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Abstract

Scar formation is a potentially detrimental process of tissue restoration in adults, affecting organ 

form and function. During fetal development, cutaneous wounds heal without inflammation or 

scarring at early stages of development, but begin to heal with significant inflammation and 

scarring as the skin becomes more mature. One possible cell type that could regulate the change 

from scarless to fibrotic healing is the mast cell. We show here that dermal mast cells in scarless 

wounds generated at embryonic day 15 (E15) are fewer in number, less mature and do not 

degranulate in response to wounding as effectively as mast cells of fibrotic wounds made at 

embryonic day 18 (E18). Differences were also observed between cultured mast cells from E15 

and E18 skin with regard to degranulation and preformed cytokine levels. Injection of mast cell 

lysates into E15 wounds disrupted scarless healing, suggesting that mast cells interfere with 

scarless repair. Finally, wounds produced at E18, which normally heal with a scar, healed with 

significantly smaller scars in mast cell-deficient KitW/W-v mice compared to Kit+/+ littermates. 

Together, these data suggest that mast cells enhance scar formation, and that these cells may 

mediate the transition from scarless to fibrotic healing during fetal development.

Introduction

Wound healing is an important sequence of events following tissue injury that can have 

detrimental outcomes, like fibrosis and scarring. While our understanding of the regulatory 

signals in adult wound healing and scar formation have improved, scarring still cannot be 

completely prevented in mature skin. Interestingly, scarless healing can occur in the skin at 

early stages of fetal development in many mammals (reviewed in Larson et al.; Wilgus, 

2007). Cutaneous wounds generated early in development have very limited, if any, 

inflammation and heal scarlessly with regeneration of dermal appendages like hair follicles. 
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In contrast, wounds generated late in fetal development have robust inflammation and heal 

with a scar (fibrotic healing). Previous studies have demonstrated that a limited 

inflammatory response is essential for scarless repair (Frantz et al., 1993; Haynes et al., 

1994; Krummel et al., 1987; Liechty et al., 2000; Liechty et al., 1998; Martin et al., 2003; 

Wilgus et al., 2004). Many aspects of the inflammatory phase in fetal wounds have been 

studied, but surprisingly little is known about the response of mast cells to wounding at early 

stages of development.

Resident mast cells are known to rapidly degranulate after injury, releasing many pro-

inflammatory and immunomodulatory proteins. Later in the healing process, mast cells 

migrate to the site of injury, dramatically increasing in number (Trautmann et al., 2000). 

Mast cells are thought to be important for wound healing by releasing many preformed 

mediators after injury, and upon stimulation, they produce even more mediators (reviewed 

in Artuc et al., 1999; Hebda et al., 1993). These molecules can influence important aspects 

of healing, such as inflammation, angiogenesis, and collagen production. Despite the 

growing understanding of the role of mast cells in adult wound healing, their role in the 

conversion from scarless to fibrotic healing has not been examined. In this study, a mouse 

model of fetal repair in which E15 wounds heal scarlessly and E18 wounds heal with a scar 

(Wilgus et al., 2004) is used to show that mast cells promote scarring in fetal wounds.

Results

Distinct features of resident mast cells in E15 and E18 fetal skin

To determine differences in mast cells before and after the transition from scarless to fibrotic 

wound healing, mast cells were examined in unwounded dorsal skin from E15 and E18 

fetuses. Marked differences were observed in the number, size, granularity and maturity of 

mast cells. Toluidine blue staining showed that E15 skin contained less than half the number 

of mast cells per mm2 as E18 skin (Figure 1a). Similar numbers of tryptase-positive mast 

cells were observed by immunohistochemistry, confirming reduced mast cell numbers in 

E15 skin (data not shown). Individual mast cells in E15 dermal tissue were significantly 

smaller in size (Figure 1b) and less granular (Figure 1c) than those of E18 skin, suggesting 

that the mast cells in E15 skin may be less mature. Alcian blue-safranin staining was then 

used as an indicator of mast cell maturity (Figure 2). Normal E15 and E18 fetal skin had 

similar percentages of mast cells at an intermediate stage of maturity (mixture of blue and 

red granules); however, there were strong differences in the percentage of mature (red 

granules) and immature (blue granules) mast cells. In E15 fetal skin, 54% of the mast cells 

were immature and only 6% of the mast cells were mature. Conversely, in E18 fetal skin, 

only 1% of the mast cells were immature, and 56% of the mast cells were of a mature 

phenotype.

Age-dependent differences in mast cells after injury

Next, changes in mast cell number and activation in response to wounding were examined. 

Fetal skin was harvested at times ranging from 2 hours to 72 hours post-wounding and 

stained with toluidine blue. The number of fully granulated mast cells decreased 

significantly in the dermis adjacent to wounds in E18 fetal skin at all timepoints after 
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wounding compared to unwounded E18 skin. A decrease in mast cell density is commonly 

seen in adult wounds with toluidine blue staining, and is attributed to the degranulation of 

mast cells (el Sayed and Dyson, 1993). In contrast to E18 wounds, the number of mast cells 

in E15 wounds is initially stable over time and eventually increases after several days 

(Figure 3a). This would be expected based on the increase in mast cell density seen as fetal 

skin develops (Figure 1a).

After mast cells degranulate, granule remnants can often be observed in the tissue (Kovanen, 

1993). These granule remnants adjacent to the wound edge were counted to quantify 

degranulation (Figure 3b). Very few granule remnants were observed in E15 wounds at any 

timepoint, suggesting that mast cells were not activated in response to injury (Figure 3c). 

However, in E18 skin the number of granule remnants in the dermis increased at early 

timepoints post-wounding, indicating strong mast cell activation/degranulation (Figure 3d). 

This corresponded to the decrease in toluidine blue-stained mast cells seen in E18 skin 

(Figure 3a). Together, the differences in mast cell characteristics in unwounded skin and 

mast cell degranulation after injury support the hypothesis that mast cells contribute to the 

transition from scarless to fibrotic wound healing.

Phenotypic differences in cultured fetal mast cells

To further understand developmental changes in mast cells, in vitro experiments were 

performed using cultured mast cells from E15 skin (E15MC) and E18 skin (E18MC). 

Similar to what was seen in vivo (Figure 2), staining with alcian blue-safranin showed that 

E15MC had an immature phenotype (blue granules; Figure 4a), compared to E18MC (red or 

red and blue granules; Figure 4b). Tryptase β-1 was present in both E15MC and E18MC by 

Western blot (Figure 4c) and no differences in protein levels were detected by densitometry 

(Figure 4d). Histamine levels were higher in E18MC compared to E15MC, but this 

difference was not statistically significant (Figure 4e). However, TNF-α (tumor necrosis 

factor-α; Figure 4f) and VEGF (vascular endothelial growth factor; Figure 4g) levels were 

both higher in E18MC compared to E15MC. Responsiveness of the mast cells to C48/80 

was determined by quantification of β-hexosaminidase (β-hex) and histamine release. Both 

β-hex and histamine release were significantly higher in E18MC compared to E15MC 

(Figure 4h–i), suggesting that E18MC are more sensitive to degranulation stimuli than 

E15MC. These in vitro findings support the differences seen in vivo demonstrating a more 

mature and responsive phenotype in E18 mast cells.

Mast cell lysates disrupt scarless healing

To determine if preformed mast cell mediators affect scarless fetal healing, E15MC or 

E18MC lysates were injected into E15 wounds, which normally heal without a scar. 

Examination of trichrome-stained tissue sections showed that scarless healing had occurred 

in all phosphate buffered saline (PBS)-injected control wounds at 10 days post-wounding 

(Figure 5a). Both lysate preparations disrupted scarless healing (Figure 5b–c), but only 26% 

(5/19) of wounds injected with E15MC lysate healed with a scar compared to 53% (19/36) 

of wounds injected with E18MC lysate. In addition, scars from wounds injected with 

E15MC lysate were 2/3 the width of those injected with E18MC lysate, although this 
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difference was not statistically significant (Figure 5d). These results suggest that mast cell 

mediators augment scar formation.

Reduced scarring in mast cell-deficient fetuses

To assess whether the absence of mast cells would reduce scar formation, mast cell-deficient 

(KitW/W-v) and wild-type (Kit+/+) fetuses were wounded at E18 and harvested at 7 or 10 

days post-wounding (Figure 6a–d). Significant differences in scar width were observed in 

trichrome-stained sections (Figure 6e), with less scar tissue produced in the absence of mast 

cells. No differences were detected in the density of collagen types I and III or in collagen 

organization within the scars using immunohistochemistry and picrosirius red-staining (data 

not shown). Together with the results in Figure 5, these data provide strong evidence that 

mast cells contribute to the production of scar tissue in fetal wounds.

Discussion

Evidence has been mounting in support of a role for mast cells in various phases of wound 

healing in adult skin, especially during the inflammatory phase. In contrast to mature skin, 

early embryonic wounds lack a pronounced inflammatory phase, and heal quickly and 

scarlessly (Colwell et al., 2003; Hantash et al., 2008; Larson et al.; Wilgus, 2007). At later 

stages of development, fetal skin heals similarly to adult skin. While many studies have 

shown that a vigorous inflammatory response is coincident with fibrotic healing in late 

gestation fetal wounds, it is still not clear what is responsible for the onset of inflammation 

and subsequent scarring in this model. Surprisingly, despite the known importance of 

resident mast cells in the initiation of acute inflammation and their suggested link to fibrosis, 

the role of mast cells in fetal wound healing has not been assessed.

The present study compared mast cells at different stages of development and examined the 

function of these cells in scar formation using a mouse model of fetal wound healing. There 

were striking differences in resident mast cell populations in the skin at times that 

correspond with scarless (E15) and fibrotic (E18) repair. Unwounded E18 skin contained 

approximately twice the number of mast cells compared to E15 skin, and the mast cells 

present in E18 skin were larger, more granular and more mature. These results are similar to 

other published studies indicating an increase in mast cell number and maturity during 

embryonic development (Combs et al., 1965; Kasugai et al., 1993; Savall and Ferrer, 1981). 

When the mast cell response to injury was examined, mast cell degranulation was not 

observed in E15 wounds. In contrast, a pattern of mast cell degranulation similar to what has 

been reported for adult skin wounds (el Sayed and Dyson, 1993) was seen in E18 wounds. 

Interestingly, cultured E15MC also presented as less mature and less responsive to C48/80, a 

commonly used activator of degranulation, compared to E18MC. The increased capacity of 

mast cells in E18 skin to degranulate could be due to the fact that the cells are more mature 

and thus more responsive to stimuli than mast cells from E15 skin. It is also likely that 

signals stimulating mast cell degranulation may only be present in the skin at later stages of 

development. The marked increase in mast cell number, maturity and activation in E18 skin 

suggests a possible role for mast cells in the conversion from scarless to fibrotic healing in 

the fetus.
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To further explore the role of mast cells in the switch to fibrotic healing, experiments were 

designed to test the effects of mast cells on scarless repair. In these studies, a single injection 

of lysate from either E15MC or E18MC into E15 wounds disrupted scarless healing, 

suggesting that mediators derived from mast cells augment scar formation in fetal wounds. 

While the exact mediator or combination of mediators responsible is not known, many 

molecules stored in mast cell granules could be contributing to scar formation. Several 

studies have indicated that mast cell proteases have fibrogenic effects. Tryptase has been 

shown to have chemotactic and mitogenic effects on dermal fibroblasts and also stimulates 

procollagen mRNA synthesis, contraction and differentiation into myofibroblasts (Albrecht 

et al., 2005; Gailit et al., 2001; Gruber et al., 1997). Chymase can cleave procollagen type I, 

which allows for collagen fibril formation (Kofford et al., 1997). Other mast cell mediators 

such as histamine can also increase collagen production in fibroblasts (Gailit et al., 2001; 

Hatamochi et al., 1985; Kupietzky and Levi-Schaffer, 1996). In addition, VEGF and IL-6, 

which are stored in mast cells, have been shown to promote scar formation in early gestation 

fetal wounds (Liechty et al., 2000; Wilgus et al., 2008). Interestingly, cultured E15MC and 

E18MC retained some of the features of mast cells in E15 and E18 fetal skin. E15MC were 

less mature by alcian blue-safranin staining and contained significantly less TNF-α and 

VEGF than E18MC. E15MC were also less responsive to C48/80. Despite these differences, 

both lysates had some effect when injected into E15 wounds. However, a higher percentage 

of the wounds injected with E18MC lysate healed with a frank scar and the size of the scars 

were 1/3 larger compared to wounds injected with E15MC lysate. Interestingly, both 

E15MC and E18MC contained tryptase, which could explain why the E15MC lysate also 

disrupted scarless healing to some extent. It should be noted that fetal skin would not likely 

encounter the mediators present within E15MC under normal circumstances since E15 mast 

cells do not degranulate in response to injury. In any case, these data show that exposure of 

fetal wounds to mast cell mediators can interfere with scarless repair.

In addition to artificially exposing E15 wounds to mast cell mediators, mast cell-deficient 

KitW/W-v mice were used to assess the contribution of mast cells to scar formation in E18 

wounds. Mast cell-deficient KitW/W-v fetuses healed with significantly smaller scars 

compared to wild-type Kit+/+ mice. While there was less scarring in KitW/W-v mice, these 

wounds did not heal entirely without a scar, suggesting that mast cells play a part in scar 

formation but are not the only factor involved. For example, inherent differences in early 

gestation dermal fibroblasts are thought to direct scarless healing (Lorenz et al., 1995) and 

differences in the behavior of early and late gestation fibroblasts have been described (Brink 

et al., 2009; Carter et al., 2009; Hirt-Burri et al., 2008; Sandulache et al., 2007). Therefore, 

it is possible that even in the absence of mast cells, E18 KitW/W-v fetuses cannot achieve 

completely scarless healing because the fibroblasts have already lost the ability to mediate 

scarless repair at this late stage in development.

Several mast cell-deficient strains exist (Grimbaldeston et al., 2005; Kitamura et al., 2001), 

but KitW/W-v mice are the most commonly used strain and have been used to study adult 

wound healing. Using the Kitw/w-v strain, mast cells have been shown to impact neutrophil 

infiltration, suggesting that mast cells are heavily involved in the regulation of acute wound 

inflammation (Egozi et al., 2003; Weller et al., 2006). Another study suggested a role for 
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mast cells in collagen remodeling (Iba et al., 2004), but to date, a comprehensive study 

examining scar formation in KitW/W-v mice has not been published. In addition to lacking 

mast cells, KitW/W-v mice have defects in melanogenesis, are sterile, and develop macrocytic 

anemia. While we do not believe these issues contributed significantly to the results seen in 

the fetal wound model described here, we cannot completely rule out this possibility. Other 

mast cell-deficient mouse models were considered for these experiments, but it has been 

reported that dermal mast cells are present in developing skin in these alternative strains, 

with the skin only becoming significantly mast-cell deficient after birth (Kitamura and Go, 

1979; Kitamura et al., 2001; Yamazaki et al., 1994). For this reason, the KitW/W-v strain was 

the most suitable for these studies.

While the studies presented here are the first to describe a role for mast cells in scar 

formation in fetal wounds, previous studies have suggested that mast cells are involved in 

clinically significant abnormal scarring. Keloids and hypertrophic scars both contain high 

numbers of mast cells (Boyadjiev et al., 1995; Hakanson et al., 1969; Harunari et al., 2006; 

Kischer et al., 1978; Smith et al., 1987), and recently, the mast cell stabilizer ketotifen was 

shown to reduce contraction and scar tissue deposition in a hypertrophic scar model 

(Gallant-Behm et al., 2008). Mast cells are also thought to contribute significantly to fibrotic 

diseases in the skin and other organs, such as scleroderma and pulmonary fibrosis (Atkins 

and Clark, 1987; Gruber, 2003). Overall, the data presented here provide further evidence 

that mast cells could be a viable target for anti-fibrosis and anti-scarring therapies.

Materials and Methods

Animals

Mice were handled in accordance with the Ohio State University Institutional Animal Care 

and Use Committee guidelines. FVB mice (Taconic Farms, Hudson, NY) or male 

C57BL/6J-KitW-v/J and female WB/Rej KitW/J mice (Jackson Laboratories, Bar Harbor, 

ME) were time-mated and detection of a vaginal plug was designated E0. Because mast cell-

deficient KitW/W-v mice are sterile, heterozygous WB/Rej Kitw/J females were mated with 

C57BL/6J-kitw-v/J males to generate mast cell-deficient WBB6F1-KitW/W-v (KitW/W-v) 

fetuses and normal WBB6F1-Kit+/+ (Kit+/+) littermates. Mast cell-deficiency in KitW/W-v 

skin was confirmed by toluidine blue staining (data not shown). FVB mice were used in all 

studies unless otherwise indicated.

Full-thickness dorsal fetal wounds were generated at E15 or E18 as described (Wilgus et al., 

2008). After wounding, 1 μl of PBS or mast cell lysate (described below) containing 10% 

India ink was injected subcutaneously at the wound site. Wounded animals were euthanized 

at various timepoints post-surgery. Skin from age-matched unwounded animals served as 

controls. Samples were fixed in 10% formalin overnight and embedded in paraffin for 

histology.

Mast cell culture

Mast cells were isolated using published methods with slight modifications. E15 or E18 skin 

was digested by incubation in complete RPMI 1640 containing 1.5 mg/ml collagenase and 
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0.5 mg/ml hyaluronidase at 37°C for 1 hour (Sigma Aldrich, St. Louis, MO) (Benyon et al., 

1987). Cells were strained through a nylon strainer and red blood cells were lysed with ACK 

buffer (Invitrogen, Carlsbad, CA). Cells were then cultured for 14 days as described 

(Yamada et al., 2003) in RPMI 1640 containing interleukin-3 and stem cell factor (10 ng/ml 

each; Peprotec, Rock Hill, NJ). Mast cells were purified using 40% isotonic Percoll 

(Yamada et al., 2003). Cells were used for cytospin preparations or resuspended at a 

concentration of 4×106 mast cells/ml in PBS and lysed via sonication (three rounds of ten 

one-second pulses). Lysates were centrifuged to remove cellular debris and aliquots were 

stored at −80°C until use. Lysates were prepared for injection by diluting with PBS and 

India ink (10%) to a concentration equivalent to 900 lysed mast cells/μl. This preparation (1 

μl) was injected into fetal wounds as described above.

Protein analysis

For protein analysis, cultured mast cells were lysed by sonication in RIPA buffer containing 

protease inhibitor cocktail (Thermo Scientific, Rockford, IL). After centrifugation, total 

protein concentrations were determined using the BCA (bicinchoninic acid) protein assay 

(Thermo).

Tryptase β-1 and β-actin levels were determined by Western blot using standard methods. 

Total protein (5 μg) was separated on 12% SDS-polyacrylamide gels, and transferred onto 

PVDF membranes (Bio-Rad Laboratories, Hercules, CA). Membranes were blocked and 

probed for mouse tryptase β-1 (R&D Systems, Minneapolis, MN). Membranes were stripped 

with Restore PLUS buffer (Thermo), blocked and probed for β-actin (Cell Signaling 

Technology, Danvers, MA). Proteins were visualized using Immun-Star WesternC 

chemiluminescence reagents and digital images were captured using the Chemidoc XRS 

imaging system (Bio-Rad). Densitometry was performed using Quantity One software (Bio-

Rad) and data are presented as density of tryptase β-1/β-actin.

Histamine, TNF-α, and VEGF content was measured using commercially available kits 

according to manufacturer’s instructions. For each sample, 5 ng (histamine EIA; Oxford 

Biomedical Research, Oxford, MI) or 50 μg (TNF-α and VEGF ELISA; R&D Systems) of 

total protein was used for the assays.

Degranulation assays

Degranulation of cultured mast cells was assesed by measuring β-hex and histamine release. 

β-hex assays were performed as described previously (Ortega et al., 1989). A 20 μl volume 

containing 2×104 cultured mast cells and C48/80 at final concentrations ranging from 0–100 

μg/ml in Tyrode’s buffer were used for each reaction. For histamine release 10-fold dilutions 

of supernatant and lysed pellet from the β-hex assay were analyzed using a histamine EIA 

(Oxford Biomedical Research). The percent release was calculated using the following 

formula:
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Histochemical Stains

Toluidine blue, which stains mast cell granules blue (Smith and Atkinson, 1956), was used 

to identify dermal mast cells by staining paraffin sections with 0.2% toluidine blue (Sigma 

Aldrich) in 0.7N HCl overnight. Mast cells were counted under light microscopy using an 

Axioscope 40 microscope (Carl Ziess Inc., Thornwood, NY) in five high-power fields per 

sample of unwounded dorsal skin. Digital pictures were then taken using an AxioCam MRc 

5 digital camera (Carl Ziess). Ten individual mast cells per sample were traced and the mean 

area and the integrated density of staining, as a measurement of granularity, were calculated 

for each mast cell. For wounds, mast cell numbers and extracellular granule remnants 

(Lindstedt et al., 2001) were counted in two fields of skin immediately adjacent to either 

side of the wound (total of four fields). To control for differences in dermal thickness 

between E15 and E18 skin, the area of the dermis for each field was determined using 

Axiovision software (Carl Zeiss). Mast cell or granule remnant densities (numbers/mm2) 

were then calculated.

Alcian blue-safranin was used to distinguish between immature and mature mast cells by 

staining paraffin sections or acetone-fixed cytospin preparations as described (Csaba, 1969; 

Kalesnikoff and Galli, 2011). Mast cells were categorized as immature if the granules 

stained blue, mature if the granules stained red or intermediate if they contained a mixture of 

blue and red granules (Combs et al., 1965).

Masson’s trichrome staining was used to visualize scar tissue as described (Wilgus et al., 

2008; Wilgus et al., 2003), and scar widths were measured using Axiovision software (Carl 

Zeiss).

Statistics

Prism (Graphpad, La Jolla, CA) was used for statistical analysis. Student’s two-tailed t-test 

or two-factor ANOVA with Bonferroni’s post-hoc tests were used. P-values less than 0.05 

were considered statistically significant.
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Abbreviations

E15 embryonic day 15

E18 embryonic day 18

PBS phosphate buffered saline

E15MC cultured mast cells from E15 skin

E18MC cultured mast cells from E18 skin

TNF-α tumor necrosis factor-α
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VEGF vascular endothelial growth factor

β-hex β-hexosaminidase

n.d. not detected
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Figure 1. Characterization of mast cells in unwounded fetal skin
Mast cell density (a), size (b), and granularity (c) as estimated by staining intensity were 

determined in toluidine blue-stained sections of unwounded E15 ( ) or E18 (■) fetal skin. 

Bars represent the mean ± SEM (n=9 E15 and n=6 E18 skin samples; **p<0.01, 

***p<0.001). Representative photomicrographs of toluidine blue-stained E15 (d) and E18 

fetal skin (e) are shown. Scale bars = 50 μm and dotted lines mark the dermal-epidermal 

junction. Higher magnification photomicrographs show a representative mast cell from E15 

(f) and E18 (g) skin. Scale bars = 10 μm.
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Figure 2. Analysis of mast cell maturity in fetal skin
Mast cells in E15 or E18 skin were categorized as immature, intermediate, or mature based 

on staining with alcian blue-safranin. Representative photomicrographs of E15 (a) and E18 

(b) skin are shown. Scale bars = 20 μm and dotted lines mark the dermal-epidermal junction. 

Cells with granules that stained blue were considered immature (■), cells with granules that 

stained red were considered mature (□), and cells with red and blue granule staining were 

considered intermediate ( ). Arrows indicate representative mast cells from each category. 

The percentages of cells at each level of maturity are shown in (c). Bars represent mean ± 

SEM (n=8 E15 and n=6 E18 skin samples; **p<0.01, ***p<0.001).
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Figure 3. Comparison of mast cell degranulation after wounding
The density of mast cells (a) and granule remnants (b) were determined in the dermis 

adjacent to wounds in E15 ( ) or E18 (■) fetal skin using toluidine blue-stained sections. 

Values for unwounded control skin (ctrl) are included for reference. Bars represent the mean 

± SEM (n=3–9 fetuses per group; *p<0.05, **p<0.01, ***p<0.001). Representative 

photomicrographs of toluidine blue-stained E15 (c) and E18 (d) skin harvested at 5 hours 

post-wounding are shown. Scale bars = 50 μm and dotted lines mark the dermal-epidermal 

junction. Arrows indicate mast cells ( ) and granule remnants ( ).
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Figure 4. Differences in cultured E15MC and E18MC
Cells from E15 or E18 skin were cultured for 14 days and mast cells were purified by 

centrifugation in 40% Percoll. Representative alcian blue-safranin-stained cytospins of 

E15MC (a) and E18MC (b) are shown. Scale bars = 20 μm. Tryptase β-1 was detected by 

Western blot (c) and the density of tryptase β-1/β-actin was determined (d). Histamine (e), 

TNF-α (f), and VEGF (g) content in cell lysates were determined by ELISA. TNF-α was not 

detected (n.d.) in E15MC samples. Values were normalized to total protein (mg). 

Degranulation in response to C48/80 at various doses was determined by β-hex (h) and 

histamine (i) release. Bars represent the mean ± SEM (n=3–8 per group from separate 

cultures; *p<0.05, **p<0.01, ***p<0.001).
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Figure 5. Effects of mast cell lysate injection on scarless healing
Wounds were generated at day E15 and injected with PBS (a) or lysate from E15MC (b) or 

E18MC (c). Samples were harvested at 10 days post-wounding. Representative 

photomicrographs of trichrome-stained wound sections are shown. Scale bars = 100 μm and 

arrows denote the wound/scar margins. The width of the scars was measured and the data 

are shown in (d). Bars represent mean ± SEM (n=5 E15MC scars and n=19 E18MC scars)
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Figure 6. Analysis of scar formation in mast cell-deficient fetuses
KitW/W-v and Kit+/+ littermates were wounded at E18 and wounds were harvested 7 (a, b) or 

10 (c, d) days post-wounding. Representative photomicrographs of trichrome-stained scars 

from mast cell-deficient KitW/W-v mice (a, c) and normal Kit+/+ littermates (b, d) are shown. 

The scar margins are marked by arrows. Scale bars = 200 μm. Trichrome-stained sections 

were used to determine the size of the scars (e). Bars represent the mean scar width ± SEM 

(n=5–11 wounds per group; *p<0.05, **p<0.01).
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