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Abstract: Stress responses are of particular importance to microorganisms, because their 

habitats are subjected to continual changes in temperature, osmotic pressure, and nutrients 

availability. Stressors (and stress factors), may be of chemical, physical, or biological 

nature. While stress to microorganisms is frequently caused by the surrounding 

environment, the growth of microbial cells on its own may also result in induction of some 

kinds of stress such as starvation and acidity. During production of fresh-cut produce, 

cumulative mild processing steps are employed, to control the growth of microorganisms. 

Pathogens on plant surfaces are already stressed and stress may be increased during the 

multiple mild processing steps, potentially leading to very hardy bacteria geared towards 

enhanced survival. Cross-protection can occur because the overlapping stress responses 

enable bacteria exposed to one stress to become resistant to another stress. A number of 

stresses have been shown to induce cross protection, including heat, cold, acid and osmotic 

stress. Among other factors, adaptation to heat stress appears to provide bacterial cells with 

more pronounced cross protection against several other stresses. Understanding how 

pathogens sense and respond to mild stresses is essential in order to design safe and 

effective minimal processing regimes.  
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1. Introduction 

 

Different organizations (WHO, FAO, USDA, EFSA) recommend the regular consumption of fruit 

and vegetables for promoting/maintaining good health. Freshly prepared, ready-to-eat fruits and 

vegetables are a good example of convenient foods within the context of our modern life. Driven by 

consumers’ tendencies, the fresh-cut fruit and vegetable industry has expanded rapidly in recent years; 

as a consequence the production and manufacture of these products is at a stage of innovative 

dynamics. Consumers require high quality and convenience; to harmonize these demands without 

compromising safety, it is necessary to implement new preservation technologies. Moreover, some of 

these new preservation technologies aim at energy saving and being environmentally friendly. Fresh-

cut are raw fruits and vegetables that have been washed, peeled, sliced, chopped or shredded prior to 

being packaged for consumption. These products are typically preserved within semi-permeable 

packages and stored at refrigeration temperatures. The unit operations in use usually led to the 

destruction of surface cells making available a potentially richer source of nutrients for 

microorganisms [1,2]. These factors combined with high aw and either close to neutral (vegetables) or 

low acidic (many fruits) tissue pH, make easy rapid microbial growth [3,4]. A number of important 

human pathogens can contaminate fresh-cut produce and there has been an augment in the number of 

food produce-linked foodborne outbreaks in recent years [5]. In food processing, “mild technologies” 

are used to describe the technologies for the storage or processing of foods that, in principle, allow to 

minimize the thermal damage, mechanical and oxidative and chemical and biological contamination 

that usually accompany such operations unit. Many of these mild preservation technologies aim at 

being energy saving and environmentally friendly. Ohlsson [6] suggested that minimal processing 

techniques have emerged to replace traditional harsher methods of food preservation as they retain 

nutritional and sensory quality better. “Minimal processing” describes non-thermal technologies to 

process food in a manner to guarantee the food safety and preservation as well as to preserve as much 

as possible the fresh-like attributes of fruits and vegetables (Figure 1).  

This has stimulated interest in the use of mild preservation procedures and the development of the 

combined effects of several antimicrobial principles in multifactorial preservation approach or hurdle 

technology [7]. This approach is based on the observation that antimicrobial factors act co-operatively 

or synergistically with their combined antimicrobial effect being greater than the sum of the individual 

factors. Numerous reports described such observations for a range of different hurdles [8,9]. The 

practical outcome of this is that the combined effect of several relatively mild antimicrobial hurdles 

may offer the desired shelf life and safety properties while retaining many desirable sensory 

characteristics.  

Targeted application of the hurdle concept has become more available as a result of the important 

improvements in our understanding of the principles of main preservative factors and their interactions 

[10]. On exposure to stressful conditions such as drying, cold, heat and low pH, stressed bacterial cells 

may lose their viability, become injured, or express adaptive mechanisms that would help them to 
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survive or even continue growth during stress. These mechanisms begin with stress-sensing followed 

by producing signals that induce the development of a response that aids adaptation. On sensing stress 

and developing a signal, cells synthesize mechanisms to cope with the emergent hardship. These 

mechanisms involve modifications of gene expression and protein activities aiming at preventing or 

reducing injures to cellular structures and components. 

Figure 1. Example of fresh-cut lettuce operation. 

 

 
 

In this paper, we review the molecular basis of bacterial stress response to classical and new 

stressors that deal with some mild technologies and minimal processing. Our goal is to stimulate the 

research and the development of molecular targets in order to analyse bacterial cell response in 

minimally processed food and, particularly, “cross protection”. This biological mechanism, might have 

an important role in optimizing food preservation procedures and improve process sustainability and 

global quality of fresh-cut produce, from safety to the healthy properties.  

 

2. Bacterial Pathogens 

 

Food-produce contamination can occur during agricultural production (via animals or insects, soil, 

water, dirty equipment and human handling), harvesting, processing (cutting, shredding, washing, 

contaminated work surfaces/equipment, hygiene practices of workers), packaging (contaminated 

packaging materials/equipment) and transportation and distribution. 

Salmonella is the most common cause of disease outbreaks linked to fresh fruit and vegetables. 

Salmonellae are abundant in faecal material and sewage-polluted water; consequently they may 
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contaminate soil and crops with which they come into contact. Salmonellae from a range of  

food-produce, including sprouted seeds, cantaloupe melons, tomatoes, unpasteurised citrus juices, 

rocket and lettuce, have been responsible for several food poisoning outbreaks [11]. 

Escherichia coli O157:H7 is a member of the enterohemorrhagic group of pathogenic E. coli that 

has emerged as a foodborne and waterborne pathogen of major public health concern [12]. Fresh 

produce was not considered a significant vector for the transmission of E. coli O157:H7 until the mid-

1990s, when a series of outbreaks associated with minimally processed horticultural products clearly 

showed that contamination can occur by indirect routes [13,14]. The largest E. coli O157:H7 outbreak 

ocurred in 1996, when >6,000 school children in Japan were infected with E. coli O157:H7 from white 

radish seed sprouts. Since 1993, 26 reported outbreaks of E. coli O157:H7 infection have been traced 

to contaminated lettuce and leafy green vegetables [15]. A recent multi-state outbreak in the USA 

linked to bagged fresh spinaches caused approximately 205 confirmed illnesses, 31 cases of hemolytic 

uremic syndrome and three deaths [16,17]. This outbreak was followed by two restaurant associated 

outbreaks linked to the consumption of pre-washed lettuce [18]. These recent outbreaks have 

highlighted the dangers of centralised distribution and the great distances that fresh produce travels.  

The Gram-positive bacterium Listeria monocytogenes is a food-borne pathogen of both public 

health and food safety significance. L. monocytogenes is widespread on plants and on agricultural 

environment generally, and is capable of surviving a variety of environmental stresses, including 

refrigeration temperatures [19], gas atmospheres commonly present within modified atmosphere 

packaging (MAP) produce and relatively low pH. Although there is a large amount of literature 

dedicated to researches concerning with the isolation, attachment, survival and growth of L. 

monocytogenes on food-produce [20,21], only two fresh-cut produce related listeriosis outbreaks have 

been documented [22,23]. 

 

3. Key Factors Affecting the Survival and Growth of Pathogens  

 

Pathogen survival and growth on food-produce is influenced by a number of interdependent factors, 

principally storage temperature, product type/combinations, minimal processing operations (e.g. 

slicing, shredding, washing and decontamination treatments), mild technologies, package atmosphere 

and competition from the natural microflora present on food-produce. First, each product type has an 

exclusive combination of compositional and physical characteristics and will have specific growing, 

harvesting and processing practices, and storage conditions; pathogen growth on food-produce varies 

significantly with the type of product [24,25]. Storage of food-produce at adequate refrigeration 

temperatures is probably the single most important factor affecting survival and growth of pathogens. 

Washing with tap water removes soil and other debris, some of the surface microflora, cell contents 

and nutrients released throughout slicing that support growth of microorganisms [26]. However, while 

washing in tap water removes bacteria from exposed surfaces, substantial numbers will remain in 

hollows at the connection of epidermal cells and in folds in the epidermis [27-29]. In addition, due to 

the re-use of wash water in industry, washing may result in bacterial enrichment and cross-

contamination of products rather than decontamination [3,30]. A variety of antimicrobial wash 

solutions have been used to diminish populations of microorganisms on fresh produce. Chlorine added 

to water as a solid, liquid or gas is the most frequently used disinfectant for fresh fruits and vegetables 
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[30,31]; however, a wide variety of other disinfectants, including acidic electrolysed water [32], 

peroxyacetic acid [33], chlorine dioxide [34], hydrogen peroxide [35], organic acids [36], trisodium 

phosphate [34] and ozone [37] have been also evaluated [38]. Natural antimicrobials from edible 

plants such as oilseeds, herbs, spices, fruit and vegetables, have been studied for their potential as 

possible replacements for chemical additives because of their safety for human consumption and broad 

acceptance from consumers [39,40]. Phenolic compounds present in plant essential oils (EOs) have 

been shown to possess antimicrobial activity and some are classified as generally recognised as safe 

(GRAS), and consequently may be useful to prevent post-harvest growth of spoilage and pathogenic 

bacteria [41]. Efforts to improve the overall effectiveness of the washing step by the use of classical 

physical treatments, such as mild heat or ethanol vapours, may enhance pathogen destruction. Novel 

decontamination techniques, including ultra-violet (UV) irradiation, high-pressure treatment, pulsed 

electric fields, microwave, high intensity pulsed light and thermal destruction using condensing steam, 

warrant supplementary investigation [42]. When a fresh-cut product is packaged, it continues to breath 

thereby modifying the gas atmosphere inside the package, hence the term modified atmosphere 

packaging (MAP). Ideally, O2 levels will fall from 21% in air to 2-5%, and CO2 levels will increase to 

the 3-10% range. The gas mixtures control the product’s biochemical and enzymatic reactions, inhibit 

the growth of microorganisms and make longer the shelf-life.  

MAP produce harbour large populations of microorganisms including pseudomonads, lactic acid 

bacteria (LAB) and Enterobacteriaceae [28,43]. The background microflora supply indicators of 

temperature abuse largely by causing detectable spoilage, and levels can vary considerably for each 

product and during storage. LAB can exert antibacterial effects due to one or more of the following 

mechanisms: lowering the pH; generating H2O2 [44]; competing for nutrients; and by producing 

antimicrobial compounds, such as bacteriocins [45]. The bacteriocins alone were also used in 

biocontrol of fresh-cut microflora. One other biotic factor to control bacterial pathogens on fresh-cut 

produce is represented by the use of bacteriophages. 

 

4. Stressors and Related Bacterial Stress Response 

 

Acid adapted L. monocytogenes, Salmonella and E. coli O157:H7 were shown to survive 

significantly better in acidic foods such as fruit juices, than their non-acid adapted counterpart cells 

[46,47]. This is due to a specific stress response characteristic of acid stressor, that involved the 

induction of a specific subset of genes organized into regulons, constituting the acid shock stimulon. A 

general overview of the stress responses to each single key factor affecting pathogen survival, is shown 

in Figure 2. 

 

4.1. Cold Stress 

 

Exposure to cold temperatures following harvest in order to minimize and/or inhibit the effects of 

wounding stress is recognized as one of the principal factors controlling the quality of fresh-cut leafy 

vegetables [48,49]. Although 0 °C is usually the desirable temperature for most fresh-cut products, in 

practice many of them are shipped and marketed at temperatures ranging from 5 to 10 °C [50].  
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Figure 2. Exemplificative interdependent factors that influence pathogens survival and 

growth on fresh-cut minimal processing [mild heat pre-treatments (MHPT); hot water 

immersion treatment (HWT); hot water rinsing and brushing (HWRB); oscillating 

magnetic fields (ohmic heating, dielectric heating, microwaves)]. Combined effects of 

several antimicrobial strategies is known as “hurdle technology”.  
 

 
 

In response to temperature downshift, a number of changes take place in prokaryotic cellular 

physiology such as, (i) decrease in membrane fluidity, (ii) stabilization of secondary structures of 

nucleic acids leading to reduced efficiency of mRNA translation and transcription, (iii) inefficient 

folding of some proteins, and (iv) hampered ribosome function [51]. A number of cold shock proteins 

are induced to cope with these harmful effects of temperature downshift. For all organisms, 

maintenance of functional cell membranes is a limiting factor for survival. Upon cold shock the 

physical status of biological membranes is altered from being fluid to becoming rigid. In a process 

generally termed homeoviscous adaptation, with decreasing temperature, bacteria incorporate fatty 

acids of lower melting points into lipids in a species-specific mode to re-establish membrane integrity 

and hence function. In this picture, the introduction of double bonds into acyl chains can either be 

achieved anaerobically during fatty acids synthesis or aerobically by modification of readily 

synthesized fatty acids through fatty acid desaturase enzymes. Transcription and translation are closely 

coupled in bacterial cells. However, transcription machinery and ribosomes generally occupy different 

subcellular regions in bacteria such as Escherichia coli and Bacillus subtilis, indicating the need for (a) 

mechanism(s) coupling these processes. A prime function of this mechanism(s) would be ensuring the 
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transfer of unfolded mRNA from the nucleoid to the ribosomes, which need linear mRNA for the 

initiation of translation. During conditions of a sudden decrease in temperature (cold shock), secondary 

structures in mRNA would pose an even greater problem for the initiation process. Two conserved 

classes of proteins, cold shock proteins (CSPs) and cold induced RNA helicases (CSHs), appear to be 

key players in the prevention of secondary mRNA structures and in transcription/translation coupling. 

CSPs are general mRNA-binding proteins, and like CSH-type RNA helicases, the presence of at least 

one csp gene in the cell is essential for viability [52]. E. coli contains nine CSPs (CspA to CspI), of 

which four (CspA, -B, -G, and -I) are cold shock inducible [53]. CspA, CspC, and CspE are RNA-

binding proteins which function as transcriptional antiterminators by preventing the formation of 

secondary structures in the nascent RNA. Csp-induced transcriptional antitermination is responsible 

for the increased expression of several genes [54,55]. B. subtilis contains three CSPs (CspB, -C, and -

D); CspB is essential for cellular growth in a strain lacking CspC and CspD and plays an important 

role for efficient protein synthesis at optimal and low temperatures [56], while CspB and CspC are 

major stationary phase-induced proteins [57].  

 

4.2. Heat Stress 

 

The use of hot water or steam may be a possibility to replace disinfection. Martín-Diana et al. [58] 

reported that short time exposure of fresh-cut (FC) lettuce to water steam reduced the respiration rate 

(RR), partially inactivated browning-related enzymes, and kept the mesophilic load as low as with a 

chlorine treatment. In FC fruits, mild heat pre-treatments (MHPT) (40 °C/70 min or 46 °C for 75 min) 

were effective in inducing firmness and avoiding browning of the cut surface while preserving their 

nutritional quality [59,60]. In the post-harvesting of fresh-cut vegetables hot water immersion 

treatment (HWT) and hot water rinsing and brushing (HWRB) technologies were successfully used 

[61]. HWT is applied at temperatures between 43 °C and 53 °C for periods of several minutes for the 

fresh cut, while HWRB is employed commercially for 10-25 s at temperatures between 48 °C and 63 

°C. Additionally, oscillating magnetic fields (ohmic heating, dielectric heating, microwaves) represent 

alternative ways to heating food matrices. The application of high temperatures has been widely used 

for the elimination of foodborne pathogens. This is due to the effectiveness of heat and its ability to 

cause damage to diverse structures and components in microbial cells including outer and cytoplasmic 

membranes, RNA and DNA. It also causes protein denaturation leading to destruction of enzyme 

activity and enzyme-controlled metabolism in microorganisms [62,63]. Traditional heat treatment 

techniques widely adopted in food industry, such as pasteurization and sterilization are too harsh to be 

resisted by vegetative bacterial cells. An interesting concept has been also proposed on sensing 

environmental stresses including heat. According to this theory, cells produce extracellular proteins to 

sense stress and act as “alarmones” of the emergent environmental changes [64]. The production of 

these extracellular components are suggested to provide early warning of stress compared to the 

cytoplasmic membrane and ribosomes. Following stress-sensing, cells set up strategies to cope with 

the emergent hardship. These mechanisms involve changes of gene expression and protein activities 

aiming at preventing or reducing damage to cellular structures and components. An important change 

is the induction of the synthesis of the so-called “heat shock proteins” (HSPs) [65]. These are highly 

conserved proteins that act as molecular chaperones or proteases affecting protein folding, repair and 
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degradation under normal and stress conditions [66]. For example, during heat stress, several HSPs 

such as DnaJ, DnaK, GrpE and GroEL function as chaperones preventing or repairing protein 

misfolding and thus ensuring their proper functioning. Whereas, other HSPs including ClpP, ClpX and 

Lon act as proteases catalyzing the degradation of misfolded proteins generated by exposure to stress. 

Both functions of HSPs help to provide cells with functional proteins which allow survival or growth 

during heat stress. In a study on heat shock proteins synthesis and heat resistance of Salmonella 

typhimurium, Mackey and Derrick [67] found four important heat shock proteins, with molecular 

weights ranging from 25 to 83 KDa, and correlated them with DnaK and GroEL reported in E. coli. 

The chaperone GroEL was found to diminish heat inactivation of a range of enzymes in vitro [68].  

 

4.3. Acid and Solvent Stress 

 

A decontamination step with lactic acid was evaluated to reduce the microbial contamination of 

minimally processed vegetables [69]. The antimicrobial effect of 1% and 2% lactic acid was 

established in potable tap water. Citric acid has been widely accepted as effective in reducing 

superficial pH of cut fruits [70]. Well documented is the antimicrobial effect of the treatments based 

on calcium salts on fruits and vegetables [58]. While calcium has a prevalent technological 

importance, on the other hand, organic calcium salts, with lowering pH (i.e. calcium lactate), may have 

antimicrobial properties [71]. 

In recent years, the acid stress response of several prokaryotes has been studied with both 

proteomics and transcriptomics approaches. A few reports describe the use of these approaches to 

study the organic acid stress response caused by lactate [73], acetate [74], propionate [74] and formate 

[75]. In other prokaryotes some enzymatic-transport systems have been found to play a role in pH 

control or in the maintenance of the proton motive force: a proton-translocating F1F0-ATPase [76]; 

several sodium-proton antiporters [77]; amino acid decarboxylases that use an intracellular hydrogen 

ion for the decarboxylation of an imported amino acid [76,78]. Several theories have been postulated to 

explain the toxic effect of organic acids in more detail. One of these considers organic acids as 

uncouplers that transport protons towards the inside of the cell, which is a pH-driven process. 

Eventually, this influx could lead to a complete dissipation of the proton motive force [79]. A second 

aspect relates to the deleterious effects of the lower intracellular pH, caused by the lactic acid. 

However, whereas many organisms aim at maintaining a constant intracellular pH [80], most anaerobic 

fermenting species avoid a basic pH keeping a lower intracellular pH, and, as a result, increasing their 

tolerance to organic acids [81]. A third factor explaining the inhibitory effect of organic acids is the 

intracellular accumulation of anions, which could lead to both end-product inhibition and a loss of 

water activity (aw) [82].  

A link between acid, ethanol and stress response has been demonstrated in a number of  

Gram-positive bacteria including food-borne pathogens. The expression of some stress inducible genes 

identified so far in bacteria is also affected by low pH values and ethanol, suggesting the intersection 

of different regulatory pathways and overlapping control of gene expression. For instance, acid and 

solvents such as ethanol and buthanol, induces several heat shock proteins, including DnaK and 

GroEL. Moreover, the Clp-ATP dependent proteases which degrade aberrant and nonfunctional 
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proteins, arising from stress conditions are also responsible for adaptation to multiple stresses and are 

inducible by low pH or high ethanol [83].   

Ethanol kills organisms by denaturing their proteins and dissolving their lipids and is effective 

against most bacteria, but is ineffective against bacterial spores [84]. Additionally, ethanol causes 

water stress by lowering aw and thereby interferes with hydrogen bonds within and between hydrated 

cell components, ultimately disrupting enzyme and membrane structure and function [85]. 

Plotto et al. [86] tested ethanol vapours on fresh cut fruit and showed that at lower application rates 

(8-10 h exposure), ethanol could be used as a safe microbial control in a fresh-cut production 

sanitation system. Ethanol vapors applied to whole apples reduced ethylene and CO2 production of 

fresh-cut apples, and their shelf life was increased due to maintenance of visual quality [87]. 

 

4.4. Oxidative Stress 

 

Chlorine dioxide is a stable dissolved gas, having a high oxidation and penetration power; ClO2 is a 

strong bactericide: with minimal contact time, it is highly efficient against pathogenic organisms such 

as Legionella, Amoebal cysts, Giardia cysts, E. coli, and Cryptosporidium [88]. Hyrdogen peroxide is 

a powerful bactericide (including spores) and oxidant, being able to generate other cytotoxic oxidising 

chemical species such as hydroxyl radicals [89]. Electrolyzed water (EW) is formed by adding a very 

small amount of NaCl (usually about 0.1%) to pure water, and conducting a current across an anode 

and cathode [90], the cathode area produces alkaline reducing water while the anode area produces 

acidic oxidizing water [90]; upon release of O•, O3 acts as a strong oxidizing agent being very 

effective in destroying microorganisms [91]. O3 destroys microorganisms by the progressive oxidation 

of vital cell components, preventing microbial growth and extending the shelf-life of many fruit and 

vegetables, and its industrial use is increasing [92]. 

Oxidative stress is a key stress in bacteria, caused by an imbalance between intracellular oxidant 

concentration, cellular antioxidant protection and oxidative change of macromolecules (membrane 

lipids, proteins and DNA repair enzymes) [93,94]. The reactive oxygen species (ROS) and nitrogen 

species (RNS) are the main causes of oxidative stress [95]. They are principally constituted by the 

hydroxyl radical (•OH), the superoxide anion (O2
-), hydrogen peroxide (H2O2), organic hydroperoxide 

(ROOH), peroxynitrite (OONO) and nitric oxide (NO). ROS and RNS cause damages to proteins [96], 

DNA molecules [97], RNA and lipids leading to negative repercussions of the cellular metabolism 

functions [98]. The toxicity of ROS/RNS discloses the significant role of competent protection 

subsystems, for instance the detoxification subsystem that numbers enzymes classified with regard to 

their substrates, or thioredoxin that help in the cellular defense against several oxidative stresses [99]. 

Catalases are common enzymes found in almost all-living organisms that catalyze the decomposition 

of hydrogen peroxide to produce oxygen and water [100]. Peroxidases reduce hydrogen or organic 

peroxides into water and alcohol moiety. This class of enzymes includes a wide number of 

phylogenetically unrelated families such as peroxiredoxins [101], rubrerythrins [102], glutathione-

peroxidases [103] or haloperoxidases [104]. Superoxide dismutases (SOD) dismute superoxide into 

hydrogen peroxide and oxygen [105]. An additional mechanism lately reported involves superoxide 

reductases (SOR), that are non-heme iron proteins [106]. The latter catalyzes the one-electron 



Int. J. Mol. Sci. 2009, 10 
 

3085

reduction of superoxide into hydrogen peroxide. Moreover, RNS-scavenging enzymes are essentially 

globins and nitric oxide reductases [107]. 

 

4.5. Osmotic Stress 

 

The inner osmotic pressure of a bacterial cell is normally maintained higher than that of the 

surrounding medium [108,109], and this is generally referred to as “turgor pressure”. To maintain this 

turgor pressure in a medium with a high concentration of solutes and to mitigate the osmotic stress 

resulting from low water availability, microbial cells tend to increase their internal cytoplasmic solute 

concentration through different mechanisms [110]. Water availability in a food environment is usually 

assessed by measuring the water activity (aw). Water activity (aw) is defined as the ratio of the water 

vapour pressure of the food or solution to that of pure water at the same temperature. It indicates the 

quantity of water available in a material for microbial growth. The values of water activity are 

represented in a scale range between 0 (no available water) and 1 (pure water). While most bacteria 

show rapid growth at high aw (0.99), microbial growth does not occur at aw below 0.6 [111]. Several 

osmosensors are known to be involved in osmotic stress induced responses [112]. As mentioned 

above, the solute concentration in the bacterial cytoplasm is normally maintained above that of the 

external environment. However, immediately, following an osmotic up-shift (decrease in aw) in the 

environment, bacterial cells respond by activation of transporters that aid the cell increase the internal 

solute concentration by either uptake of inorganic ions into the cell or synthesis and concentration of 

specific organic solutes to counter the osmotic stress [113]. Under mild osmotic stress, only the ionic 

solutes are accumulated, whereas other compatible solutes become progressively more important on 

exposure to severe osmotic stress [114]. These accumulated solutes must not interfere with 

biochemical processes within the cell and they are thus termed "compatible" solutes [108]. Potassium 

ions (K+), glutamate (as ionic solutes), glycine betaine, trehalose and proline (as non ionic solutes) are 

the most important compatible solutes accumulated by bacterial cells [114,115]. Members of the 

Enterobactereaceae family are reported to synthesize glutamate and trehalose, while K+, glycine 

betaine and proline are taken up from the medium [110]. Accumulation of K+ during osmotic stress 

takes place in the initial response, which is then accompanied by increased synthesis of glutamate to 

preserve electroneutrality in the cytoplasm. This is followed by the accumulation of other compatible 

solutes such as glycine betaine, proline and trehalose [114,115]. The accumulation of the latter 

molecules was found to influence that of the originally accumulated compatible solutes since increased 

levels of trehalose were associated with decreased accumulation of K+ and glutamate [114]. The above 

mechanism of solute accumulation appears to be affected by environmental temperatures as trehalose 

accumulation was reported to be enhanced at higher temperatures (45ºC) in S. typhimurium [116].  

 

4.6. Irradiation  

 

Radiations have been used both to delay ripening-associated processes and to diminish 

microorganism growth. Several studies have been published, and in recent times, UV-C has been used 

as an alternative treatment to preserve the quality of different fruits and vegetables [117]. The use of 

non-ionizing, germicidal and artificial UV at a wavelength of 190-280nm (UV-C) was found to be 



Int. J. Mol. Sci. 2009, 10 
 

3086

effective for surface decontamination of fresh-cut products. Lado and Yousef [118] reported that UV-

C radiation from 0.5 to 20 kJm−2 inhibited microbial growth by inducing the formation of pyrimidine 

dimers which alter the DNA helix and block microbial cell replication. Therefore, cells which are 

unable to repair radiation damaged DNA die and sub-lethally injured cells are often subject to 

mutations. Treatment with ultraviolet light is simple to use and lethal to most types of microorganisms 

[119]. Intense light pulses (ILP) are an interesting decontamination method for food surfaces approved 

by the US Food and Drug Administration (FDA) that could be appropriate for disinfecting fresh-cut 

produce. ILP kills microorganisms using short time (from 85 ns to 0.3 ms) high frequency pulses 

(from 0.45 to 15 Hz) and energy per pulse ranging from 3 to 551 J of an intense broad spectrum, rich 

in UV-C light [120]. This treatment seems to induce structural changes of microbial DNA, similarly to 

the effect caused by continuous UV sources, although further mechanisms seem to be involved [121].  

Irradiation of DNA with UV light produces a variety of photoproducts, of which the main species 

are cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone. Both lesions, if not repaired, 

provoke mutagenesis and cell death. To survive in a UV-rich environment, E. coli developed an 

inducible response known as the SOS response regulated by the recA-lexA regulon. The SOS response 

aids survival by combining increased expression of genes involved in Nucleotide Excision Repair 

(NER) and recombinational repair mechanisms. The genes recA for the recombination enzyme, RecA, 

and uvrA and uvrB for subunits of the UvrABC NER enzymes, UvrA and UvrB, have SOS boxes that 

are bound by the LexA repressor under physiological conditions. Upon UV irradiation, the constitutive 

amount of RecA protein binds single-stranded DNA resulting from replication blocks and acts as a 

coprotease for inactivation of LexA, consequently the levels of RecA, UvrA and UvrB increase. Upon 

completion of repair, the inducing signal disappears and cells return to the preinduction state [122]. 

 

4.7. High Pressure Stress 

 

High pressure treatments of fruits and vegetables have been applied on processed products typically 

having been processed to some degree [123,124]. High pressures have been used to inhibit enzymes, 

microorganisms and spores, and to preserve aroma compounds [125]. Yanga et al. [126] indicate an 

undesirable effect of hyperbaric storage on the synthesis of peach volatiles immediately after storage, 

however, the post-storage potential for recovery of normal synthesis has not been assessed. 

Pressure effects on any physiological or biochemical system basically result from the compression 

of the system, according to Le Chatelier’s principle, which states that at equilibrium a system tends to 

minimise the effects of troubling external factors. In lipid membranes, a pressure increase of 1,000 atm 

is equivalent to a temperature decrease of 20 °C [127]. Pressure increase and temperature decrease 

result in similar effects, i.e. by ordering structures and reducing flexibility in lipids, nucleic acids and 

carbohydrates [128]. For proteins, pressure and temperature act in synergy and promote protein 

denaturation and loss of function [129]. In E.coli O 157:H7, high pressure affected the transcription of 

many genes involved in a variety of intracellular mechanisms, including the stress response, the thiol-

disulfide redox system and the Fe-S cluster assembly [130]. 
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4.8. Modified Atmosphere Packaging (MAP) 

 

Producers mainly rely on produce sanitation, refrigeration temperatures, and, more recently MAP to 

extend shelf life and to reduce microbial load [131]. Modifying the internal atmosphere of a package 

lowers the oxygen (O2) concentration, from 20% to 0%, hence slowing down the growth of aerobic 

organisms and the speed of oxidation reactions. The removed oxygen can be replaced with nitrogen 

(N2), commonly acknowledged as an inert gas, or carbon dioxide (CO2), which can inhibit the growth 

of bacteria. Although there is a wide literature describing how MAP affects microbial load on various 

food-produce [132,133], little is known about how growth under subatmospheric oxygen partial 

pressures would impact the enteric pathogens’ ability to breach the gastric stomach barrier and 

increase the risk of disease. CO2 inhibits the growth of bacteria by (i) affecting cellular enzymes and 

decreasing the rate of metabolic reactions, (ii) CO2 product repression of carboxylases and 

decarboxylases, (iii) disrupting cell membrane structural integrity and/or specific functions, (iv) 

decreasing the substrate and intra-cellular pH, or by a combination of these mechanisms [134]. The 

extent of inhibition by CO2 varies with the microorganism, CO2 concentration, temperature of 

incubation, and type of food [134,135]. 

 

4.9. Biological Compounds 

 

Greater consumer awareness and concern regarding synthetic chemical additives have led 

researchers and food processors to look for natural food additives with a broad spectrum of 

antimicrobial activity [136]. This is an heterogeneous category: some examples. Plant essential oils 

and natural aroma compounds are gaining interest for their potential as preservative ingredients or 

decontaminating treatments, as they have GRAS status and a wide acceptance from consumers 

[137,138]. The antimicrobial components are commonly found in the essential oil fractions and it is 

well established that many have a wide spectrum of antimicrobial activity, with potential for control of 

L. monocytogenes and spoilage bacteria within food systems [139]. Oregano (Origanum vulgare) and 

thyme (Thymus vulgaris) are amongst the most active EOs, while lemon balm (Melissa officinalis) and 

marjoram (Origanum majorana) exhibit a good antimicrobial action against Gram-positive and Gram-

negative bacteria, respectively [140]. Chitosan, which is a cationic polysaccharide extracted from 

source of shellfish exoskeletons or the cell walls of some microorganisms and fungi, has been used to 

preserve the quality of post-harvest fruits and vegetables [141,142]. Martin-Diana et al. [143] tested 

whey permeate at different concentrations (0.5%, 1.5% and 3%) in the washing treatment of lettuce 

and carrots, and the results suggest that whey permeate could be a promising alternative for sanitizing 

fresh-cut vegetables. 

 

4.10. Antagonistic Microflora 

 

Packaged produce harbour large populations of microorganisms including pseudomonads, lactic 

and bacteria (LAB) and Enterobacteriaceae [28,43]. The background microflora provide indicators of 

temperature abuse largely by causing detectable spoilage, and levels can vary appreciably for each 

product and during storage. LAB can exert antibacterial effects due to one or more of the following 
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mechanisms: lowering the pH; generating H2O2; competing for nutrients; and by producing 

antimicrobial compounds, such as bacteriocins [45]. Cai et al. [144] reported that a large portion of 

LAB isolates from beansprouts inhibited the growth of L. monocytogenes. Strains of LAB were 

reported to inhibit Aeromonas hydrophila, L. monocytogenes and S. typhimurium, on vegetable salads 

[145]. Various researchers have reported antagonism by the native microflora of vegetables against 

Listeria [146,147]. Reducing the background microflora of endive leaves and shredded lettuce resulted 

in enhanced growth of Listeria [148]. However, the inhibitory effects were dependent on gas 

atmosphere; in 3% O2 (balance N2) growth of the mixed population was inhibited while  

L. monocytogenes proliferated [149]. Enterobacter isolates significantly reduced L. monocytogenes 

growth during storage on a model lettuce medium; however, the inhibitory activities of Enterobacter 

decreased as the concentration of CO2 increased [149]. Competitive microflora had a significant effect 

on the growth of E. coli O157:H7 in broth media [150]. Little is known about the mechanism by which 

Salmonella manages to compete with natural microflora and survive on plant products [151]. 

Generally, the complex interactions with the indigenous microflora may have significant effects on 

survival, growth and biocontrol of pathogens.  

 

4.11. Bacteriocins 

 

Bacteriocins are antimicrobial peptides or proteins produced by strains of different bacterial species. 

The antimicrobial activity of this set of natural substances against foodborne pathogenic, as well as 

spoilage bacteria, has raised considerable interest for their application in food preservation [152].  

Nisin is the only commercially available bacteriocin recognized as a safe and legal biological food 

preservative (number E234) by the Food and Agriculture Organization and World Health Organization 

as well as the FDA. Nisin, a broad-spectrum, pore-forming bacteriocin, is produced by lactic acid 

bacteria that are often found on food-produce [153]. It is active against many Gram-positive bacteria, 

including L. monocytogenes [154]. Nisin is particularly active at the lower pH values typical of many 

fruits and some vegetables [155].  

The production of bacteriocin must thus be coupled with a mechanism by which the producing 

strain can protect itself from the lethal action of its own antimicrobial compound. This mechanism is 

referred to as immunity. In non-nisin-producing Lactococcus lactis, nisin resistance could be conferred 

by a specific nisin resistance gene (nsr), which encodes a 35-kDa nisin resistance protein (NSR). NSR 

is a nisin-degrading protease [156], however, the mechanism underlying NSR-mediated nisin 

resistance is poorly understood.  

 

4.12. Bacteriophages 

 

Leverentz et al. [157] reported a study on the control of Salmonella by phages on fresh-cut fruits. 

The use of naturally occurring lytic phages to reduce contamination of fresh-cut produce with 

foodborne pathogens has several advantages over the use of chemical sanitizers and washes [38]. For 

example, methods commonly used in industry, such as aqueous washes containing chlorine 

formulations or plain water, are nonspecific and can achieve a less-than-10-fold reduction in Listeria 

populations on cut-produce surfaces [158]. Conversely, specific phages attack the targeted pathogens 
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only, thus preserving the competitive potential of the indigenous microflora [38]. Leverentz et al. 

[159] found that treatment with a Listeria-specific lytic phage cocktail alone or in combination with 

nisin is an effective method for reducing L. monocytogenes contamination on fresh-cut fruit.  

Bacteria have evolved different sophisticated natural bacteriophage defense systems that can 

interfere with bacteriophage proliferation at different steps during the lytic cycle. These consist of 

natural phage defense mechanisms that impede the adsorption of the bacteriophage to the cell, 

mechanisms that inhibit the injection of DNA into the cell, restriction-modification systems, and 

numerous systems that abort the infection at various points in the replication cycle [160,161,162]. 

Additionally, Hazan and Engelberg-Kulka [163] demonstrated that E. coli mazEF-mediated cell death 

acts as a suicide-defense mechanism to protect the bacterial culture against the spread of P1 phage 

infection. 

 

5. Hurdle Technologies and Cross Protection 

 

The adaptation of bacterial cells to a certain stress is often associated with enhanced protection 

against other subsequent stresses, which is referred to as “cross protection” [164]. This has important 

implications in food safety and risk assessment programs, given that preservative tools (stresses) 

applied for different food products are designed to eliminate microbial loads that have been grown 

under optimal rather than stress conditions [165]. Several stresses have been shown to induce cross 

protection, including heat stress [166], cold stress [167], acid stress [168] and osmotic stress [169].  

Instead of one robust method such as heat sterilisation, minimal processing involves the use of a 

number of synergic mild preservation techniques known as hurdles. According to this approach we can 

look to cross protection as “hurdle stresses” to better understand the effectiveness and the challenges 

of hurdle technologies. While individually not effective in preventing microbial growth, the right 

combination of hurdles is a very powerful tool in preventing microbial outgrowth and in minimising 

organoleptic changes in foods. 

The molecular basis of cross response and cross response genes are widely analysed in model 

Gram-negative and Gram-positive pathogenic bacteria. For instance, CspC and CspE from E. coli 

regulate the expression of RpoS-regulated stress proteins, such as OsmY, Dps, ProP and KatG, 

possibly thorough regulation of RpoS itself. These proteins are induced in response to osmotic stress, 

oxidative stress, or upon stationary phase. CspE and CspC also regulate expression of Universal 

protein A, UspA, a protein responding to numerous stresses [170]. In addition, CspA homologues are 

involved in diverse phenomena, such as response to freezing conditions, stationary phase, osmotic 

stress, starvation, antibiotic biosynthesis, resistance to antimicrobial peptides, inhibition of replication, 

heat resistance of the spores, UV sensitivity etc. [171,172,173,174]. L. monocytogenes possesses three 

small, highly homologous protein members of the cold shock protein (Csp) family. Schmid et al. [175] 

used gene expression analysis and a set of mutants with single, double, and triple deletions of the csp 

genes to evaluate the roles of CspA, CspB, and CspD in the cold and osmotic (NaCl) stress adaptation 

responses of L. monocytogenes. The hierarchies of their functional importance differed, depending on 

the environmental stress conditions: CspA>CspD>CspB in response to cold stress versus 

CspD>CspA/CspB in response to NaCl salt osmotic stress. The fact that Csps are promoting  

L. monocytogenes adaptation against both cold and NaCl stress has significant implications in view of 
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practical food microbial control measures, in fact the combined or sequential exposure of L. 

monocytogenes cells to these two stresses in food environments might inadvertently induce cross-

protection responses.  

Among other factors, adaptation to heat stress appears to provide bacterial cells with more 

pronounced cross protection against several other stresses [176]. The ability of chaperones, both 

protein-based and chemical, to confer cold tolerance in bacteria might be maneuvered to improve the 

growth rate at low temperatures of some mesophilic bacteria [177]. Heat adaptation of Salmonella is 

reported to provide protection against subsequent heat treatment [178] and low pH conditions. 

Similarly, S. typhimurium showed increased resistance to heat and salt following adaptation to acidic 

condition [47]. This was linked to the observation that the expression of about half the acid shock 

proteins induced following exposure to acidic conditions were also stimulated by subjecting cells to 

heat shock [179]. Rowbury [64] reported that damage to DNA is probably the most lethal event in 

thermal inactivation. Single strand breaks were shown in heat-treated S. typhimurium and other 

microorganisms. Addition of NaCl (lowering aw) markedly protected DNA against loss of biological 

activity after heating at 121ºC for 15 minutes [180]; probably, NaCl inactivated nuclease rather than 

lowering aw per se. It is reported that the master stress regulator RpoS may be involved in mediating 

cross protection in bacteria. This is indicated by the increased level of the alternative sigma factor σs 

(encoded by the rpoS gene) following exposure to stresses such as osmotic stress, heat stress and 

starvation [64,108]. 

El-Sharoud [181] reported that increasing acid resistance of a given bacterium following exposure 

to other stressful conditions differs among bacteria species. Kim et al. [182] and Abram et al. [183] 

reported that sigma factor genes sigh (heat shock), sigR (oxidative stress), sigB (osmotic shock), and 

hrdD, which plays a major role in the secondary metabolism, were all strongly upregulated by the pH 

shock. A number of heat shock proteins including the DnaK family and chaperones such as GroEL 

were also observed to be upregulated by the pH shock, while their repressor hspR was strongly 

downregulated. Oxidative stress-related proteins such as thioredoxin, catalase, superoxide dismutase, 

peroxidase, and osmotic shock-related protein, such as vesicle synthases, were also upregulated in 

overall. An interlink between the cold tolerance and acid tolerance of Lactobacillus delbrueckii has 

been evidenced very recently by the enhanced freeze-tolerance of some cells that were acidified at pH 

5.25 for 30 min at the end of fermentation [184]. 

Studying alternative sigma factor interactions in Salmonella during oxidative stress, Bang et al. 

[185] discovered that interactions between alternative sigma factors permitted the integration of 

diverse stress signals to produce coordinated genetic responses, suggesting the hierarchical interactions 

between alternative sigma factors control sequential gene expression in Gram-positive bacteria, 

whereas alternative sigma factors in Gram-negative bacteria are generally regarded to direct expression 

of discrete gene subsets. This consideration is confirmed in Mycobacterium smegmatis, where the 

alternative sigma factor SigF is required for survival to heat shock, acidic pH and oxidative stress 

[186]. The response of aerobically grown E. coli cells to the cold shock induced by the rapid lowering 

of growth temperature from 37 to 20 °C was found to be basically the same as the oxidative stress 

response [187]. 

Proteolysis is a powerful mechanism used by cells to control adaptation and recovery after exposure 

to a variety of stress conditions, first of all characteristic of heat stress response. E. coli has five  
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ATP-dependent proteases: ClpAP, ClpXP, FtsH, HslUV and Lon [188,189,190]. A proteomic study 

indicated that UvrA is a substrate for degradation by ClpXP [191]. During post-UV recovery, UvrA 

levels decrease principally as a result of ClpXP-dependent protein degradation, revealing that a 

complex network of interactions contribute to tuning the level of UvrA in the cell in response to the 

extent of DNA damage [192]. 

With respect to solvent stress, among the three characterized small heat shock genes from 

Lactobacillus plantarum [193,194], Fiocco et al. [195] suggested a potential role for Hsp 18.55 and 

Hsp 19.3 (small Heat shock proteins) in solvent tolerance. In fact, overproduction of Hsp 18.55 and 

Hsp 19.3 led to an enhanced survival in the presence of butanol (1% v/v) or ethanol  

(12% v/v) treatment. 

Concerning high pressure and cross-protection, under high hydrostatic pressure the syntheses of 

some HSPs and CSPs were found to be induced in E. coli [196]. Bacterial ribosomes seem to play the 

role of intracellular sensors, which integrate the adaptation of the organism to high temperatures, low 

temperatures and high pressure. In contrast, differences in pressure tolerance of L. monocytogenes 

strains are not correlated with other stress tolerances [197].  

McDougald et al. [198] have found evidence for a large degree of overlap in the cell’s use of global 

regulators to deal with both starvation and oxidative stress. In addition, the post-transcriptional 

regulator CsrA (or RsmA) has been reported to play a central role in cross protection (starvation, 

oxidative stress, virulence) and in the adaptation of baterial pathogens to different stages of infection in 

animals and also in vegetable/fruit [199]. 

Giotis et al. [200], in L. monocytogenes, found that alkaline conditions induced cross-protection 

against osmotic and ethanol challenges; this phenomenon may have serious implications for food 

safety and human health because such stress conditions are routinely used as part of food preservation 

and surface cleaning processes. 

With respect to biological compounds, we may only remember that: i) it is also well documented 

that some compounds called chemical chaperones (e.g. glycine, betaine and proline), which are known 

to stabilize the native conformation of cellular proteins, were found to have a protective role against 

cold stress, salt stress and thermal stress in bacteria [201,202,203]; ii) treating bacterial cells with two 

different groups of antibiotics (which all acted on ribosomes), which were found to mimic temperature 

upshift and downshift of E. coli cells, led to the synthesis of HSPs and cold shock proteins (CSPs), 

respectively [204].  

With regards to biotic stressor, we only underline that psp operon induction, first depicted as a 

response of E. coli upon infection with filamentous phages [205], was oserved also under more general 

stress conditions, including extreme heat shock, hyperosmotic stress, ethanol treatment, and 

uncoupling of proton motive force [206,207]. 

 

6. Conclusions  

 

Minimally processed food is easily contaminated by food borne pathogens either directly or via 

cross-contamination during food preparation. For instance, in addition to Salmonella, L. 

monocytogenes and E.coli O157:H7, fresh cut produce have been identified as a transmission vehicle 

for pathogens such as Campylobacter species [208]. The ability of pathogens to survive stress requires 
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specific, co-ordinated responses, which induce resistance to the stressful conditions. The molecular 

mechanisms involved are complex and there are a number of genes involved in bacterial stress 

response. For instance, the ability of L. monocytogenes and several Gram-positive bacteria (such as B. 

subtilis and Staphylococcus aureus) to resist many adverse environmental conditions has been 

attributed in part to activation of the alternative sigma factor σB, encoded by the sigB gene. Survival 

under stress involves adaptive responses mediated by a set of conserved proteins (usualy called heat-

shock proteins), that are upregulated upon exposure to heat shock, low pH, oxidative agents, toxic 

chemical compounds, starvation, and in general, any situation in which bacterial growth is arrested 

indicating a protective role in the general stress response.  

Apart from the enhanced survival in foods and increased resistance to subsequent food processing 

treatments, adapted or hardened pathogens may also have enhanced virulence. Stress response and 

cross-protection must be considered when current processing technologies are being modified or when 

new preservation technologies are being developed for fresh-cut produce. These responses are 

particularly significant in minimal processing technologies used in preparation of fresh-cut produce, 

where the imposition of one sub-lethal stress may lead to the induction of multiple stress responses 

that may reduce the efficacy of subsequent treatments [209,210,211]. More research on how to use 

cumulative sub-lethal hurdles and safe practical interventions, without inducing stress response,  

is needed. 

Finally, the combination of well designed integrated production, handling, processing and 

distribution chains for fresh-cut produces is crucial for achieving the high quality and safety demanded 

by consumers [212]. One important strategy might be studying the molecular basis of cross response of 

human pathogens to develop the most suitable combination of synergic “hurdles”. Moreover, we 

should take into account that synergic and antagonistic actions of hurdle technologies may be pathogen 

dependent, and that selected hurdle technology combinations may also improve the bacterial pathogens 

ability to survive gastric acid conditions without enhancing virulence. 

 

Acknowledgments 

 

Vittorio Capozzi was partially supported by a SfAM Research Development Fund grant.  

 

References 

 

1. Brackett, R.E. Microbiological spoilage and pathogens in minimally processed refrigerated fruits 

and vegetables. In Minimally processed refrigerated fruits and vegetables. Wiley, R.C., Ed.; 

Chapman and Hall: New York, NY, USA, 1994; pp. 269-312. 

2. Barry-Ryan, C.; Pacussi, J.M.; O’Beirne, D. Quality of shredded carrots as affected by packaging 

film and storage temperature. J. Food Sci. 2000, 65, 726-730. 

3. Beuchat, L.R. Pathogenic microorganisms associated with fresh produce. J. Food Prot. 1996, 59, 

204-216. 

4. Parish, M.E.; Beuchat, L.R.; Suslow, T.V.; Harris, L.J.; Garrett, E.H.; Farber, J.N.; Busta, F.F. 

Methods to reduce/eliminate pathogens from fresh cut produce. Comp. Rev. Food Sci. Food 

Safety 2003, 2, 16-173. 



Int. J. Mol. Sci. 2009, 10 
 

3093

5. FDA, US Food and Drug Administration. Guidance for Industry. Guide to Minimize Microbial 

Food Safety Hazards of Fresh-cut Fruits and Vegetables. Guidance Contains Nonbinding 

Recommendations. Available online: http://www.cfsan.fda.gov/~dms/prodgui4.html#appe, Last 

updates: February 2008, accessed February 29, 2008. 

6. Ohlsson, T. Minimal processing technologies in the food industry. Ohlsson, T., Bengtsson, N., 

Eds.; Woodhead Publishing: Cambridge, UK, 2002. 

7. Leistner, L.; Gould, G.W. Hurdle Technologies: Combination Treatment for Food Stability, 

Safety and Quality. Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002. 

8. Thomas, L.V.; Wimpenny, J.W.T. Investigation of the effect of combined variations in 

temperature, pH and NaCl concentrations on nisin inhibition of Listeria monocytogenes and 

Staphylococcus aureus. Appl. Environ. Microbiol. 1996, 62, 2006-2012. 

9. McMeekin, T.A.; Presser, K.; Ratkowsky, D.; Ross, T.; Salter, M.; Tienungoon, S. Quantifying 

the hurdle concept by modelling the bacterial growth/no growth interface. Int. J. Food Microbiol. 

2000, 55, 93-98. 

10. Leistner, L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 

2000, 55, 181-186. 

11. Jones, K.; Heaton, J. Microbial contamination of fruit and vegetables: evidence and issues. 

Microbiol. 2006, 7, 28-31. 

12. Beneduce, L.; Spano, G.; Massa S. Escherichia coli O157:H7 general characteristics, isolation 

and identification techniques. Annal. Microbiol. 2003, 53, 511-527. 
13. Delaquis, P.; Bach, S.; Dinu, L.D. Behavior of Escherichia coli O157:H7 in leafy vegetables. J. 

Food Prot. 2007, 70, 1966-1974. 

14. Harris, L.J.; Farber, J.N.; Beuchat, L.R.; Parish, M.E.; Suslow, T.V.; Garrett, E.H.; Busta, F.F. 

Outbreaks associated with fresh produce: incidence, growth and survival of pathogens in fresh 

and fresh-cut produce. Comp. Rev. Food Sci. Food Safety 2003, 2, 78-141. 

15. Maki, D. Don’t eat the spinach - controlling foodborne infectious disease. New Engl. J. Med. 

2006, 355, 1952-1955. 

16. California Food Emergency Response Team 2007. Investigation of an Escherichia coli O157:H7 

outbreak associated with dole pre-packaged spinach. California Department of Health Services: 

Scaramento, CA, USA; US Food and Drug Admin: Washington, D.C., USA, Final March, 2007; 

Available online: http://www.marlerclark.com/2006_Spinach_Report_Final_01.pdf/. 

17. Thurston-Enriquez, J.; Watt, P.; Dowd, S.E.; Enriquez, R.; Pepper, I.L.; Gerbe, C.P. Detection of 

protozoan parasites and microsporidia in irrigation waters for crop production. J. Food Prot. 

2002, 65, 378-382. 

18. Iwamoto, M. Taco Bell and Taco Johns Escherichia coli in lettuce outbreaks 2006. CDC 

Outbreak Response and Surveillance Team Enteric Diseases Epidemiology Branch. In 

Proceedings of the International Association of Food Protection’s 94th Annual Meeting (IAFP 

2007), Disney's Contemporary Resort, Lake Buena Vista, FL, USA, July 8-11, 2007. 

19. Bell, C.; Kyriakides, A. Background, Listeria a practical approach to the organism and its 

control in foods. Bell, C., Kyriakides A., Ed.; Chapman and Hall: London, UK, 1998; pp.3-29.  



Int. J. Mol. Sci. 2009, 10 
 

3094

20. MacGowan, A.P.; Bowker, K.; McLauchlin, J.; Bennett, P.M.; Reeves, D.S. The occurrence and 

seasonal changes in the isolation of Listeria spp. in shop bought food stuffs, human faeces, 

sewage and soil from urban sources. Int. J. Food Microbiol. 1994, 21, 325-334. 

21. Ukuku, D.O.; Fett, W. 2002, Behaviour of Listeria monocytogenes inoculated on cantaloupe 

surfaces and efficacy of washing treatments to reduce transfer from rind to fresh-cut pieces. J. 

Food Prot. 2002, 65, 924-930.  

22. Ho, J.L.; Shands, K.N.; Freidland, G.; Eckind, P.; Fraser, D.W. An outbreak of type 4b Listeria 

monocytogenes infection involving patients from eight Boston hospitals. Arch. Internal. Med. 

1986, 146, 520-524. 

23. Schlech, W.F.; Lavigne, P.M.; Bortolussi, R.A.; Allen, A.C.; Haldane, E.V.; Wort, A.J.; 

Hightower, A.W.; Johnson, S.E.; King, S.H.; Nicholls, E.S.; Broome, C.V. Epidemic listeriosis-

evidence for transmission by food. New Eng. J. Med. 1983, 308, 203-206. 

24. Austin, J.W.; Dodds, K.L.; Blanchfield, B.; Farber, J.M. Growth and toxin production by 

Clostridium botulinum on inoculated fresh-cut packaged vegetables. J. Food Prot. 1998, 61, 324-

328. 

25. Jacxsens, L.; Devlieghere, F.; Falcato, P.; Debevere, J. Behaviour of Listeria monocytogenes and 

Aeromonas spp. on fresh-cut produce packaged under equilibrium-modified atmosphere. J. Food 

Prot. 1999, 62, 1128-1135. 

26. Bolin, H.R.; Stafford, A.E.; King, A.D. Jr.; Huxsoll, C.C. Factors affecting the storage stability of 

shredded lettuce. J. Food Sci. 1977, 42, 1319-1321. 

27. Beuchat, L.R. Surface disinfection of raw produce. Dairy, Food Environ. Sanitat. 1992, 12, 6-9. 

28. Nguyen-the, C.; Carlin, F. The microbiology of minimally processed fresh fruits and vegetables. 

Crit. Rev. Food Sci. 1994, 34, 371-401. 

29. Izumi, H. Electrolyzed water as a disinfectant for fresh-cut vegetables. J. Food Sci. 1999, 64, 536-

539. 

30. Beuchat, L.R.; Ryu, J-H. Produce handling and processing practices. Emerg. Infect. Dis. 1997, 3, 

459-465.  

31. Adams, M.R.; Hartley, A.D.; Cox, L.J. Factors affecting the efficacy of washing procedures used 

in the production of prepared salads. Food Microbiol. 1989, 6, 69-77. 

32. Park, C.-M.; Hung, Y.-C.; Doyle, M.P.; Ezeike, G.O.I.; Kim, C. Pathogen reduction and quality 

of lettuce treated with electrolysed oxidizing and acidified chlorinated water. J. Food Sci. 2001, 

66, 1368-1372. 

33. Park, C.-M.; Beuchat, L.R. Evaluation of sanitizers for killing Escherichia coli O157:H7, 

Salmonella and naturally occurring microorganisms on cantaloupes, honeydew melons and 

asparagus. Dairy, Food Environ. Sanit. 1999, 19, 842-847. 

34. Zhang, S.; Farber, J.M. The effects of various disinfectants against Listeria monocytogenes on 

fresh-cut vegetables. Food Microbiol. 1996, 13, 311-321. 

35. Sapers, G.M.; Simmons, G.F. Hydrogen peroxide disinfection of minimally processed fruits and 

vegetables. Food Technol. 1998, 52, 48-52. 

36. Karapinar, M.; Gonul, S.A. Effects of sodium bicarbonate, vinegar, acetic and citric acids on 

growth and survival of Yersinia enterocolitica. Int. J. Food Microbiol. 1992, 16, 343-347.   



Int. J. Mol. Sci. 2009, 10 
 

3095

37. Burrows, J. P.; Weber, M.; Buchwitz, M.; Rozanov, V.; Ladsttter-Weienmayer, A.; Richter, A.; 

de Beek, R.; Hoogen, R.; Bramstedt, K.; Eichmann, K.-U.; Eisinger, M.; Perner, D. The Global 

Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results. J. Atmos. 

Sci. 1999, 56, 151-175. 

38. Beuchat, L.R. Survival of enterohemorrhagic Escherichia coli O157:H7 in bovine feces applied to 

lettuce and the effectiveness of chlorinated water as a disinfectant. J. Food Prot. 1999, 62,  

845-849. 

39. Aureli, P.; Costantini, A.; Zolea, S. Antimicrobial activity of some plant essential oils against 

Listeria monocytogenes. J. Food Prot. 1992, 55, 344-348. 

40. Skandamis, P.N.; Nychas, G.J.E. Effect of oregano essential oil on microbiological and physical-

chemical attributes of minced meat stored in air and modified atmosphere. J. App. Microbiol. 

2001, 91, 1011-1022. 

41. Singh, N.; Singh, R.K.; Bhunia, A.K.; Stroshine, R.L. Efficacy of chlorine dioxide, ozone and 

thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and 

baby carrots. Lebensm. Wiss. U. Technol. 2002, 35, 720-729. 

42. James, S.J. Novel physical methods for decontamination of produce. In Proceedings of IAFP’s 

Third European Symposium on Food Safety: Advancements in Food Safety, Rome, Italy, October 

18-19, 2007.  

43. Francis, G.A.; Thomas, C.; O’Beirne, D. Review paper: The microbiological safety of minimally 

processed vegetables. Int. J. Food Sci. Technol. 1999, 34, 1-22. 

44. Price, R.J.; Lee, J.S. Inhibition of Pseudomonas species by hydrogen peroxide producing 

lactobacilli. J. Milk Food Technol. 1970, 33, 13-18. 

45. Arihara, K.; Cassens, R.G.; Luchansky, J.B. Characterization of bacteriocins from Enterococcus 

faecium with activity against Listeria monocytogenes. Int. J. Food Microbiol. 1993, 19, 123-134. 

46. Gahan, C.G.M.; O’Driscoll, B.; Hill, C. Acid adaptation of Listeria monocytogenes can enhance 

survival in acidic foods and during milk fermentation. Appl. Environ. Microbiol. 1996, 62, 3128-

3132. 

47. Leyer, G.L.; Johnson, E.A. Acid adaptation promotes survival of Salmonella spp. in cheese. Appl. 

Environ. Microbiol. 1992, 58, 2075-2080. 

48. Artés, F.; Allende, A. Processing lines and alternative preservation techniques to prolong the 

shelf-life of minimally fresh processed leafy vegetables. Eur. J. Hortic. Sci. 2005, 70, 231-245. 

49. Hodges, D.M., Toivonen, P.M.A. Quality of fresh-cut fruits and vegetables as affected by 

exposure to abiotic stress. Postharvest Biol. Technol. 2008, 48, 155-162. 

50. Aguayo, E.; Escalona, V.; Artés, F. Quality of fresh-cut tomato as affected by type of cut, 

packaging, temperature and storage time. Eur. Food Res. Technol. 2004, 219, 492-499. 

51. Phadtare, S. Recent Developments in Bacterial Cold-Shock Response. Curr. Issues Mol. Biol. 

2004, 6, 125-136. 

52. El-Sharoud, W.M.; Graumann, P.L. Cold shock proteins aid coupling of transcription and 

translation in bacteria. Sci. Prog. 2007, 90, 15-27. 

53. Wang, N.; Yamanaka, K.; Inouye, M. CspI, the ninth member of the CspA family of Escherichia 

coli is induced upon cold shock. J. Bacteriol. 1999, 181, 1603-1609. 



Int. J. Mol. Sci. 2009, 10 
 

3096

54. Bae, W.; Xia, B.; Inouye, M.; Severinov, K. Escherichia coli CspA-family RNA chaperones are 

transcription antiterminators. Proc. Natl. Acad. Sci. USA 2000, 97, 7784-7789. 

55. Phadtare, S.; Tyagi, S.; Inouye, M.; Severinov, K. Three amino acids in Escherichia coli CspE 

surface-exposed aromatic patch are critical for nucleic acid melting activity leading to 

transcription antitermination and cold acclimation of cells. J. Biol. Chem. 2002, 277,  

46706-46711. 

56. Graumann, P.; Wendrich, T.M.; Weber M.H.W.; Schröder, K.; Marahiel, M.A. A family of cold 

shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein 

synthesis at optimal and low temperature. Mol Microbiol 1997, 25, 741-756. 

57. Graumann, P.; Marahiel M. A. Cold shock proteins CspB and CspC are major stationary-phase-

induced proteins in B. subtilis. Arch. Microbiol. 1999, 171, 135-138. 

58. Martín-Diana, A.; Rico, D.; Barry-Ryan, C.; Frías, J.; Henehan, G.; Barat, J. Efficacy of steamer 

jet-injection as alternative to chlorine in fresh-cut lettuce. Postharvest Biol. Technol. 2007, 45, 97-

107. 

59. Kim, Y.; Lounds-Singleton, A.J.; Talcott, S.T. Antioxidant phytochemical and quality changes 

associated with hot water immersion treatment of mangoes (Mangifera indica L.) Food Chem. 

2009, 115, 989-993. 

60. Steiner, A.; Abreu, M.; Correia, L.; Beirão-da-Costa, S.; Leitão, E.; Beirão-da-Costa, M.L.; 

Empis, J.; Moldão-Martins, M. Metabolic response to combined mild heat pre-treatments and 

modified atmosphere packaging on fresh-cut peach. Eur. Food Res. Technol. 2006, 222,  

217-222. 

61. Fallik, E. Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biol. 

Technol. 2004, 32, 125-134. 

62. Ray, B. Methods to Detect Stressed Microorganisms. J. Food Prot. 1979, 42, 346-355. 

63. Mackey, B.M.; Miles, C.A.; Parsons, S.E.; Seymour, D.A. Thermal denaturation of whole cells 

and cell components of Escherishia coli examined by differential scanning calorimetry. J. Gen. 

Microbiol. 1991, 137, 2361-2374. 

64. Rowbury, R.J. Basis of Stress Adaptation, with Particular Reference to the Subversion of Stress 

Adaptation, and to the Invovement of Extracellular Components in Adaptation. In Microbial 

Stress Adaptation and Food Safety; Yousef, A.E., Juneja, V.K., Eds.; CRC Press: Boca Raton, FL, 

USA, 2002; Chapter 8.  

65. Bardwell, J.C.A.; Craig, E.A. Major heat shock gene of Drosophila and the Escherichia coli heat 

inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. USA 1984, 81, 848-852. 

66. Yura, T.; Kanemori, M.; Morita, M.T. The heat shock response: regulation and function. In 

Bacterial Stress Responses; Stortz, G., Hengge-Aronis, R., Eds.; ASM Press: Washington, D.C., 

USA, 2000; pp. 3-18. 

67. Mackey B.M.; Derrick C. Heat shock protein synthesis and thermotolerance in Salmonella 

typhimurium. J. Appl. Bacteriol. 1990, 69, 373-383. 

68. Mendoza, J.A.; Wilson, M.; Joves, F.; Ackermann, E. Thermostabilization of enzymes by the 

chaperonin GroEL. Biotechnol. Tech. 1996, 10, 535-540. 



Int. J. Mol. Sci. 2009, 10 
 

3097

69. Uyttendaele, M.; Neyts, K.; Vanderswalmen, H.; Notebaert, E.; Debevere, J. Control of 

Aeromonas on minimally processed vegetables by decontamination with lactic acid, chlorinated 

water, or thyme essential oil solution Int. J. Food Microbiol. 2004, 90, 263-271. 

70. Soliva-Fortuny, R.C.; Martìn-Belloso, O. New advances in extending the shelflife of fresh-cut 

fruits: a review. Trends Food Sci. Tech. 2003, 14, 341-353. 

71. Alandes, L.; Hernando, I.; Quiles, A.; Perez-Munuera, I.; Lluch, M.A. Cell wall stability of fresh-

cut Fuji apples treated with calcium lactate J. Food Sci. 2006, 71, 615-620. 

72. Pieterse, B.; Leer, R.J.; Schuren, F.H.J.; van der Werf, M.J. Unravelling the multiple effects of 

lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiol 2005, 151, 

3881-3894. 

73. Hartke, A.; Bouche, S.; Giard, J.-C.; Benachour, A.; Boutibonnes, P.; Auffray, Y. The lactic acid 

stress response of Lactococcus lactis subsp. lactis. Curr. Microbiol. 1996, 33, 194-199. 

74. Polen, T.; Rittmann, D.; Wendisch, V.F.; Sahm, H. DNA Microarray analyses of the long-term 

adaptive response of Escherichia coli to acetate and propionate. Appl. Environ. Microbiol. 2003, 

69, 1759-1774. 

75. Kirkpatrick, C.; Maurer, L.M.; Oyelakin, N.E.; Yoncheva, Y.N.; Maurer, R.; Slonczewski, J.L. 

Acetate and formate stress, opposite responses in the proteome of Escherichia coli. J. Bacteriol. 

2001, 183, 6466-6477. 

76. Cotter, P.D.; Hill, C. Surviving the acid test, responses of Gram-positive bacteria to low pH. 

Microbiol. Mol. Biol. Rev. 2003, 67, 429-453. 

77. Cotter, P.D.; Gahan, C.G.; Hill, C. A glutamate decarboxylase system protects Listeria 

monocytogenes in gastric fluid. Mol. Microbiol .2001, 40, 465-475. 

78. Azcarate-Peril, M.A.; Altermann, E.; Hoover-Fitzula, R.L.; Cano, R.J.; Klaenhammer, T.R. 

Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid 

tolerance. Appl. Environ. Microbiol. 2004, 70, 5315-5322. 

79. Axe, D.D.; Bailey, J.E. Transport of lactate and acetate through the energized cytoplasmic 

membrane of Escherichia coli. Biotechnol. Bioeng. 1995, 47, 8-19. 

80. Shelef, L.A. Antimicrobial effects of lactates, a review. J. Food Prot. 1994, 57, 445-450. 

81. Diez-Gonzalez, F.; Russell, J.B. The effects of carbonylcyanide-m-chlorophenylhydrazone 

(CCCP) and acetate on Escherichia coli O157, H7 and K-12, uncoupling versus anion 

accumulation. FEMS Microbiol. Lett. 1997, 151, 71-76. 

82. Russell, J.B.; Diez-Gonzalez, F. The effects of fermentation acids on bacterial growth. Adv. 

Microbial. Physiol. 1998, 39, 205-234. 

83. Lemos, J.A.; Chen, Y.Y.; Burne, R.A. (2001) Genetic and physiologic analysis of the groE 

operon and role of the HrcA repressor in stress gene regulation and acid tolerance in 

Streptococcus mutans. J. Bacteriol. 2001, 183, 6074-6084. 

84. Mcdonnell, G., Denver, R.A. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. 

Microbiol. Rev. 1999, 12, 147-179. 

85. Hallsworth, J.E. Ethanol-Induced Water Stress in Yeast. J. Ferment. Bioeng. 1998, 85,  

125-137. 



Int. J. Mol. Sci. 2009, 10 
 

3098

86. Plotto, A.; Baib, J.; Narciso, J.A.; Brecht, J.K.; Baldwin E.A. Ethanol vapor prior to processing 

extends fresh-cut mango storage by decreasing spoilage, but does not always delay ripening. 

Postharvest Biol. Technol. 2006, 39, 134-145. 

87. Bai, J.; Baldwin, E.A.; Soliva Fortuny, R.C.; Mattheis, J.P.; Stanley, R.; Perera, C.; Brecht, J.K. 

Effect of pretreatment of intact ‘Gala’ apple with ethanol vapor, heat, or 1 methylcyclopropene on 

quality and shelf life of fresh-cut slices. J. Am. Soc. Hort. Sci. 2004, 129, 583-593. 

88. Xie, F. Disinfection byproducts in drinking water: form, analysis and control. In Technology & 

Industrial Arts; CRC Press: Boca Raton, FL, USA, 2003; p. 176.  

89. Khadre, M.A.; Yousef, A.E. Sporicidal action of ozone and hydrogen peroxide: a comparative 

study. Int. J. Food Microbiol. 2001, 71, 131-138. 

90. Ongeng, D.; Devlieghere, F.; Devevere, J.; Coosemans, J.; Ryckeboer, J. The efficacy of 

electrolysed oxidising water for inactivating spoilage microorganisms in process water on 

minimally processed vegetables. Int. J. Food Microbiol. 2006, 109, 187-197. 

91. Guzel-Seydim, Z.; Bever, P.I.; Greene, A. Efficacy of ozone to reduce bacterial populations in the 

presence of food components. Food Microbiol. 2004, 21, 475-479. 

92. Parish, M.; Beuchat, L.; Suslow, T.; Harris, L.; Garret, E.; Farber, J.; Busta, F. Methods to reduce 

or eliminate pathogens from fresh and fresh-cut produce. Comp. Rev. Food Sci. Food Safety 2003, 

2, 161-173. 

93. Storz, G.; Imlay, J.A. Oxidative stress. Curr. Opin. Microbiol. 1999, 2, 188-194. 

94. Thybert, D.; Avner, S.; Lucchetti-Miganeh, C.; Chéron, A.; Barloy-Hubler F. OxyGene: an 

innovative platform for investigating oxidative-response genes in whole prokaryotic genomes. 

BMC Genomics. 2008, 9, 637. 

95. Cabiscol, E.; Tamarit, J.; Ros, J. Oxidative stress in bacteria and protein damage by reactive 

oxygen species. Int. Microbiol. 2000, 3, 3-8.  

96. Poole, L.B.; Karplus, P.A.; Claiborne, A. Protein sulfenic acids in redox signaling. Annu. Rev. 

Pharmacol. Toxicol. 2004, 44, 325-347. 

97. Aydogan, B.; Marshall, D.T.; Swarts, S.G.; Turner, J.E.; Boone, A.J.; Richards, N.G.; Bolch W.E. 

Site-specific OH attack to the sugar moiety of DNA: a comparison of experimental data and 

computational simulation. Radiat. Res. 2002, 157, 38-44. 

98. Rivett, AJ. Regulation of intracellular protein turnover: covalent modification as a mechanism of 

marking proteins for degradation. Curr. Top. Cell. Regul. 1986, 28, 291-337. 

99. Ritz, D.; Patel, H.; Doan, B.; Zheng, M.; Aslund, F.; Storz, G.; Beckwith, J. Thioredoxin 2 is 

involved in the oxidative stress response in Escherichia coli. J. Biol. Chem. 2000, 275,  

2505-2512. 

100. Smulevich, G.; Jakopitsch, C.; Droghetti, E.; Obinger, C. Probing the structure and bifunctionality 

of catalase-peroxidase (KatG). J. Inorg. Biochem. 2006, 100, 568-585. 

101. Jonsson, T.J.; Lowther W.T. The peroxiredoxin repair proteins. Subcell. Biochem. 2007, 44, 115-

141.  

102. Putz, S.; Gelius-Dietrich, G.; Piotrowski, M.; Henze, K. Rubrerythrin and peroxiredoxin: two 

novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon Trichomonas 

vaginalis. Mol. Biochem. Parasitol. 2005, 142, 212-223.  



Int. J. Mol. Sci. 2009, 10 
 

3099

103. Smith, J.; Shrift, A. Phylogenetic distribution of glutathione peroxidase. Comp. Biochem. Physiol. 

B 1979, 63, 39-44.  

104. van Pee, K.H. Bacterial haloperoxidases and their role in secondary metabolism. Biotechnol. Adv. 

1990, 8, 185-205.  

105. Wuerges, J.; Lee, J.W.; Yim, Y.I.; Yim, H.S.; Kang, S.O.; Djinovic Carugo, K. Crystal structure 

of nickel-containing superoxide dismutase reveals another type of active site. Proc. Natl. Acad. 

Sci. USA 2004, 101, 8569-8574.  

106. Lombard, M.; Touati, D.; Fontecave, M.; Niviere, V. Superoxide reductase as a unique defense 

system against superoxide stress in the microaerophile Treponema pallidum. J. Biol. Chem. 2000, 

275, 27021-27026.  

107. Heylen, K.; Vanparys, B.; Gevers, D.; Wittebolle, L.; Boon, N.; De Vos, P. Nitric oxide reductase 

(norB) gene sequence analysis reveals discrepancies with nitrite reductase (nir) gene phylogeny in 

cultivated denitrifiers. Environ. Microbiol. 2007, 9, 1072-1077.  

108. Abee, T.; Wouters, J.A. Microbial stress response in minimal processing. Int. J. Food Microbiol. 

1999, 50, 65-91. 

109. Wood, J.M.; Bremer, E.; Csonka, L.N.; Kraemer, R.; Poolman, B.; van der Heide, T.; Smith, L.T. 

Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp. Biochem. 

Physiol. A Mol. Integr. Physiol. 2001, 130, 437-460. 

110. Csonka, L.N. Physiological and Genetic Responses of Bacteria to Osmotic-Stress. Microbiol. Rev. 

1989, 53, 121-147. 

111. Corry, J.E.L. The Water Relations and Heat Resistance of Micro-organisms. Prog. Ind. Microbiol. 

1972, 12, 73-108. 

112. Poolman, B.; Spitzer, J.J.; Wood, J.M. Bacterial osmosensing: roles of membrane structure and 

electrostatics in lipid-protein and protein-protein interactions. Biochim Biophys Acta. 2004, 1666, 

88-104. 

113. Poolman, B.; Blount, P.; Folgering, J.H.A.; Friesen, R.H.E., Moe, P.C.; van der Heide, T. How do 

membrane proteins sense water stress. Mol. Microbiol. 2002, 44, 889-902. 

114. McLaggan, D.; Naprstek, J.; Buurman, E.; Epstein, W. Interdependence of K+ and glutamate 

accumulation during osmotic adaptation of Escherichia coli. J. Biol. Chem. 1994, 269,  

1911-1917. 

115. Samelis, J.; Sofos, J.N. Chapter 9: Strategies to Control Stress-Adapted Pathogens. In Microbial 

Stress Adaptation and Food Safety; Yousef, A.E., Juneja, V.K., Eds.; CRC Press: Boca Raton, FL, 

USA, 2002. 

116. Canovas, D.; Fletcher, S.A.; Hayashi, M.; Csonka, L.N. Role of Trehalose in Growth at High 

Temperature of Salmonella enterica Serovar Typhimurium .J. Bacteriol. 2001, 183, 3365-3371. 

117. González-Aguilar, G.A.; Ruiz-Cruz, S.; Cruz-Valenzuela, R.; Ayala-Zavala, J.F.; de la Rosa, 

L.A.; Alvarez-Parrilla, E.; Gutiérrez-López, G.F. New Technologies to Preserve Quality of Fresh-

Cut Produce. In Food Engineering: Integrated Approaches; Barbosa-Cánovas, G.V., Welti-

Chanes, J.,  Parada-Arias, E., Eds.; Springer: Berlin, Germany, 2008. 

118. Lado, B.; Yousef, A. Alternative food-preservation technologies: efficacy and mechanisms. 

Microbes Infect. 2002, 4, 433-440. 



Int. J. Mol. Sci. 2009, 10 
 

3100

119. Bintsis, T.; Litopoulou-Tzanetaki, E.; Robinson, R.. Existing and potential applications of 

ultraviolet light in the food industry—a critical review. J. Sci. Food Agric. 2000, 80, 637-645. 

120. Gómez-López, V.; Devlieghere, F.; Bonduellea, V.; Debevere, J.. Intense light pulses 

decontamination of minimally processed vegetables and their shelf-life. Int. J. Food Microbiol. 

2005, 103, 79-89. 

121. Takeshita, K.; Shibato, J.; Sameshima, T.; Fukunaga, S.; Isobe, S.; Arihara, K.; Itoh, M. Damage 

of yeast cells induced by pulsed light irradiation. Int. J. Food Microbiol. 2003, 85, 151-158. 

122. Kiyosawa, K.; Tanaka, M.; Matsunaga, T.; Nikaido, O.; Yamamoto, K. Amplified UvrA protein 

can ameliorate the ultraviolet sensitivity of an Escherichia coli recA mutant. Mutat. Rese. 2001, 

487, 149-156. 

123. Lopez-Malo, A.; Palou, E.; Barboza-Canovas, G.V.; Swanson, B.G.; Welit-Chanes, J. Minimally 

processed foods with high hydrostatic pressure. In Trends in Food Engineering; Lozano, J.E., Ed.; 

Technomic Pub. Co.: Lancaster, PA, USA, 2000; pp. 267-286. 

124. Ikeda, F.; Baba, T.; Como, G.; Ohtsubo, T.; Lizada, M.C.C. Effect of hydrostatic pressure on 

postharvest physiology in fruit. Acta. Hortic. 2000, 518, 101-106. 

125. Dede, S.; Alps, H.; Bayindirli, A.. High hydrostatic pressure treatment and storage of carrot and 

tomato juices: antioxidant activity and microbial safety. J. Sci. Food Agric. 2007, 87,  

773-782. 

126. Yanga, D.S.; Balandrán-Quintanab, R.R.; Ruizc, C.F.; Toledoc, R.T.; Kaysa, S.J. Effect of 

hyperbaric, controlled atmosphere, and UV treatments on peach volatiles. Postharvest Biol. 

Technol. 2009, 51, 334-341. 

127. Pradillon, F.; Gaill, F. Pressure and life: some biological strategies. Rev. Environ. Sci. Biotechnol. 

2007, 6, 181-195. 

128. Balny, C.; Masson, P.; Heremans, K. High pressure effects on biological macromolecules: from 

structural changes to alteration of cellular processes. Biochim. Biophys. Acta 2002, 1595, 3-10. 

129. Balny, C.; Mozhaev, V.V.; Lange, R. Hydrostatic pressure and proteins: Basic concepts and new 

data. Comp. Biochem. Physiol. 1997, 116, 299-304. 

130. Malone, A.S.; Chung, Y.-K.; Yousef A.E. Genes of Escherichia coli O157:H7 that are involved in 

high-pressure resistance. Appl. Environ. Microbiol. 2006, 72, 2661-2671.  

131. Rico, D.; Martin-Diana, A.B.; Barat, J.M.; Barry-Ryan, C.. Extending and measuring the quality 

of fresh-cut fruit and vegetables: a review. Trends Food Sci. Technol. 2007, 18, 373-386. 

132. Novak, J.S.; Sapers, G.M.; Juneja, V.K. Microbial Safety of Minimally Processed Foods; CRC 

Press: Boca Raton, FL, USA, 2003. 

133. Matthews, K.R. Microbiology of Fresh Produce; ASM Press: Washington, D.C., USA, 2006. 

134. Dixon, N.M.; Kell, D.B., The inhibition by CO2 of the growth and metabolism of micro-

organisms: a review. J. Appl. Bacteriol. 1989, 67, 109-136. 

135. Hudson, J.A.; Mott, S.J.; Penney, N. Growth of Listeria monocytogenes, Aeromonas hydrophila 

and Yersinia enterocolitica on vacuum and saturated carbon dioxide controlled atmosphere 

packaged sliced roast beef. J. Food Prot. 1994, 57, 204-208. 

136. Marino, M.; Bersani, C.; Comi, G. Impedance measurement to study antimicrobial activity of 

essential oils from Lamiaceae and Compositae. Int. J. Food Microbiol. 2001, 67, 187-195. 



Int. J. Mol. Sci. 2009, 10 
 

3101

137. Burt, S. Essential oils: their antibacterial properties and potential applications in foods - a review. 

Int. J. Food Microbiol. 2004, 94, 223-253. 

138. Lanciotti, R.; Gianotti, A.; Patrignani, F.; Belletti, N.; Guerzoni, M.E.; Gardini, F. Use of natural 

aroma compounds to improve shelflife and safety of minimally processed fruits. Trends Food Sci. 

Technol. 2004, 15, 201-208. 

139. Gutierrez, J.; Rodriguez, G.; Barry-Ryan, C.; Bourke, P. Efficacy of plant essential oils against 

food-borne pathogens and spoilage bacteria associated with ready to eat vegetables: antimicrobial 

and sensory screening. J. Food Prot. 2008, 71, 1846-1854. 

140. Gutierrez J.; Barry-Ryan, C.; Bourke, P. Antimicrobial activity of plant essential oils using food 

model media: Efficacy, synergistic potential and interactions with food components. Food 

Microbiol. 2009, 26, 142-150. 

141. Campaniello, D.; Bevilacqua, A.; Sinigaglia, M.; Corbo M.R. Chitosan: Antimicrobial activity 

and potential applications for preservino minimally processed strawberries. Food Microbiol. 

2009, 25, 992-1000. 

142. Chien, P.J.; Sheu, F.; Lin, H.R. Coating citrus (Murcott tangor) fruit with low molecular weight 

chitosan increases postharvest quality and shelf life. Food Chem. 2007, 100, 1160-1164. 

143. Martin-Diana, A.B.; Rico, D.; Frias, J.; Mulcahy, J.; Henehan, G.T.M.; Barry-Ryan, C. Whey 

permeate as a bio-preservative for shelf life maintenance of fresh-cut vegetables. Inn. Food Sci. 

Emerg. Tech. 2006, 7, 112 - 123.  

144. Cai, Y.; Ng, L.K.; Farber, J.M. Isolation and characterization of nisin-producing Lactococcus 

lactis subsp. lactis from bean-sprouts. J. Appl. Microbiol. 1997, 83, 499-507. 

145. Vescovo, M.; Torriani, S.; Orsi, C.; Macchiarolo, F.; Scolari, G. Application of antimicrobial-

producing lactic acid bacteria to control pathogens in ready-to-use vegetables. J. Appl. Bacteriol. 

1996, 81, 113-119. 

146. Liao, C-H.; Sapers, G.M. Influence of soft rot bacteria on growth of Listeria monocytogenes on 

potato tuber slices. J. Food Prot. 1999, 62, 343-348. 

147. Allende, A.; Martinez, B.; Selma, V.; Gil, M.I.; Suarez, J.E.; Rodriguez, A. Growth and 

bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at 

reducing Listeria monocytogenes in vitro and in fresh-cut lettuce. Food Microbiol. 2007, 24, 759-

766. 

148. Carlin, F.; Nguyen-the, C.; Morris, C.E. The influence of the background microflora on the fate of 

Listeria monocytogenes on minimally processed fresh broad leaved endive (Cichorium endivia 

var. latifolia). J. Food Prot. 1996, 59, 698-703. 

149. Francis, G.A.; O’Beirne, D. Effects of storage atmosphere on Listeria monocytogenes and 

competing microflora using a surface model system. Int. J. Food Sci. Technol. 1998, 33,  

465-476. 

150. Duffy, G.; Whiting, R.C.; Sheridan, J.J. The effects of a competitive microflora, pH and 

temperature on the growth kenetics of Escherichia coli O157:H7. Food Microbiol. 1999, 16, 299-

307. 

151. Liao, C-H.; Cooke, P.H. Response to trisodium phosphate treatment of Salmonella Chester 

attached to fresh-cut green pepper slices. Can. J. Microbiol. 2001, 47, 25-32. 



Int. J. Mol. Sci. 2009, 10 
 

3102

152. Galvez, A.; Lopez, R.L.; Abriouel, H.; Valdivia, E.; Omar, N.B. Application of bacteriocins in the 

control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 2008, 28, 125-152. 

153. Bennik, M.H.J.; Vorstman,W.; Smid, E.J.; Gorris, L.G.M. The influence of oxygen and carbon 

dioxide on the growth of prevalent Enterobacteriaceae and Pseudomonas species isolated from 

fresh and controlled-atmosphere-stored vegetables. Food Microbiol. 1998, 15, 459-469. 

154. Barry-Ryan, C.; Pacussi, J.M.; O’Beirne, D. Quality of shredded carrots as affected by packaging 

film and storage temperature. J. Food Sci. 2000, 65, 726-730. 

155. Beuchat, L.R. Surface decontamination of fruits and vegetables eaten raw: a review; World 

Health Organization, Food Safety Unit: Geneva, Switzerland, 1998; WHO/FSF/FOS/98.2, 

Available online: http://www.who.int/foodsafety/publications/fs_management/en/surface_ 

decon.pdf/ (accessed May 25, 2009). 

156. Sun, Z.; Zhong, J.; Liang, X.; Liu, J.; Chen, X.; Huan, L. Novel Mechanism for Nisin Resistance 

via Proteolytic Degradation of Nisin by the Nisin Resistance Protein NSR. Antimicrob. Agents 

Chemother. 2009, 53, 1964-1973. 

157. Leverentz, B.; Conway, W.S.; Alavidze, Z.; Janisiewicz, W.J.; Fuchs, Y.; Camp, M.J.; 

Chighladze, E.; Sulakvelidze A. Examination of bacteriophage as a biocontrol method for 

Salmonella on fresh-cut fruit—a model study. J. Food Prot. 2001, 64, 1116-1121. 

158. Barry-Ryan, C.; O’Beirne, D. Effects of slicing method on the quality and storage-life of modified 

atmosphere packaged carrot discs. J. Food Sci. 1998, 63, 851 - 856. 

159. Leverentz, B.; Conway, W.S.; Camp, M.J.; Janisiewicz, W.J.; Abuladze, T.; Yang, M.; Saftner, 

R.; Sulakvelidze, A. Biocontrol of Listeria monocytogenes on Fresh-Cut Produce by Treatment 

with Lytic Bacteriophages and a Bacteriocin Appl. Environ. Microbiol. 2003, 69, 4519-4526. 

160. Coffey, A.; Ross, R.P. Bacteriophage-resistance systems in dairy starter strains: molecular 

analysis to application. Antonie Leeuwenhoek 2002, 82, 303-321. 

161. Yang, J.M.; DeUrraza, P.J.; Matvienko, N.; O’Sullivan D.J. Involvement of the LlaKR2I 

Methylase in Expression of the AbiR Bacteriophage Defense System in Lactococcus lactis subsp. 

lactis biovar diacetylactis KR2. J. Bacteriol. 2006, 188, 1920-1928. 

162. Chopin, M-C.; Chopin, A.; Bidnenko E. Phage abortive infection in lactococci: variations on a 

theme. Curr. Opin. Microbiol. 2005, 8, 473-479. 

163. Hazan, R.; Engelberg-Kulka, H. Escherichia coli mazEF-mediated cell death as a defense 

mechanism that inhibits the spread of phage P1. Mol. Gen. Genomics. 2004, 272, 227-234. 

164. Johnson, E.A. Chapter 4: Microbial Adaptation and Survival in Foods. In Microbial Stress 

Adaptation and Food Safety; Yousef, A.E., Juneja, V.K., Eds.; CRC Press: Boca Raton, FL, USA, 

2002. 

165. Rowe, M.T.; Kirk, R.B. Cross-protection phenomenon in Escherichia coli strains harbouring 

cytotoxic necrotizing factors and cytolethal distending toxins." Lett. Appl. Microbiol. 2001, 32, 

67-70. 

166. Lou, Y.Q.; Yousef, A.E. Adaptation to sublethal environmental stresses protects Listeria 

monocytogenes against lethal preservation factors. Appl. Environ. Microbiol. 1997, 63,  

1252-1255. 



Int. J. Mol. Sci. 2009, 10 
 

3103

167. Periago, P.M.; Schaik, W.V.; Abee, T.; Wouters, J.A. Identification of Proteins Involved in the 

Heat Stress Response of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 2002, 68, 3486-

3495. 

168. Leyer, G.J.; Johnson, E.A. Acid Adaptation Induces Cross-Protection against Environmental 

Stresses in Salmonella Typhimurium. Appl. Environ. Microbiol. 1993, 59, 1842-1847. 

169. Mattick, K.L.; Jorgensen, F.; Legan, J.D.; Lappin-Scott, H.M.; Humphrey, T.J. Habituation of 

Salmonella spp. at Reduced Water Activity and Its Effect on Heat Tolerance. Appl. Environ. 

Microbiol. 2000, 66, 4921-4925. 

170. Phadtare, S.; Inouye, M. Role of CspC and CspE in regulation of expression of RpoS and UspA, 

the stress response proteins in Escherichia coli. J. Bacteriol. 2001, 183, 1205-1214. 

171. Derzelle, S.; Hallet, B.; Ferain, T.; Delcour, J.; Hols, P. Improved adaptation to cold-shock, 

stationary phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock 

proteins. Appl. Environ. Microbiol. 2003, 69, 4285-4290. 

172. Katzif, S.; Danavall, D.; Bowers, S.; Balthazar, J.T.; Shafer, W.M. The major cold shock gene, 

cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of 

human cathepsin G Infect. Immun. 2003, 71, 4304-4312. 

173. Mangoli, S.; Sanzgiri, V.R.; Mahajan, S.K. A common regulator of cold and radiation response in 

Escherichia coli. J. Environ. Pathol. Toxicol. Oncol. 2001, 20, 23-26. 

174. Yamanaka, K.; Inouye, M. Growth-phasedependent expression of cspD, encoding a member of 

the CspA family in Escherichia coli. J. Bacteriol. 1997, 179, 5126-5130. 

175. Schmid, B.; Klumpp, J.; Raimann, E.; Loessner M.J.; Stephan, R.; Tasara, T. Role of cold shock 

proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl. 

Environ. Microbiol. 2009, 75, 1621-1627.  

176. Ravishankar, S.; Juneja, V.K. Adaptation or Resistance Responses of Microorganisms to Stresses 

in the Food Processing Environment. In Microbial Stress Adaptation and Food Safety; Yousef, 

A.E.; Juneja, V.K. Eds.; CRC Press: Boca Raton, FL, USA, 2002; Chapter 5.  

177. Ferrer, M.; Chernikova, T.N.; Yakimov, M.M.; Golyshin, P.N.; Timmis, KN. Chaperonins govern 

growth of Escherichia coli at low temperatures. Nat. Biotechnol. 2003, 21, 1266-1267. 

178. Juneja, V.K.; Klein, P.G.; Marmer, B.S. Heat shock and thermotolerance of Escherichia coli 

O157:H7 in a model beef gravy system and ground beef. J. Appl. Microbiol. 1998, 84, 677-684. 

179. Foster, J.W. Low pH adaptation and the acid tolerance response of Salmonella typhimurium. Crit. 

Rev. Microbiol. 1995, 21, 215-237. 

180. Masters, C.I.; Miles, C.A.; Mackey, B.M. Survival and biological activity of heat damaged DNA. 

Lett. Appl. Microbiol. 1998, 27, 279-282. 

181. El-Sharoud, W.M. Ribosome inactivation for preservation: concepts and reservations. Sci. Progr. 

2004, 87, 137-152. 

182. Kim, Y.J.; Moon, M.H.; Song, J.Y.; Smith, C.P; Hong S-K.; Chang Y.K. Acidic pH shock 

induces the expressions of a wide range of stress-response genes. BMC Genomics 2008, 9, 604. 

183. Abram, F.; Starr, E.; Karatzas, K.A.G.; Matlawska-Wasowska, K.; Boyd, A.; Wiedmann, M.; 

Boor, K.J.; Connally, D.; O’Byrne, C.P. Identification of Components of the Sigma B Regulon in 

Listeria monocytogenes That Contribute to Acid and Salt Tolerance. Appl. Environ. Microbiol. 

2008, 74, 6848-6858. 



Int. J. Mol. Sci. 2009, 10 
 

3104

184. Streit, F.; Delettre, J.; Corrieu, G.; Béal, C. Acid adaptation of Lactobacillus delbrueckii subsp. 

bulgaricus induces physiological responses at membrane and cytosolic levels that improves 

cryotolerance. J. Appl. Microbiol. 2008, 105, 1071-1080. 

185. Bang I.-S.; Frye, J.G.; McClelland, M.; Velayudhan, J.; Fang, F.C. Alternative sigma factor 

interactions in Salmonella : E and H promote antioxidant defences by enhancing S levels. 

Mol. Microbiol. 2005, 56, 811-823. 

186. Gebhard, S.; Hümpel, A.; McLellan, A.D.; Cook, G.M. The alternative sigma factor SigF of 

Mycobacterium smegmatis is required for survival of heat shock, acidic pH and oxidative stress. 

Microbiol 2008, 154, 2786-2795. 

187. Smirnova, G.V., Zakirova, O.N., Oktyabrskii, O.N. The Role of Antioxidant Systems in the Cold 

Stress Response of Escherichia coli. Microbiology 2001, 70, 45-50. 

188. Gottesman, S. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 2003, 19, 

565-587. 

189. Sauer, R.T.; Bolon, D.N.; Burton, B.M.; Burton, R.E.; Flynn, J.M.; Grant, R.A. Sculpting the 

proteome with AAA(+) proteases and disassembly machines. Cell 2004, 119, 9-18. 

190. Hanson, P.I.; Whiteheart, S.W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 

2005, 6, 519-529. 

191. Neher, S.B.; Villen, J.; Oakes, E.C.; Bakalarski, C.E.; Sauer, R.T.; Gygi, S.P.; Baker, T.A. 

Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within 

SOS regulon. Mol. Cell 2006, 22, 193-204. 

192. Pruteanu, M.; Baker, T.A. Controlled degradation by ClpXP protease tunes the levels of the 

excision repair protein UvrA to the extent of DNA damage. Mol. Microbiol. 2009, 71, 912-924. 

193. Spano, G.; Capozzi, V.; Vernile, A.; Massa, S. Cloning, molecular characterization and 

expression analysis of two small heat shock genes isolated from wine Lactobacillus plantarum. J. 

Appl. Microbiol. 2004, 97, 774-782. 

194. Spano, G.; Beneduce, L.; Perrotta, C.; Massa, S. Cloning and characterization of the hsp 18.55 

gene, a new member of the small heat shock genes family isolated from wine Lactobacillus 

plantarum. Res. Microbiol. 2005, 156, 219-224 

195. Fiocco, D.; Capozzi, V.; Goffin, P.; Hols, P.; Spano, G. Improved adaptation to heat, cold, and 

solvent tolerance in Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 2007, 77, 909-915. 

196. Welch, T.J.; Farewell, A.; Neidhardt, F.C.; Bartlett, D.H. Stress response of Escherichia coli to 

elevated hydrostatic pressure. J. Bacteriol. 1993, 175, 7170-7177. 

197. Chen, H.; Neetoo, H.; Ye, M.; Joerger, R.D. Differences in pressure tolerance of Listeria 

monocytogenes strains are not correlated with other stress tolerances and are not based on 

differences in CtsR. Food Microbiol. 2009, 26, 404-408. 

198. McDougald, D.; Gong, L.; Srinivasan, S.; Hild, E.; Thompson, L.; Takayama, K.; Rice, S.A.; 

Kjelleberg, S. Defences against oxidative stress during starvation in bacteria. Antonie van 

Leeuwenhoek 2002, 81, 3-13. 

199. Lucchetti-Miganeh, C.; Burrowes, E.; Baysse, C.; Ermel G. The post-transcriptional regulator 

CsrA plays a central role in the adaptation of bacterial pathogens to different stages of infection in 

animal hosts. Microbiology 2008, 154, 16-29. 



Int. J. Mol. Sci. 2009, 10 
 

3105

200. Giotis, E.S., Julotok, M., Wilkinson, B.J., Blair, I.S., McDowell, D.A. Role of sigma B factor in 

the alkaline tolerance response of Listeria monocytogenes 10403S and cross-protection against 

subsequent ethanol and osmotic stress. J. Food Prot. 2008, 71, 1481-1485. 

201. Shahjee, H.M.; Banerjee, K.; Ahmad, F. Comparative analysis of naturally occurring L-amino 

acid osmolytes and their D-isomers on protection of Escherichia coli against environmental 

stresses. J. Biosci. 2002, 27, 515-520. 

202. Chattopadhyay, M.K. The cryoprotective effects of glycine betaine on bacteria. Trends Microbiol. 

2002, 10, 311. 

203. Chattopadhyay, M.K.; Kern, R.; Mistou, M.Y.; Dandekar, A.M.; Uratsu, S.L.; Richarme, G. The 

chemical chaperone proline relieves the thermosensitivity of a dnaK deletion mutant at 42°C. J. 

Bacteriol. 2004, 186, 8149-8152. 

204. VanBogelen, R.A.; Neidhardt, F.C. Ribosomes as sensors of heat and cold shock in Escherichia 

coli. Proc. Natl. Acad. Sci. USA 1990, 87, 5589-5593. 

205. Brissette, J.L.; Russel, M.; Weiner, L.; Model, P. Phage shock protein, a stress protein of 

Escherichia coli. Proc. Natl. Acad. Sci. USA 1990, 87, 862-866. 

206. Lloyd, L.J.; Jones, S.E.; Jovanovic, G. Identification of a new member of the phage shock protein 

response in Escherichia coli, the phage shock protein G (PspG). J. Biol. Chem. 2004, 279, 55707-

55714. 

207. Hassani, A.S., Malekzadeh, F.; Amirmozafari, N.; Hamdi, K.; Ordouzadeh, N.; Ghaemi, A. Phage 

Shock Protein G. A Novel Ethanol-Induced Stress Protein in Salmonella typhimurium. Curr. 

Microbiol. 2009, 58, 239-244. 

208. Hussain, I.; Mahmood, M. S.; Akhtar, M.; Khan, A. Prevalence of Campylobacter species in 

meat, milk and other food commodities in Pakistan. Food Microbiol. 2007, 24, 219-222. 

209. Bhagwat, A.A. Microbiological safety of fresh-cut produce: where are we now? In Microbiology 

of Fresh Produce; Matthews K.R., Ed.; American Society for Microbiology: Washington, D.C., 

USA, 2006; pp.121-165. 

210. Skandamisa, P.N.; Yoona, Y.; Stopfortha, J.D.; Kendallb, P.A.; Sofos J.N. Heat and acid 

tolerance of Listeria monocytogenes after exposure to single and multiple sublethal stresses. Food 

Microbiol. 2008, 25, 294-303. 

211. Chua, D.K.; Goh, R.; Saftner, A.; Bhagwat, A.A. Fresh-Cut Lettuce in Modified Atmosphere 

Packages Stored at Improper Temperatures Supports Enterohemorrhagic E. coli Isolates to 

Survive Gastric Acid Challenge. J. Food Sci. 2008, 73, M148-153. 

212. Artés, F.; Gómez, P.; Aguayo, E.; Escalona, V.; Artés-Hernández, F. Sustainable sanitation 

techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol. 

Technol. 2009, 51, 287-296.  

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 

 


