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Abstract: The concentration of volatile organic compounds (VOCs) can inform about the metabolic
condition of the body. In the small intestine of untreated persons with celiac disease (CD),
chronic inflammation can occur, leading to nutritional deficiencies, and consequently to functional
impairments of the whole body. Metabolomic studies showed differences in the profile of VOCs
in biological fluids of patients with CD in comparison to healthy persons; however, there is scarce
quantitative and nutritional intervention information. The aim of this study was to evaluate the
effect of the supplementation of a gluten-free diet (GFD) with prebiotic oligofructose-enriched
inulin (Synergy 1) on the concentration of VOCs in the urine of children and adolescents with CD.
Twenty-three participants were randomized to the group receiving Synergy 1 (10 g per day) or
placebo for 12 weeks. Urinary VOCs were analyzed using solid-phase microextraction and gas
chromatography–mass spectrometry. Sixteen compounds were identified and quantified in urine
samples. The supplementation of GFD with Synergy 1 resulted in an average concentration drop
(36%) of benzaldehyde in urine samples. In summary, Synergy 1, applied as a supplement of GFD for
12 weeks had a moderate impact on the VOC concentrations in the urine of children with CD.

Keywords: volatile organic compounds; celiac disease; gluten-free diet; gas chromatography–mass
spectrometry; solid-phase microextraction; prebiotic

1. Introduction

Volatile organic compounds (VOCs) are carbon-based molecules that are volatile at ambient
temperature [1]. Hundreds of VOCs are secreted by cells of the human body, as a result of metabolic
processes. The qualitative and quantitative profile of VOCs in biological fluids can vary depending
on the metabolic changes; therefore, the pattern of volatile metabolites may reflect the presence
of disease [2]. Several studies showed an association between the pattern of volatile biomarkers
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and the presence of gastrointestinal diseases [3–9]. Gas chromatography coupled with mass
spectrometry (GC–MS), a “gold standard” in VOC analysis, was applied to distinguish patients
with diarrhea-predominant irritable bowel syndrome, Crohn’s disease, ulcerative colitis, and healthy
controls [8], as well as celiac disease (CD) and irritable bowel syndrome [6]. Moreover, the effect of
a gluten-free diet (GFD) on the exhaled breath was evaluated [10,11]. The great success of previous
studies contributed to the tremendous progress in the development of new analytical techniques for
VOC detection, such as field-asymmetric ion mobility spectrometry and selected ion flow tube mass
spectrometry, successfully applied in the analysis of VOCs in gastrointestinal diseases [5,12]. Recently,
volatolomics was established as a new scientific domain with significant diagnostic potential [13].
The application of the VOC analysis can be an innovative and non-invasive tool for the diagnosis of
diseases, as well as for the monitoring of the effectiveness of treatment [14].

It is believed that changes in VOCs observed in gastrointestinal diseases are the result of the
impaired fermentation activity of the gut microbiota [6]. In many clinical trials, the changes in
the metabolism of bacteria were suggested as more informative than the microbiota composition
itself [15–17]. Moreover, many of the nutritional interventions had moderate or no effect on qualitative
and/or quantitative changes of intestinal microbiota; however, they had a much more prominent
effect on their metabolism [14,16,17]. In the intestines, the interaction between commensal bacteria,
human cells, and pathogens occurs and results in the formation of hundreds of VOCs observed in
feces, urine, sweat, blood, and exhaled breath [18]. The presence of intestinal VOCs in urine, sweat,
blood, and breath can be related to changes in the intestinal barrier [6], which are attributed to several
gastrointestinal diseases [19,20]. The analysis of VOCs in urine has several benefits over the other
biological fluids. Urine collection is non-invasive and does not cause discomfort even with multiple
sampling. Moreover, the concentration of VOCs in urine is higher compared to blood, as urine is
pre-concentrated in the kidney, which facilitates the detection of metabolites [21]. However, on the
other hand, the pre-concentration of urine can vary within and between individuals, which should be
considered as a confounding factor.

CD is a life-long gluten-related enteropathy observed in genetically predisposed individuals.
The prevalence of CD is estimated for approximately 1% of the global population; however, it is
suggested that many patients remain undiagnosed [22]. In addition to the intestinal (abdominal pain,
diarrhea) and extra-intestinal (increased bone fractures, anemia, depression) symptoms, the dysbiosis
of intestinal microbiota, characterized by lower diversity and disproportion between Gram-positive
and Gram-negative bacteria [23], as well as altered intestinal permeability [20], is commonly observed
in CD patients. The only approved treatment of CD is a GFD. However, in many patients, even
after long-term adherence to the treatment, nutritional deficiencies and a lack of intestinal recovery
are observed [24–26]. Therefore, there is a strong need to incorporate auxiliary therapies, including
GFD supplementation, into the treatment regime of the CD, followed by an evaluation of their safety
and effects.

Prebiotics, defined as substrates that are selectively utilized by host microorganisms conferring
a health benefit [27], were reported to increase the absorption of nutrients [28] and to improve
the histomorphological parameters of intestines [29], confirmed in a clinical trial and in vivo
studies. Recently, the beneficial effects of prebiotics on several aspects of health in CD patients
were reported [17,30–32]. Briefly, prebiotics were found to stimulate the activity of the intestinal
microbiota [17], modulate the amino-acid metabolism [30], improve the fat-soluble vitamin status [31],
and improve bone metabolism [32]. However, the impact of GFD supplementation with prebiotics on
the VOC pattern remains to be analyzed.

In general, the number of studies evaluating VOC pattern after nutritional interventions is limited.
Therefore, this exploratory, randomized, placebo-controlled study is proposed to evaluate the effect
of prebiotic oligofructose-enriched inulin intake on the profile of VOCs in the urine of children and
adolescents with CD following a GFD, using solid-phase microextraction with GC–MS.
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Hypothesis: Nutritional intervention with oligofructose-enriched inulin will improve the intestinal
health of children with CD, affecting the profile of urinary VOC.

2. Results

In the urine of patients with CD, a total of sixteen compounds, representing different chemical
groups, were identified and quantitatively characterized (Table 1). Additionally, 4-methylphenol and
2-pentylfuran were determined in some urine samples, but values above the limit of quantification
were detected only in a few samples. An example of the chromatogram is presented in Figure 1.
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Figure 1. An example of a chromatogram of urinary volatile organic compounds (VOCs) obtained with
gas chromatography–mass spectrometry (GC–MS): (1) acetone; (2) butane-2,3-dione; (3) butan-2-one;
(4) pentan-2-one; (5) heptan-4-one; (6) heptan-2-one; (7) 6-methylhept-5-en-2-one; (8) trans-3-octen-2-one;
(9) hexanal; (10) benzaldehyde; (11) octanal; (12) dimethyl disulfide; (13) dimethyl trisulfide;
(14) D-limonene; (15) linalool; (16) 2-pentylfuran; (17) 4-methylphenol; (18) 1,3-di-tert-butylbenzene.

At baseline, the concentrations of VOCs in urine were similar in both experimental groups
(Table 1). The median concentration of trans-3-octen-2-one was similar in both experimental groups at
baseline; however, this ketone was not detected in three urine samples of patients from the Synergy
1 group.

The supplementation of GFD with Synergy 1 did not impact on the profile or the concentration
of the majority of VOCs in the urine of CD patients. The only significant (p < 0.05) change was
observed for benzaldehyde, where the concentration decreased by 36% after the intervention (Table 1).
Furthermore, trans-3-octen-2-one was not detected in some urine samples (two from Synergy 1 group
and one from the placebo group); however, it had no effect on differences between experimental
groups. The decrease in the concentrations of 1,3-di-tert-butylbenzene was observed in the placebo
group after the twelve-week intervention.

Multivariate analysis showed a high inter-individual variation of the data (Figure 2). Principal
component analysis (PCA) plots explained 46.42% and 44.25% of variations at baseline and after
the intervention, respectively. No separation was observed either before or after the intervention.
At baseline, anthropometric indices (age, height, body weight) had an influence on D-limonene and
acetone concentrations. The level of linalool was associated with the time of GFD adherence. Similar
associations were not observed after the intervention (Figure 2).
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Table 1. Volatile organic compounds (VOCs) (nmol/L) detected and quantified in the urine of children
from Synergy 1 and placebo group, before (T0) and after (T1) the intervention, expressed as median
(P25–P75).

T0 T1

Placebo Synergy 1 Placebo Synergy 1

Ketones
acetone 12023 (9066–17649) 12184 (10229–17740) 12816 (10549–14704) 12564 (9969–19006)

butane-2,3-dione 66.80 (50.50–88.74) 63.22 (53.03–104.73) 59.10 (28.12–68.74) 53.63 (44.46–65.58)

butan-2-one 167.59 (73.60–229.55) 180.77 (95.76–271.57)
168.38

(116.26–313.56)
229.20

(126.17–294.85)
pentan-2-one 21.76 (9.42–57.88) 31.80 (20.55–54.27) 41.57 (18.19–60.49) 40.04 (32.83–64.30)
heptan-4-one 41.91 (22.65–125.91) 53.32 (28.13–87.32) 86.19 (32.29–103.91) 84.02 (51.86–130.34)
heptan-2-one 6.94 (3.42–14.82) 6.11 (2.59–17.55) 10.31 (3.39–12.98) 8.04 (5.38–11.73)

6-methylhept-5-en-2-one 1.31 (0.57–4.08) 1.33 (0.50–2.30) 1.87 (0.38–2.68) 1.33 (0.52–1.83)
trans-3-octen-2-one 0.59 (0.39–4.49) 0.56 (0.41–0.92) 1.08 (0.46–1.90) 0.71 (0.39–1.02)

Aldehydes
hexanal 37.38 (24.60–59.95) 23.79 (17.99–36.84) 36.59 (24.22–45.63) 28.27 (18.84–38.78)

benzaldehyde 7.14 (3.14–22.86) 7.16 (3.47–12.94) 7.53 (2.48–10.00) 6.21 (3.52–7.14) a

octanal 0.83 (0.35–4.11) 0.62 (0.15–2.58) 0.85 (0.20–2.04) 1.11 (0.39–1.34)

Sulfur compounds
dimethyl disulfide 19.29 (11.39–23.26) 13.02 (6.86–18.44) 8.94 (6.70–15.16) 12.67 (7.02–19.29)
dimethyl trisulfide 1.22 (0.95–3.30) 1.01 (0.34–2.27) 1.28 (0.46–1.90) 1.72 (0.50–3.09)

Terpenes
limonene 45.27 (9.29–67.86) 32.56 (4.02–42.40) 36.78 (24.22–45.63) 28.79 (5.46–62.43)
linalool 20.63 (14.68–28.12) 19.28 (15.99–29.20) 16.14 (11.86–26.20) 18.09 (11.76–26.24)

Aromatic compounds
1,3-di-tert-butylbenzene 0.82 (0.42–1.25) 0.52 (0.33–0.92) 0.66 (0.34–0.87) a 0.57 (0.33–0.91)

a—statistically significant differences within groups before and after the intervention.

3. Discussion

Our study, for the first time, reports the profile and concentrations of VOCs in the headspace
above the urine of children and adolescents with CD after a 12-week nutritional intervention with
prebiotics applied as a supplement of GFD.

Sixteen compounds quantified in the present study were selected based on the previous studies
reporting differences in urinary VOCs between healthy children and children with CD [4,33].
We hypothesized that, after the nutritional intervention with prebiotics, the urinary profile of VOC in
children with CD would be altered, as a consequence of the changes in the gut caused by prebiotics.
The present study indicated, however, that applied nutritional intervention did not have a strong
effect on the profile of VOCs in urine. The only difference observed after the Synergy 1 intake was
a significant reduction in benzaldehyde concentration. The explanation for the benzaldehyde drop
in concentration can be related to the microbiota activity. Benzaldehyde can be formed as a result of
the conversion of phenylalanine by aminotransferase produced by Lactobacillus bacteria [34]. In our
study, the amount of the precursor phenylalanine was similar in both groups before and after the
supplementation [30]. However, the Lactobacillus count was significantly lower in the Synergy 1
group as compared to placebo [17]. This might result in a reduction in phenylalanine conversion and,
consequently, in decreased benzaldehyde concentration in urine.

In the placebo group, the decrease in the concentration of 1,3-di-tert-butylbenzene was observed.
This is particularly interesting because this compound was suggested as a marker of CD, observed
only in the urine of children with CD, while it existed in none of the samples from healthy children [33].
However, the origin of 1,3-di-tert-butylbenzene in the human body is not clear and requires further
studies. It was reported that 1,3-di-tert-butylbenzene is a product of radiolysis of the antioxidant
Irgafos used in food packaging [35], and this is a possible explanation of its origin in urine.
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Figure 2. Results of principal component analysis (PCA) of urinary VOCs at baseline (A), and after
the intervention (B). Red circles—Synergy 1 group; green triangles—placebo group. Left graphs—
score plot; right graphs—correlation circle presenting correlations between individual VOCs and
anthropometric indices.

The high inter-individual variation in VOC profiles makes it difficult to demonstrate significant
differences after the applied prebiotic intervention. On the other hand, it may result from the recovery
of the intestinal mucosa and the reduction in intestine permeability. The recent research suggests
that the perturbation in the urinary VOC profile observed in some gastrointestinal diseases may
result from changes in the gut barrier [6]. Children and adolescents participating in the present
study were treated with a GFD for at least six months (average: 2.9 ± 1.9 and 2.3 ± 1.2 years in
Synergy 1 and placebo group, respectively), which is considered as sufficient time to restore the proper
functioning of the intestinal barrier [36]. In literature, the results of the prebiotic supplementation
aimed to improve intestinal permeability are inconsistent. Animal studies with non-digestible fructans
confirmed beneficial histomorphological changes in the gut and intestinal barrier functioning [29].
Similarly, a randomized, double-blind crossover nutritional intervention study with inulin-enriched
pasta showed modulation of circulating levels of zonulin and glucagon-like peptide 2 in healthy
young volunteers, suggesting that prebiotics could be used in the prevention of gastrointestinal
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diseases [37]. On the other hand, many clinical trials found no effect of prebiotics on intestinal barrier
functions [38–40]. Therefore, the unambiguous impact of prebiotics on intestinal barrier functioning
require further in-depth investigation.

To our knowledge, there is only one study analyzing the VOC profiles after nutritional
intervention [14], making the discussion of the present results in response to other studies a challenge.
The study by Rossi and co-authors [14] referred to irritable bowel syndrome and analyzed VOCs
in feces. Although impossible to compare, the results presented in this interesting paper reported
that the analysis of VOCs in feces can predict responses to the nutritional intervention. As in the
present study, we did not observe profound differences in urinary VOCs after the applied nutritional
intervention. In future studies, it would be worthwhile to analyze the VOC profile in feces of children
with CD, especially as, in our previous research, we observed significant changes in the concentration
of short-chain fatty acids in the feces of children with CD after the intervention with prebiotics [17].

Despite the novel nature of this study, some limitations should be mentioned. Firstly, there was no
calculation of the sample size. However, this limitation is related to the pilot type of study. Therefore,
the present study should be considered as an exploratory study, providing the data for calculation of
the sample size for future validation studies. A second limitation was the small number of participants,
causing problems in statistical evaluation based on the high inter-individual variability. This limitation
is also strongly associated with the preliminary nature of the study. Thirdly, in this study, the control
of the diet was not presented; however, the control of the diet was performed using validated food
frequency questionnaires [41], even though details were not presented in this manuscript.

Finally, the study presented here is focused on the targeted analysis of selected compounds,
limiting the number of possible responses of a non-analyzed and unknown compound. However,
the authors wanted to focus on quantitative analysis, which is missing in the literature; therefore,
to calculate accurately, a limited number of compounds had to be selected. However, comparing whole
metabolic profiles in the urine of children and adolescents with CD after the nutritional intervention
would also be scientifically interesting; therefore, it is suggested as a future study.

4. Materials and Methods

4.1. Chemicals and Materials

Chemical standards of acetone, butane-2,3-dione, butan-2-one, thiophene, dimethyl disulfide,
hexanal, heptan-4-one, heptan-2-one, 2-pentylfuran, dimethyl trisulfide, 6-methylhept-5-en-2-one,
benzaldehyde, octanal, D-limonene, trans-3-octen-2-one, linalool, 4-methylphenol, 1,3-di-tert-butylbenzene,
internal standard (4-methylpentan-2-ol), and sodium chloride (NaCl, ≥99.5%) were supplied by
Sigma-Aldrich (Saint Louis, MO, USA). MilliQ water (Millipore, Bedford, MO, USA) was used for
the preparation of standards. Hydrochloric acid (HCl, 37%) was purchased from Chempur (Piekary
Śląskie, Poland). The 75-µm carboxen/polydimethylsiloxane (CAR/PDMS) (stable flex) solid-phase
microextraction (SPME) fibers were purchased from Supelco (Bellefonte, PA, USA).

4.2. Study Protocol

A randomized, placebo-controlled, single-center clinical trial with nutritional intervention was
performed. The full details of the study protocol, inclusion/exclusion criteria, and a CONSORT chart
are available elsewhere [42]. The present study is part of a larger study which was registered in the US
National Library of Medicine (identifier: NCT03064997; http://www.clinicaltrials.gov). The study
was performed in the Gastrointestinal Clinic of the Children’s Hospital in Olsztyn from January to
June 2016. A brief description of original study is as follows: 34 children diagnosed with CD and
following a GFD for at least six months were randomly assigned to a group receiving 10 g per day
of oligofructose-enriched inulin (Synergy 1; Orafti®, Beneo, Belgium) or a group receiving placebo
(maltodextrin) for a period of 12 weeks. The placebo and prebiotic supplements were identical in
appearance and taste. Participants and their caregivers, clinicians, and most of the investigators (except

http://www.clinicaltrials.gov
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one person providing supplements) were blinded. During the intervention, participants were asked to
note any side effects and daily supplement intake. Children were under the medical supervision of a
gastroenterologist, and blood morphology data can be found elsewhere [43].

The study protocol was approved by the Bioethics Committee of the Faculty of Medicine of
the University of Warmia and Mazury in Olsztyn, Poland (decision No. 23/2015). All procedures
involving human participants were performed with the ethical principles of the 1964 Declaration of
Helsinki and its later amendments. Parents or caregivers of participants were fully informed about the
study and signed the written informed consent on the first check-up visit.

In the present study, urine samples collected from 23 children were analyzed: 11 children from the
Synergy 1 group and 12 children from the placebo group. Patients’ anthropometric characteristics are
presented in Table 2. A smaller number of samples used in this study compared to the original study
were related to antibiotic intake during the intervention (two persons), inappropriate compliance (less
than 80% of time) to a nutritional intervention assessed based on the intervention diary (two persons),
and insufficient amount of urine provided for VOC analysis (seven persons). Fresh morning urine
samples were collected from each participant at baseline and after the intervention. Samples were
immediately centrifuged at 3500 rpm for 10 min, and aliquots of 4 mL were stored at −80 ◦C until
further analysis.

Table 2. The participants’ anthropometric data. Results are presented as ranges and means ±
standard deviation.

Synergy 1 Group Placebo Group p-Value

N 11 12
Gender Girls—7; Boys—4 Girls—8; Boys—4 0.886

Age (years) 5–18; Av1 = 10.8 ± 4.1 4–16; Av = 10.2 ± 4.4 0.720
Body weight (kg) 15.8–67.9; Av = 38.3 ± 16.9 16.3–66.8; Av = 35.6 ± 17.0 0.703

Height (m) 112.5–170.0; Av = 145.1 ± 21.3 103.0–172.0; Av = 139.4 ± 22.6 0.540
BMI (kg/m2) 12.5–23.5; Av = 17.2 ± 3.7 13.7–28.4; Av = 17.3 ± 4.0 0.962

1 Av = average; BMI = body mass index.

4.3. VOC Analysis

Analysis of VOCs in urine was performed according to the previously published protocol [33].
Briefly, 4 mL of urine was placed in 20-mL headspace vials with 2.98 g of sodium chloride and 21 µL of
6 M hydrochloric acid. Then, 4-methylpentan-2-ol was added to each sample as an internal standard
with a concentration of 196.24 nmol/L. Samples were incubated for 20 min at 30 ◦C with a shaking
speed of 500 rpm using a MultiTherm shaker (Benchmark Scientific, Edison, NJ, USA), resulting in the
release of VOCs from urine and their accumulation at the headspace. Next, the previously conditioned
CAR/PDMS fiber was manually inserted into the headspace, and extraction was carried out for 15 min
at 30 ◦C. After extraction, the fiber was introduced into the gas chromatography injector port with a
0.75-mm inner diameter (ID) splitless glass liner (Supelco, Bellefonte, PA, USA), set to a splitless mode,
with an inlet temperature of 240 ◦C. Thermal desorption was carried out for 10 min to avoid carryover.

Analysis of VOCs was performed using an HP 5890 gas chromatograph coupled with an HP
5972 mass selective detector (Agilent Technologies, Santa Clara, CA, USA) [33]. The compounds
were separated using a Zebron ZB-624 capillary column, 60 m × 0.25 mm × 1.40 µm (Phenomenex,
Torrance, CA, USA). The carrier gas was helium at a constant flow rate of 1 mL·min−1. The oven
temperature program was set as follows: 40 ◦C for 2 min, an increase to 220 ◦C at a rate of 5 ◦C·min−1,
and maintained at the final temperature for 5 min. Total run time was 42 min. Mass spectra were
obtained by electron ionization (EI) in the range of 40–550 m/z, and a solvent delay was set for
5 min. Ion source temperature was 230 ◦C and electronic impact energy was 70 eV. Total ion
chromatograms were analyzed with the MSD ChemStation E.02.02.1431 software (Agilent Technologies,
Santa Clara, CA, USA). Identification of compounds was performed by comparison of the retention
times and mass spectra to commercial standards. Quantification of compounds was done by external
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standard calibration, and the results were normalized relative to the peak area of the internal standard.
The previously described method was extended for analysis of acetone, pentan-2-one, D-limonene,
and linalool. The content of pentan-2-one was calculated, using heptan-2-one as the external standard,
by applying the arbitrary response factor of 1.00. For all compounds, the calibration curves were
prepared in the same way as described previously [33].

4.4. Statistical Analysis

All analyses were performed in duplicate. The normality of the quantitative variables was
evaluated using the Shapiro–Wilk W test. The comparison of anthropometric indices at baseline
between Synergy 1 and the placebo group was performed using a parametric Student’s t-test. As the
VOC data showed non-normal distribution, quantitative variables were expressed as median values
(P25–P75). Differences in the concentration of individual VOCs between Synergy 1 and the placebo
group were tested with the non-parametric Mann–Whitney U test. VOC concentrations within the
group, before and after the intervention, were compared using the Wilcoxon signed-rank test. Results
were considered statistically significant at the 5% critical level (p < 0.05). Exploratory data analysis
using PCA was carried out to interpret the complex data and to determine if the differences between
experimental groups could be seen. Both univariate and multivariate analyses were performed using
XLSTAT for Excel software.

5. Conclusions

In summary, this pilot study indicated that oligofructose-enriched inulin, applied as a supplement
of GFD for 12 weeks, had a moderate impact on the concentrations of VOCs in the headspace above
the urine of children and adolescents with CD. It is possible that the prolongation of the study may
result in a more dominant effect. Further studies are needed to confirm the effect of prebiotics on gut
integrity and, consequently, on the profile of VOCs in different biological fluids. Moreover, the origin
of the VOCs in the human body requires further examination.
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