0.4 7.7 −198.1 ± 171.8 − −164 ± 27
8 −7.0 ± 0.3 7.8 −57.3 ± 5.5 − −153 ± 20

Free energy simulations were based on the transformation of the molecules using a
set of 12 windows, set exponentially from 0 to 1, as suggested by [32] and the calculation
of the Van der Waals forces contribution. Each window consisted of a 5 ns production
simulation, during which the algorithm calculated the binding energy differences. This part
differs from the previous configuration by removing SHAKE between bonds containing
one common and one unique atom, resulting in reducing the timestep to 1 fs.

2.5. Calculation Platform

Initial calculations were performed using the Intel® CoreTM i9-9900KF CPU @ 3.60 GHz
× 16 with 32 GB @ 2666 MHz with GeForce RTX 2070 SUPER/PCIe/SSE2 (CBMM PAS,
Lodz, Poland) on the Ubuntu 20.04 Focal Fossa and subsequently using the PL-GRID
infrastructure (Polish Grid Infrastructure PL-Grid, Poland).

3. Results
3.1. Structure Validation

The homologue of TNAP, build based on PLAP analogue (Figure 1), passed the tests
with an overall quality factor of 78.91 for the ERRAT analysis and an overall Z-score of
−8.29. The Ramachandran plot suggests that while the majority of residues are placed
in favored regions, some are not, with few amino acids present in disallowed regions.
However, such a situation is hard to evade in the case of modeling that is based on a
homologue with just 57% identity (Figures S1–S3 in Supplementary Information).

3.2. Molecular Dynamics Simulations Validation

The thermodynamic integration analysis was validated through the investigation of
changes in density in time during the equilibration phase (Figures S4–S10), which is the
starting point for production simulations. In case of canonical molecular dynamics, each
run was subjected to an extended analysis in order to check system stability. Radius of gyra-
tion plots (Figures S11 and S12) indicate high stability, about 23 Å, with low fluctuations up
to 0.5 Å, with one exception for alendronate, up to 1 Å. Backbone RMSD indicates stability
of the structures, regardless of the ligand bound, with an average of 3 Å, but with notable
fluctuations (about 0.8 Å, Figures S13 and S14). Worth mentioning is an influence on the
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average RMSD of the terminal, flexible α-helix formed by residues 1–30 (Figure S19). There
is a discrepancy between the RMSD profile of the homologue presented in this study and
by [13,33]; however, it is worth mentioning that in each case the models generated differed
from one another to some degree. Among the selected ligands: monothiopyrophosphate,
imidodiphosphate, methylenediphosphonic acid and hypophosphate and the three carbon
bridge-based drugs, alendronic, pamidronic and zoledronic acids (Figure 2), the most
stable and tightly bound structures are imidodiphosphate and monothiopyrophosphate
with an RMSD of about 0.2 Å (obtained during short-term runs, Figure S17) and about 1 Å
(obtained in long-term runs, Figure S18). Nevertheless, these two structures practically
did not fluctuate significantly during all the calculations, and this is also observable in the
solvent accessible surface area analysis, which yields about 150 Å2 of the area accessible
for the solvent in each case. However, these time long-term simulations yielded more
stable results. The lowest value was obtained for pamidronate, about 50 Å2 (Figures S15
and S16); the structure also shows that the ligand is positioned deep inside the binding
cavity. The ligand RMSD profile also differs from previous studies [13,33]. However, in the
aforementioned publications, triazole, pyrazole and thiazole derivatives were investigated.
They are also notably larger and carry no formal charge.
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3.3. Molecular Docking and Dynamic’s Results

The obtained results suggest that the binding affinities of phosphate derivatives
are similar in the case of very closely related compounds such as pyrophosphate and its
derivatives; however, sole molecular docking may not be enough to be accurate. In contrast,
molecular dynamics simulations can exclude such problems [34]. Table 1 shows a summary
of all obtained binding affinities using each technique investigated in the present study.

The complexes obtained through molecular docking, being also starting structures for
further molecular dynamics simulations, show very high similarity of not only ∆Gs but also
with ligand placement within the binding cavity. The most important factors of the complex
formation were Arg151 and Arg167, capable of forming strong electrostatic interactions and
hydrogen bonds and Zn2+ cation, which can interact with negatively charged phosphate
groups (Figure 3). PLIP algorithm detected multiple interactions between two arginine
residues and a ligand in all cases except for hypophosphate. In the case of bisphosphonate,
the ligands were complexed by one of the zinc ions present within 4 Å.
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3.4. Thermodynamic Integration

To obtain a sufficiently accurate description of relative ∆∆G changes in our work, we
decided to perform a set of alchemical free energy calculations for a system consisting of
various organophosphorus ligands bound to the TNAP active center. With this approach,
the aforementioned ∆G from Equation (1) can be applied as a difference of binding ability
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to the protein binding cavity between various ligands (∆∆Gbind). The pyrophosphate
from molecular docking was adopted as the starting point. Thermodynamic integration
indicates significant influence of the modification of the bridging atom on free energy and
the refined results obtained through molecular docking. Softcore atoms being interchanged
into one another are presented in Table 2.

Table 2. Atoms selected as softcores for thermodynamic integration.

Ligand Ligand Softcore Pyrophosphate Softcore

2 S O
3 N1,H1 O
4 C1,H11,H12 O
5 PB,O1B,O2G,O3B P,O,O1,O2,O3
6 C1,N1,C2,C3,C4,O7,HC21,HC31,HC41,H7,H11,H12,H21,H32,H41 O
7 @C1,N1,C2,C3,O7,HC21,HC31,H7,H21,H32,H11,H12 O
8 @C1,O7,H08,C2,H02,H03,N1,C3,H04,C5,H07,N2,C4,H05 O

The most notable difference can be observed in the case of thiophosphate derivatives,
which change significantly in terms of atom radius, electronegativity and electron number.
The results suggest that all derivatives bind stronger to TNAP than the natural substrate,
pyrophosphate, whereas monothiopyrophosphate binds significantly stronger to the en-
zyme than all other ligands, including the drugs (compounds 6–8). Another significant,
albeit much smaller, difference between the pyrophosphate and its counterpart is found for
imidodiphosphate, yielding ∆∆G of−47.8 kcal/mol. An interesting result was obtained for
the methylene derivative, as it suggests that there is almost no difference in ∆∆G between
this derivative and the pyrophosphate. However, the investigated drugs (compounds 6–8),
based on carbon with hydroxyl group and another depending on the drug, bind notably
better than the methylene derivative. Zoledronic acid yielded ∆∆G slightly lower than
imidodiphosphate, while alendronic and pamidronic acids give ∆∆G between the one for
imidodiphosphate and monothiopyrophosphate. The integration curve in Figure 4 reflects
the differences between each ligand. In the case of TI, we ran calculations for estimating
the ∆∆G difference between pyro- and hypo-phosphate (data not shown); however, it
was impossible to obtain meaningful results. This is due to the limitations in the compu-
tational algorithm to bind two existent phosphate groups while removing the bridging
atom. Therefore, it was necessary not only to set the oxygen atom as being substituted but
also the whole second phosphate group, as shown in Table 2. Due to this unwanted but
necessary modification in the procedure, the system was not stable during the calculations
and crashed at λ close to both limits and yielded physically impossible results (∆∆G of
about 4500 kcal). Due to this impediment, we were forced to resort to another method in
order to assess the binding ability of hypophosphate.

3.5. Molecular Dynamics and MM/GBSA

Interactions investigated by TI were thus subsequently repeated and extended through
computationally less demanding MM/GBSA with pairwise decomposition studies—we
decided not only to calculate the lacking hypophosphate binding affinity but to run com-
putations for all the other ligands as well in order to assess in this way the reliability of this
common, relatively low-level method in comparison to the much more thermodynamically
and statistically strict TI in the case of our system. Postprocessing applied to the obtained
trajectories indicates the important role of metal ions (especially Zn+2 and Mg+2) and argi-
nine residues in complex stabilization, which is in overall agreement with the literature [5]
describing the possible mechanism for these types of enzymes [24,35]. However, while in
the case of pyro, hypo and all methylene derivatives Mg+2 is less influential, in the case
of imido and thio analogues, its role is as important as zinc ions (res. 482, Table 3). Worth
mentioning is the fact that the amino acid residue contribution to substrate binding was
the highest for pyrophosphate.
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Table 3. Amino acids with contribution to substrate binding energy lower than −5 kcal/mol.

Ligand
Residue Contribution [kcal/mol]

SER93 ARG151 ARG167 HIE321 ZN482 ZN483 MG484 OTHER

1 - −47.36 −50.30 −9.82 −392.74 −42.87 −24.19 TYR170, HID154
2 - −53.84 - −10.08 −331.35 −88.61 −387.55 TYR170, HID154
3 - −47.70 −10.60 −10.29 −497.56 −64.67 −369.11 ARG318
4 −9.63 −40.03 −29.49 −10.93 −259.25 −23.70 −14.05 TYR170
5 −10.93 −16.40 −31.33 −7.18 −229.53 −28.51 −13.90 HID154, ALA155
6 - −30.31 −33.04 −8.11 −77.8 −11.9 −10.5 HID154
7 −6.19 −24.76 −37.34 −7.35 −244.62 −17.28 −12.62 TYR170, HID154
8 - −32.11 −9.21 - −211.28 −6.86 −10.76 -

The amino acids involved in ligand binding are presented in Figure 5, as a repre-
sentative from clustering the trajectories. In each case, negatively charged atoms form
ionic interactions with metal ions, Zn cation or, in the case of imidodiphosphate, with
Mg cation. There are also a number of interactions between the ligand and arginines or
another residue in their vicinity, mainly being hydrogen bonds and electrostatic interac-
tions. All these interactions resulted in overall negative ∆(∆)G values obtained through
both TI and MM/GBSA studies. There is also a strong influence of negatively charged
phosphate groups (total charge -4), which when combined with the divalent metal ions
in the vicinity (Mg2+ and two Zn2+) have influence on the energy of binding. The fact
that hypophosphate binds weaker than the natural substrate derives straight from the
fewer number of possible interactions. As hypophosphate lacks a bridging atom, which in
every case but methylenediphosphonic acid is electronegative, the number and strength of
potential interactions are lower and so is the hydrophobic effect from the carbon atom from
methylenediphosphonate. In most cases, ligands have limited influence on the fluctuation
of residues in the active site (Figure 6). The only region that seems to be changed by
ligand binding is between 370 and 430, which changed its spatial structure in the case
of hypophosphate and alendronate. The origin of this phenomena may derive from the
interactions with the effector that is deeply buried in the binding site.
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Figure 5. Representative spatial orientation of (A) pyrophosphate, (B) monothiopyrophosphate, (C) imidodiphosphate,
(D) methylenediphosphonic acid, (E) hypophosphate, (F) alendronate, (G) pamidronate and (H) zoledronate from the
molecular dynamics simulation. MD investigation indicates significant influence of metal ions (zinc—black sphere,
magnesium—green sphere) on ligand binding, as they are close (apart from alendronate) to deprotonated moieties and
yield low contribution energies.
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One may notice that the ∆(∆)G values obtained during this investigation are somewhat
different from the results obtained before for other ligands and are also different when
comparing TI to MM/GBSA (Table 1). The first discrepancy in energy differences obtained
may be justified by the fact that they are relative to the energy of the (different) free
reagents forming the particular (different) system(s) of interest. The second, however,
points to the fact that the results from MM/GBSA should differ qualitatively from the TI
ones. According to the MM/GBSA method, the imido derivative binds stronger to TNAP
than the thio derivative (which is the best according to the TI calculations), and, also, the
methylene derivative binds worse than the pyrophosphate. The main source of enormous
error in this case, we assume, may be twofold: the approximate treatment of the solvent as
a continuous medium when calculating ∆Gsolv correction (Equation (2)) for the MM/GBSA
method. Indeed, when inspected, the calculated structures reveal that the imido derivative,
when compared to the other ones, is inserted in the TNAP binding cavity in such a way
that one of its charged phosphoryl groups protrudes slightly from the cavity (Figure 7).
This may lead to the overestimation of energetically favorable solvation effects.

The methylene derivatives are buried down too deeply (indicated by residue fluctua-
tion in Figure 6); thus, the interaction with the solvent may be underestimated. Moreover,
the above considerations are in overall agreement with the differences in the solvent
accessible surface area (SASA) of the ligands (Figures S15 and S16).
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4. Discussion

The obtained results do not give a direct comparison of the MM-GBSA method to TI;
however, MM-GBSA seems to be not only a system-dependent—a feature well known in
the literature [36–38]—but also an initial condition-dependent method, and its outcomes
should be taken with increased caution. Nevertheless, it is taken into consideration that
the hypophosphate might indeed bind significantly weaker than other derivatives because
of the following: (a) The calculations for the hypo derivative do not show such strong
deviations in SASA or residue fluctuation as for the imido and methylene derivatives,
which may disturb the results’ solidity, and the hypo molecule does not possess any atoms
bridging the two phosphoryl groups, which in turn results in decreased interactions with
the TNAP active site due to the fewer number of possible interactions. As it lacks bridging
atoms, which in every case but methylenebisposphonate carries an atom with available
electron pairs, the number and strength of potential interactions (e.g., hydrogen bonds,
favorable hyperconjugation effects) should be lowered. (b) The calculations for the hypo
derivative do not show such strong deviations in SASA or residue fluctuation as for the
imido and methylene derivatives, respectively, which may disturb the results’ solidity; one
can thus acknowledge the results suggesting that this derivative is the worst binder to
TNAP than any other ligand investigated here. In vitro investigation is needed in order to
verify the thermodynamic stability of the complex and the hypo derivative to subsequently
undergo hydrolysis.

The obtained results may be useful to predict the degradation rates of active molecules,
such as β,γ-modified nucleotides or bisphosphonates in extracellular space. They may
also be valuable data for designing new potential TNAP-interacting molecules. Our
previous study [27] indicated that the majority of investigated bisphosphonates may
interact with both alkaline phosphatases, affecting their function; however, obtained
affinities differed significantly.

Since TNAP is involved in the degradation of extracellular nucleotides via the hydrol-
ysis of pyrophosphate, it may be assumed that this protein also participates in the degrada-
tion of nucleotide analogues. Among this class of compounds, especially interesting are
β,γ-modified nucleotides, such as bisphosphonates [39,40], hypophosphates [41] and ATP
derivatives, which may be hydrolyzed by ectonucleotidases with the release of modified
pyrophosphate analogues. TNAP is considered as a potential target for anti-calcification
drug design [4]. Due to its role in brain microvascular dysfunction and neuroinflammation
in late sepsis [3], it seems to also be a good target for such disorders.

5. Conclusions

In this paper, we compare TNAP ligand binding energies obtained from three different
computational methods, namely molecular docking, thermodynamic integration (TI) and
conventional molecular dynamics (MD). For that, we selected a series of pyrophosphate
derivatives: pyrophosphate, hypophosphate, imidodiphosphate, methylenediphosphonic
acid, monothiopyrophosphate, alendronate, pamidronate and zoledronate. In silico analy-
sis suggests that almost all the investigated compounds bind to the TNAP, with the highest
affinity for imido- and thio-phosphate moieties. The hypo derivative is a weak ligand
for TNAP and so are the investigated drugs (alendronate, pamidronate and zoledronate);
however, to verify that, an experimental analysis is certainly needed to clarify the issue
as to whether or not the molecule is able to actually create a thermodynamically stable
complex within the active center. Regardless of these ambiguities, it becomes apparent that
the type of group bridging the phosphate moieties is certainly an important factor in the
energetics of the forming protein–ligand complex. MM/GBSA turns out to be a less reliable
and robust method in the estimation of thermodynamics of such processes in comparison to
TI, at least in cases of negatively charged phosphate derivatives neighboring metal cations.
Such coincidence causes mild malformations of phosphate groups, causing them to point
toward metal ions, thus changing the planarity of the group. The MM/GBSA calculation
method contains energy of solvation, which is highly inaccurate in such cases. On the other
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hand, the application of TI is limited to only a molecule sharing a common scaffold, and
even this has limitations such as those presented in this paper—hypophosphate could not
be treated like another pyrophosphate derivative, as it voids atom bridging phosphate
groups. We conclude that in the case of the high similarity of the investigated compounds,
the TI method can be recommended due to its higher accuracy and insensitivity to imper-
fections associated with force fields causing deformations of ligands. However, for the
screening of compounds not sharing a common scaffold, voiding problematic groups, such
as deprotonated phosphates, MM/GBSA, due to their speed and feasibility may be the
first choice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11081104/s1, Figure S1: ERRAT analysis of TNAP residues. Only few residues crossed
values indicating that their spatial orientation may be incorrect, Figure S2: Verify3D analysis. Average
score is in close vicinity to desired value (about 0.2), Figure S3: Ramachandran plot of the protein,
Figure S4–S10: System density change in time for compounds 1 and 2, 3, 4, 5, 6, 7, 8 respectively,
during equilibration prior to TI, Figure S11: Radius of gyration for protein during 20 ns long
simulations repeated 10 times (10 ns truncated as an equilibration period). Non-bound protein used
as a control, Figure S12: Radius of gyration for protein during 100 ns simulations repeated 3 times
(10 ns truncated as an equilibration period). Non-bound protein used as a control, Figure S13: RMSD
of CA atoms of the protein during 20 ns long simulations repeated 10 times (10 ns truncated as
an equilibration period). Non-bound protein used as a control, Figure S14: RMSD of CA atoms of
the protein during 100 ns simulations repeated 3 times (10 ns truncated as an equilibration period).
Non-bound protein used as a control, Figure S15: Solvent-accessible surface area of ligands during
20 ns long simulations repeated 10 times (10 ns truncated as an equilibration period), Figure S16:
Solvent-accessible surface area of ligands during 100 ns simulations repeated 3 times (10 ns truncated
as an equilibration period), Figure S17: Ligand RMSD during 20 ns long simulations repeated 10 times
(10 ns truncated as an equilibration period), Figure S18: Ligand RMSD during 100 ns simulations
repeated 3 times (10 ns truncated as an equilibration period), Figure S19: Differences in a terminal
α-helix and protein core distances between initial structure and clustered trajectory. Distances are
between residues: 6 and 58, 16 and 73, 27 and 470.
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