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Abstract \
Introduction: In postherpetic neuralgia (PHN) different types of patients can be distinguished regarding their predominant
peripheral nociceptor function.

Objective: The aim was to examine somatosensory profiles in the course of disease with special regard to the different subtypes
existing in PHN.

Methods: Twenty patients with PHN (7 men and 13 women, age 67 = 9.6 years) were examined at baseline (disease duration 18.1
+ 26 months) and follow-up (81.6 = 23.8 months later) with quantitative sensory testing (protocol of the German Research Network
on Neuropathic Pain).

Results: Fourteen (70%) PHN patients presented with impaired (iPHN) and 6 (30%) with preserved (pPHN) C-fiber function. Groups
did not differ regarding age, disease duration, or pain intensity at baseline. Both groups did not differ regarding change in pain
intensity (—=0.5 * 2.3 vs —1.7 £ 2.6 numerical rating scale, P = n.s.) at follow-up. Impaired PHN improved in thermal and
mechanical detection thresholds as well as allodynia independent from change in pain intensity. By contrast, pPHN showed an
increase in mechanical pain sensitivity (1.4 = 2.5vs —0.4 * 2.2, P < 0.05) and a trend towards a stronger loss of detection (66% vs
33%, P = n.s.) on follow-up.

Conclusion: Results demonstrate that patients with preserved C-fiber function are more predisposed to develop signs of central
sensitization as demonstrated by an increased mechanical pain sensitivity. Impaired C-fiber function is able to improve even in
chronic cases, but a functional loss is unlikely to play a role here. The knowledge of development of somatosensory profiles in the

course of the disease offers possibilities to optimize a mechanism-based treatment.
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1. Introduction

Postherpetic neuralgia (PHN) is the most common complication
of herpes zoster infection. It is often characterized by the
presence of spontaneous pain, loss of thermal and mechanical
detection, as well as an exaggerated pain response to noxious
(hyperalgesia) and non-noxious (allodynia) stimuli.'® Different
types of patients can be distinguished regarding their pre-
dominant cutaneous nociceptor function”: patients who primarily
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present with sensory loss, ie, demonstrate cutaneous nociceptor
deafferentation and those who do not show sensory loss, ie, have
preserved or even sensitized cutaneous nociceptors.’® In
patients with sensory loss increased spontaneous activity in
deafferented central neurons and/or reorganization of central
connections might play a role in pain generation. Pain and
somatosensory abnormalities of PHN patients with preserved or
even sensitized nociceptors might be due to an abnormal
sensitization of unmyelinated cutaneous nociceptors (irritable
nociceptors’). To date, it is unclear why some patients have the
impaired and others the preserved clinical phenotype. However,
the assessment of these specific sensory symptoms and signs
enables to identify the underlying mechanism that can help to
understand pathophysiology and improve treatment in the
concept of a mechanism-based therapy.2® Because it has been
shown that a specific symptom may be generated by several
different mechanisms, it became clear that a specific somato-
sensory constellation might be more suitable to mirror the
mechanisms instead of a single sign."'® Standardized quantita-
tive sensory testing (QST) enables to investigate different afferent
nerve fiber functions or their central pathways and create an
individual somatosensory profile.® The presence of different
somatosensory signs and their constellation are suggested to
be linked to underlying mechanisms.
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Several studies have investigated somatosensory function
of patients with PHN2"-26-3"; however, investigations regard-
ing changes of somatosensory signs and symptoms in the
course of PHN are rare. The aim of our study was therefore to
examine somatosensory signs and symptoms in the course of
disease with special regard to the different subtypes existing
in PHN.

2. Methods
2.1. Experimental set-up

Twenty patients with PHN (7 men and 13 women, age 67 * 9.6
years, range 40-77 years) were examined at baseline (disease
duration 18.1 £ 26, range 1-97 months) and follow-up visit
(831.6 = 23.8 months later). Recruitment consisted of all patients
with PHN who had been included into the database of the
German Research Network on Neuropathic Pain in Kiel,
Germany, between 2004 and 2007 who agreed to participate
in a follow-up examination. Postherpetic neuralgia was present
in trigeminal innervation territory (n = 5), cervical (n = 1), thoracic
(n = 11), as well as lumbar (n = 3) dermatomes. The initial visit's
(baseline) data set was provided by the database of the German
Research Network on Neuropathic Pain. The examination of
both baseline and follow-up visit followed an identical algorithm
and included medical history (pain intensity, disease duration,
and treatment) and QST (protocol of the German Research
Network on Neuropathic Pain®) on the affected and corre-
sponding contralateral body side. Patients with any neurological
comorbidity that could otherwise influence testing results such
as polyneuropathy, diabetes, vascular disease, etc., as well as
patients with skin lesions or dermatological disorders in the
areas to be tested or with difficulties in German language skills
were excluded from the study. The study was in accordance
with the Declaration of Helsinki and approved by the institutional
review board of the Faculty of Medicine at Christian-Albrechts-
University of Kiel. All patients gave written informed consent to
take part in the study.

2.2. Assessment of sensory signs and symptoms

Current and mean pain intensity during the week before
examination was measured with a numerical rating scale
(NRS, where 0 = no pain and 10 = maximum pain imaginable).
For assessment of somatosensory function, the QST protocol of
the German Research Network on Neuropathic Pain was
used.??3% This protocol contains the investigation of 13 different
parameters that provide a complete somatosensory profile of
a person.?® It includes the investigation of mechanical detection
threshold (MDT) and vibration detection threshold representing
the function of large myelinated fibers or central pathways, cold
detection threshold (CDT), cold pain threshold, warm detection
threshold (WDT), thermal sensory limen (TSL), heat pain
threshold (HPT), presence of paradoxical heat sensations,
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mechanical pain threshold, mechanical pain sensitivity (MPS),
and pressure pain threshold representing small fiber function or
central pathways. In addition, the presence of dynamic
mechanical allodynia (DMA) and temporal summation of pain
(wind-up ratio) are assessed. Parameters were tested as
described previously.!' Patients were tested bilateral on the
affected and corresponding contralateral body side. Testing
always started on the unaffected, ie, corresponding contralat-
eral side before the affected area of maximal pain (test area) was
tested.

2.3. Statistical analysis

Quantitative sensory testing results were analyzed according to
published guidelines®® and compared with a reference data-
base of healthy controls.?® To make the patients’ data
comparable with the values of healthy controls, individual
patient data were normalized to the respective sex, age group,
and tested area of the healthy controls using z-values (z =
[individual value — mean database]/SD database). Resulting Z
scores above “0” indicate hyperfunction, ie, patients are more
sensitive to the tested parameter compared with controls (lower
thresholds), whereas Z scores below “0” indicate hypofunction
and therefore a loss of or lower sensitivity of the patient
compared with controls (higher thresholds). Because PHN is
a unilateral disease, both z-values out of the 95% confidence
interval (absolute abnormal value) in the affected area and
a difference of more than 2 SDs in the z scores between affected
and corresponding contralateral area (abnormal side-to-side
difference) were considered as abnormal values. The Wilcoxon
test was used for intragroup comparison, ie, analysis between
affected and contralateral side as well as between baseline and
follow-up within the groups. Linear relationships were assessed
by Pearson correlation coefficient. Frequencies of abnormal
QST values were analyzed with the ¥ test. P < 0.05 was
considered statistically significant.

3. Results
3.1. Somatosensory findings at baseline of the whole cohort

On baseline, patients had higher frequencies for loss of thermal
(cold detection: n = 11, P < 0.001; warm detection: n = 14, P <
0.001) and mechanical detection (n = 14, P < 0.001; vibration
detection: n = 3, P < 0.001) as well as heat pain (n = 3, P <
0.001) in the affected area compared with the reference values of
healthy controls. Mechanical pain sensitivity to pinprick stimuli
was either increased (MPS: n = 4, P < 0.001) or decreased
(mechanical pain threshold: n = 6, P < 0.001; MPS: n =4, P <
0.001), whereas pain sensitivity to blunt pressure was increased
(n = 7, P < 0.001) compared with healthy controls. Dynamic
mechanical allodynia and paradoxical heat sensitivity were
present in 40% and 20%, respectively. None of the QST

Characteristics of subgroups at baseline.

Impaired C-fiber function (n = 14)

Preserved G-fiber function (n = 6) P (impaired vs preserved)

Gender (m/f) 6 (42.9%)/8 (57.1%) 1 (16.7%)/5 (83.3%) n.s.
Age (y) (range) 70.0 = 5.8 (49-77) 59.7 + 13.1 (40-75) n.s.
Disease duration at baseline (mo) (range) 16.6 = 21.2 (1-97) 21.5 = 37.1 (1-30) n.s.
Pain intensity at baseline (NRS) (range) 55+ 3.4 (0-9) 5.8 + 2.8 (1-10) n.s.

NRS, numerical rating scale; n.s., not significant.
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parameters at baseline correlated with pain intensity or disease
duration, but z-values for thermal thresholds were lower, the older
the patients were (CDT: R = —0.61, P < 0.01; WDT: —0.51, P
< 0.05).

Based on frequencies of abnormal QST values, 2 subgroups
could be distinguished: 14 (70%) PHN patients presented with
impaired C-fiber function, ie, loss of warm detection. Six (30%)
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patients had preserved C-fiber function, ie, no abnormalities in
warm detection or HPTs, whereas one patient additionally
demonstrated sensitized C-fiber function, ie, no abnormalities in
warm detection, but increased heat pain sensitivity. Patients with
impaired C-fiber function did not differ from patients with
preserved C-fiber function regarding age, disease duration, or
pain intensity at baseline (Table 1).

Quantitative sensory testing values of subgroups at baseline.

Impaired C-fiber P [vs healthy controls] Preserved C-fiber P [vs healthy controls] P [impaired vs preserved]
function (n = 14) function (n = 6)

CDT
Affected side —28=*1.1 <0.001 —044 =10 n.s. <0.001
Contralateral side —0.42 £0.8 n.s. —-06 £1.5 n.s. n.s.
P <0.001 n.s.

WDT
Affected side —-36 13 <0.001 03+11 n.s. <0.001
Contralateral side 004 =12 n.s. -02=x1.0 n.s. n.s.
P <0.001 <0.05

TSL
Affected side —27*+08 <0.001 0.1+ 0.6 n.s. <0.001
Contralateral side —-01x12 n.s. —-01 £0.7 n.s. n.s.
P <0.001 n.s.

CPT
Affected side —-0.4 =08 n.s. 02=*11 n.s. n.s.
Contralateral side 0112 n.s. -05*09 n.s. n.s.
P <0.05 n.s.

HPT
Affected side —-0.7 =09 n.s. 05=*15 n.s. <0.05
Contralateral side 06=*1.2 n.s. -03+09 n.s. n.s.
P <0.005 n.s.

PPT
Affected side 18+24 <0.05 1612 <0.05 n.s.
Contralateral side 05+15 n.s. 1.0+09 n.s n.s
P <0.05 n.s.

MPT
Affected side -13+18 <0.05 -02 17 n.s. n.s.
Contralateral side -07x1.0 n.s. —-06 £1.5 n.s. n.s.
P n.s. n.s.

MPS
Affected side -01 x 21 n.s. —-04 x£22 n.s. n.s.
Contralateral side -02 =11 n.s. 06+1.8 n.s. n.s.
P n.s. n.s.

WUR
Affected side 0.7 = 2.0 n.s. —-07 12 n.s. n.s.
Contralateral side —-02 =17 n.s. 03=*1.0 n.s. n.s.
P n.s. n.s.

MDT
Affected side —10.8 = 15.8 <0.05 —-12+ 21 n.s. P=0.05
Contralateral side —2.2 + 31 <0.05 -19+19 n.s. n.s.
P <0.001 n.s.

VDT
Affected side -03=*=09 n.s. -07=19 n.s. n.s.
Contralateral side 02 *=0.7 n.s. 01 =16 n.s. n.s.
P <0.05 n.s.

DMA (n)
Affected side 7 <0.01 1 n.s. n.s.
Contralateral side 0 n.s. n.s. n.s.
P <0.05 n.s.

PHS
Affected side 06 =*1.2 n.s. 02=*04 n.s. n.s.
Contralateral side 0 n.s. 02=+04 n.s. n.s.
P n.s. n.s.

Values are given as zvalues = SD with the exception of DMA and PHS where raw data are given because they do usually not occur in healthy subjects. Zvalues above “0” indicate hyperfunction, ie, patients are more sensitive
to the tested parameter compared with controls (lower thresholds), whereas Zscores below “0” indicate hypofunction and therefore a loss of or lower sensitivity of the patient compared with controls (higher thresholds).
CDT, cold detection threshold; CPT, cold pain threshold; DMA, dynamic mechanical allodynia; HPT, heat pain threshold; MDT, mechanical detection threshold; MPS, mechanical pain sensitivity; MPT, mechanical pain
threshold; n.s., not significant; PHS, paradoxical heat sensations; PPT, pressure pain threshold; TSL, thermal sensory limen; VDT, vibration detection threshold; WDT, warm detection threshold; WUR, wind-up ratio.
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3.2. Comparison of patients with impaired and preserved
C-fiber function at baseline

Quantitative sensory testing values of the 2 subgroups are shown
in Table 2.

Patients with impaired C-fiber function had loss of thermal
(CDT, WDT, and TSL) and mechanical (MDT and vibration
detection threshold) detection as well as decreased sensitivity to
thermal pain (cold pain threshold and HPT), but increased
sensitivity to blunt pressure and DMA on the affected side
compared with the contralateral side (Table 2). All patients had
loss of detection: 12 patients (85.7%) had a combined loss of
detection (loss of small and large fiber function) and 2 presented
with a solely loss of small fiber function. This loss of detection was
combined with increased pain sensitivity in 9/14 (64.2%) patients
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with either solely increased mechanical (n = 8) or mixed (thermal
and mechanical, n = 1) gain of function.

By contrast, patients with preserved C-fiber function did not differ
between the affected and contralateral side regarding gain or loss of
thermal or mechanical detection or pain thresholds (Table 2). The
only exception here was that z-value for WDT was higher on the
affected compared with the contralateral side meaning that sensitivity
for warm detection was increased on the affected compared with the
contralateral side representing hypersensitivity (Table 2). Despite
preserved C-fiber function, 2 patients (33.3%) presented with loss of
mechanical detection, ie, a dysfunction of A-beta fibers or central
pathways, which was not combined with increased pain sensitivity.
Three of the 4 patients without loss of detection had abnormal
increased sensitivity to mechanical (DMA, n = 1), painful cold (n = 1),
or painful heat and blunt pressure stimuli (n = 1).
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Somatosensory profile and the presence of dynamic mechanical allodynia and paradoxical heat sensations (A) as well as frequencies of abnormal values
(B) on baseline (white circles and white columns) and follow-up (black circles and black columns) examination in PHN patients with impaired C-fiber function. CDT,
cold detection threshold; CPT, cold pain threshold; DMA, dynamic mechanical allodynia; HPT, heat pain threshold; MDT, mechanical detection threshold, MPS,
mechanical pain sensitivity; MPT, mechanical pain threshold; NRS, numerical rating scale; PHN, postherpetic neuralgia; PHS, paradoxical heat sensitivity; PPT,
pressure pain threshold; QST, quantitative sensory testing; TSL, thermal sensory limen; VDT, vibration detection threshold; WDT, warm detection threshold; WUR,
wind-up ratio. *P < 0.05 and **P < 0.01 for comparison of baseline vs follow-up measurement.
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Frequencies of abnormal values (n, %).

Impaired C-fiber function (n = 14)

Preserved C-fiber function (n = 6)

P (impaired vs preserved)

CDT loss baseline 11 (78.5%) 0 <0.05
CDT loss follow-up 7 (50%) 1(16.6%) n.s.
2 n.s. n.s.

WDT loss baseline 14 (100%) 0 <0.01
WDT loss follow-up 7 (50%) 2 (33.3%) n.s.
P <0.01 n.s.

TSL loss baseline 12 (85.7%) 0 <0.01
TSL loss follow-up 7 (50%) 1(16.6%) n.s.
2 <0.01 n.s.

PHS baseline 3 (21.4%) 1(16.6%) n.s.
PHS follow-up 2 (14.2%) 1(16.6%) n.s.
P n.s. n.s.

CPT gain baseline 1(7.1%) 1(16.6%) n.s.
CPT gain follow-up 1(7.1%) 0 n.s.
P n.s. n.s.

CPT loss baseline 1(7.1%) 0 n.s.
CPT loss follow-up 0 1 (16.6%) n.s.
P n.s. n.s.

HPT gain baseline 0 1(16.6%) n.s.
HPT gain follow-up 2 (14.2%) 0 n.s.
P n.s. n.s.

HPT loss baseline 3 (21.4%) 0 n.s.
HPT loss follow-up 2 (14.2%) 0 n.s.
P n.s. n.s.

MDT loss baseline 12 (85.7%) 2 (33.3%) <0.05
MDT loss follow-up 7 (50%) 4 (66.6%) n.s.
P <0.05 n.s.

MPT gain baseline 2 (14.2%) 0 n.s.
MPT gain follow-up 2 (14.2%) 0 n.s.
P n.s. n.s.

MPT loss baseline 5 (35.7%) 1(16.6%) n.s.
MPT loss follow-up 2 (14.2%) 0 n.s.
2 n.s. n.s.

MPS gain baseline 4 (28.5%) 1(16.6%) n.s.
MPS gain follow-up 4 (28.5%) 3 (50%) n.s.
P n.s. n.s.

MPS loss baseline 3 (21.4%) 1(16.6%) n.s.
MPS loss follow-up 1(7.1%) 0 n.s.
P n.s. n.s.

DMA baseline 7 (50%) 1(16.6%) n.s.
DMA follow-up 8 (57.1%) 3 (50%) n.s.
P n.s. n.s.

WUR gain baseline 2 (14.2%) 0 n.s.
WUR gain follow-up 1(7.1%) 1(16.6%) n.s.
P n.s. n.s.

WUR loss baseline 1(7.1%) 2 (33.3%) n.s.
WLUR loss follow-up 0 1 (16.6%) n.s.
P n.s. n.s.

(continued on next page)
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Table 3 (continuea

Frequencies of abnormal values (n, %).

Impaired C-fiber function (n = 14)

Preserved C-fiber function (n = 6) P (impaired vs preserved)

VDT baseline 2 (14.2%) 1(16.6%) n.s.
VDT follow-up 1(7.1%) 1 (16.6%) ns.
P n.s. n.s.
PPT gain baseline 5 (35.7%) 2 (33.3%) n.s.
PPT gain follow-up 2 (14.2%) 1(16.6%) n.s.
P n.s. n.s.
PPT loss baseline 0 0 n.s.
PPT loss follow-up 0 0 n.s.
P n.s. n.s.

CDT, cold detection threshold; CPT, cold pain threshold; DMA, dynamic mechanical allodynia; HPT, heat pain threshold; MDT, mechanical detection threshold; MPS, mechanical pain sensitivity; MPT, mechanical pain
threshold; n.s., not significant; PHS, paradoxical heat sensations; PPT, pressure pain threshold; TSL, thermal sensory limen; VDT, vibration detection threshold; WDT, warm detection threshold; WUR, wind-up ratio.

Patients with impaired C-fiber function had a stronger loss of
detection for thermal (CDT, WDT, and TSL) and mechanical
(MDT) detection and painful heat on the affected side compared
to patients with preserved C-fiber function (Table 2).

3.3. Change of pain intensity and medication in the course of
the disease

Mean pain intensity did not change between baseline and follow-
up measurement, neither in patients with impaired (5.3 + 1.1 vs
5.2 = 1.1, P = not significant [n.s.]) nor with preserved C-fiber
function (4.2 = 2.8 vs 5.8 = 2.8, P = n.s.). Only 4/14 patients
(28%) improved in pain intensity from baseline to follow-up in the
subgroup with impaired and 3/6 (50%) patients with preserved C-
fiber function (P = n.s.). Between baseline and follow-up, pain
medication was unchanged in 2 patients (10%; n = 1 in the
impaired and n = 1 in the preserved subgroup), whereas the
number of coanalgesics was reduced in 7 (35%; n = 6 [42.9%)] in
the impaired and n = 1 [16.6%)] in the preserved subgroup) and
increased in 11 patients (55%; n = 7 [50%] in the impaired and n
= 4 [66.7%] in the preserved subgroup). Interestingly, change in
pain intensity did not differ between those patients where the
number of pain medication was increased or decreased (—1.1 *
2.2vs —0.7 £ 3.0,P =n.s.).

3.4. Change of somatosensory function in patients with
impaired C-fiber function in the course of the disease

Patients with impaired C-fiber function at baseline showed an
improvement of warm and mechanical (MDT) detection as well as
an increase in cold and heat pain sensitivity in the follow-up
examination (Fig. 1A). Change in pain intensity did not correlate
with change in QST parameters.

Changes in the frequencies of abnormal values are shown in
Figure 1B. On the individual level, 7 patients showed a normal-
ization of warm and 5 of MDTs (Table 3). Overall, all detection
thresholds showed a trend to normalization, whereas pain
sensitivity increased or decreased on follow-up without a clear
trend (Fig. 1B), ie, there was neither a decreased pain sensitivity
nor a sensitization of the nociceptive system.

No differences were observed between patients with short or
long disease duration. Interestingly, patients with a lower pain
intensity (NRS =6, n = 5, mean 1.6 = 2.3 NRS) had a stronger
loss of mechanical detection on baseline (—24.9 = 20.3 vs —3.0
+ 1.5, P < 0.05) as well as mechanical detection (—20.5 + 23.9

vs —1.5+1.1,P<0.005)and TSL(-2.3 +0.5vs —=1.4+0.9,P
< 0.05) on follow-up testing compared to those with a high pain
intensity (n = 9 = 7 NRS; 7.7 = 1.0). No differences of QST
parameters at baseline or follow-up were observed between
those with and without a reduction of pain intensity between
baseline and follow-up examination.

3.5. Change of somatosensory function in patients with
preserved C-fiber function in the course of the disease

In contrast to patients with impaired C-fiber function, patients
showed an increase in MPS on follow-up (Fig. 2A). Furthermore,
patients showed a trend towards a stronger loss of detection.
This trend could also be observed on the individual level (Table 3
and Fig. 2B). The highest changes of frequencies between
baseline and follow-up were observed for MDT (loss in 2 more
patients on follow-up) and MPS (gain in 2 more patients and DMA:
in 2 more patients, Table 3). Difference in pain intensity did not
correlate with change in QST parameters.

No differences were observed between patients with short or
long disease duration or between those with higher (=7 NRS, n =
4) or lower (n = 2) pain intensity within the group of patients with
preserved C-fiber function.

3.6. Comparison of change of somatosensory function of
preserved and impaired C-fiber function in the course of
the disease

Patients with impaired C-fiber function did not differ from patients
with preserved C-fiber function in change in pain intensity (—0.5
+2.83vs —1.7 £ 2.6 NRS, P = n.s.), pain intensity at follow-up
examination (5.0 = 3.9 vs 4.2 = 2.8 NRS, P = n.s.), time in
between the 2 examinations (26.9 + 19.6 vs 42.7 + 30.8 months,
P =n.s.), or disease duration (43.5 = 3.8 vs 64.2 = 63 months, P
= n.s.) at follow-up. Patients with impaired C-fiber function
improved in thermal and MDTs as well as DMA compared to
those with preserved C-fiber function (CDT: 0.8 + 1.4vs —1.2 =
1.2,WDT:1.8+21vs—0.7+1.7;TSL: 1.0+ 1.1vs —0.5 = 1.3;
MDT: 25 + 7.8 vs —1.9 = 3.1, DMA: =56 = 122 vs 11.4 =
17.8, P < 0.05 for all, Figs. 1A and 2A).

4. Discussion

This study shows that in the course of PHN, (1) pain reduction is
independent from the subtype of PHN and (2) patients with
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impaired and preserved C-fiber function differ regarding change
of somatosensory function: Although patients with impaired C-
fiber function at baseline improve in loss of thermal and
mechanical detection independent from the improvement in pain
intensity and even after a long duration of disease, ie, show a shift
towards a normalization of the somatosensory profile, patients
with preserved/sensitized C-fiber function are more predisposed
to develop signs of central sensitization, ie, an increase in MPS.
Results therefore suggest that C-fiber function is able to improve
even after a long time, as the disease duration at baseline
measurement was already more than 1 year after disease onset
and follow-up examination about 3 years later. This is in line with

www.painreportsonline.com 7

the observation of another follow-up examination of patients with
herpes zoster that demonstrated an improvement of sensory
thresholds 3.9 to 7.7 years after herpes zoster, despite the
presence of somatosensory abnormalities and partly missing
reinnervation of herpes zoster affected on skin biopsy.2”

It is unlikely that a functional loss, ie, pain-induced hypoaes-
thesia® plays a major role because pain intensity did not change in
this subgroup, change in somatosensory profiles was indepen-
dent from improvement in pain intensity and patients with a lower
pain intensity demonstrated a stronger loss on QST.

The findings of an increasing (central) sensitization of the
nociceptive system in the preserved/sensitized subtype of PHN
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are in line with current concepts of pain chronification demon-
strating that central sensitization can develop as a result of
ongoing C-fiber activity of intact C fibers.? In addition, in this
group, there was a trend towards a development of a mechanical
and thermal loss of detection. Of course, it has to be kept in mind
that this subgroup of patients within the study was small;
however, with regards to the increasing central sensitization, this
progressive loss could be secondary to nociceptive stimulation®
rather than due to degeneration of peripheral nerve fibers.
Although the change in somatosensory profiles was independent
from improvement in pain intensity, central sensitization of the
nociceptive system was clearly visible on the somatosensory
profile. Processes underlying central sensitization (for review, see
Ref. 34) might also be able to induce secondary hypoesthesia, as
it has been observed in experimental and chronic pain.8:18:19:24.36

Results of the change of the somatosensory phenotype within
the course of PHN further support the view that the pain profile is
dynamic, ie, can change within the same individual as a conse-
quence of individual characteristics such as age, sex, genetic
phenotype, prior medical history including primary and secondary
psychological factors,'®25% as well as painful events and
treatment.®® Regarding the idea of a mechanism-based treat-
ment in neuropathic pain®'%3? based on the somatosensory
phenotype,! a change of the somatosensory phenotype within
the course of a disease would have major influence on treatment.
For example, patients with a strong loss of detection due to
degeneration might respond better to treatment with anticonvul-
sants or topical agents when regeneration occurs.>®22 On the
other hand, in the sensitized/preserved phenotype, it might be
more important to prevent further mechanisms of pain chron-
ification, ie, by a more aggressive analgesic treatment.®412:17:28

One limitation of this study is of course the small study number,
especially in the preserved/sensitized subtype of PHN. Thus, the
conclusions that can be drawn from this subgroup are limited. In
addition, treatment was not stable in the patients; however,
because mean pain intensity did not change between baseline
and follow-up and change in pain intensity did not differ between
those patients where the number of pain medication was
increased or decreased, this should not have major influence
on our results.

In conclusion, our results suggest a dynamic of the somato-
sensory profile and that follow-up examinations of the somato-
sensory phenotype to assess underlying mechanisms are
important to optimize treatment.
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