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Single nucleotide polymorphisms in the 
bovine MHC region of Japanese Black cattle  
are associated with bovine leukemia virus 
proviral load
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Abstract 

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma that has 
spread worldwide and causes serious problems for the cattle industry. The BLV proviral load, which represents the 
BLV genome integrated into host genome, is a useful index for estimating disease progression and transmission risk. 
Here, we conducted a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated 
with BLV proviral load in Japanese Black cattle. The study examined 93 cattle with a high proviral load and 266 with a 
low proviral load. Three SNPs showed a significant association with proviral load. One SNP was detected in the CNTN3 
gene on chromosome 22, and two (which were not in linkage disequilibrium) were detected in the bovine major 
histocompatibility complex region on chromosome 23. These results suggest that polymorphisms in the major his‑
tocompatibility complex region affect proviral load. This is the first report to detect SNPs associated with BLV proviral 
load in Japanese Black cattle using whole genome association study, and understanding host factors may provide 
important clues for controlling the spread of BLV in Japanese Black cattle.
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Main text
Bovine leukemia virus (BLV), which infects cattle world-
wide [1–6], belongs to the family Retroviridae (genus 
Deltaretrovirus), together with human T cell leukemia 
virus types 1 and 2 (HTLV-1 and -2) [7]. Historically, the 
economic losses caused by BLV infection were thought 
to be related only to the onset of bovine leukosis, which 
occurs in only 1–5% of BLV-infected cows within 5 years 
post-infection [7]. However, recent reports show that 
BLV infection also reduces milk production [6, 8–11] 
and causes a high incidence of infectious disease [12] and 
reproductive inefficiency, resulting in high culling rates 
[13]; thus BLV eradication is of utmost importance.

Previous studies show that the proviral load is an 
important index for estimating the stage of BLV infection 
because it is associated with disease progression [14–16], 
lymphocyte count [17], viral biokinetics [18], and virus 
shedding into saliva and nasal secretions [19]. Indeed, 
one study shows that cattle with a low proviral load are 
not a source of BLV transmission [20]. Therefore, deter-
mining host factors associated with an increased proviral 
load is important if we are to develop eradication pro-
grams for BLV.

Studies of BLV-associated host factors identified poly-
morphisms within the bovine major histocompatibility 
complex (MHC) (BoLA) [21–29]. Recently, Miyasaka 
et al. revealed that polymorphisms within BoLA class II 
haplotypes were strongly associated with BLV proviral 
load in Japanese Black cattle, the main breed of beef cat-
tle in Japan, but less so with that in European breeds [22]. 
However, no group has undertaken a genome-wide asso-
ciation study (GWAS) to identify such host factors.
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Therefore, to identify proviral load-associated poly-
morphisms, we performed a GWAS using DNA samples 
from 676 Japanese Black cattle [30]. Genomic DNA was 
isolated from peripheral blood, and the BLV proviral load 
was measured using the BLV-CoCoMo-qPCR-2 method 
[31]. BLV provirus was detected in samples from 444 
animals (range, 1  copy/105 cells to 132,230  copies/105 
cells; median value, 5498  copies/105 cells) (Fig.  1a). We 
then compared the proviral load in animals used for the 
GWAS with that in Japanese Black cattle selected ran-
domly from whole areas of Japan. We found no signifi-
cant difference in the proviral load between animals used 
for GWAS and the randomly selected group (Fig. 1b). In 
most cases, the animals in both groups showed a pro-
viral load of <10,000  copies/105 cells. A proviral load 
>100,000 copies/105 cells was rare.

We categorized the 444 BLV-infected cows into four 
groups according to proviral load: Low (0  <  provirus 
load  ≤  13,819, 266 heads), Medium (14,237  <  provi-
rus load  ≤  40,698, 85 heads), High (42,605  <  provirus 
load ≤ 73,145, 60 heads), and Very High (76,397 < pro-
virus load ≤  132,230, 33 heads). We then performed a 
GWAS using these traits as a binary variable, as is done 
in 93 case (High + Very High group) − 266 control (Low 

group) studies. The 359 animals were genotyped using a 
SNP50  K BeadChip comprising probes targeting 54,001 
single nucleotide polymorphisms (SNPs). In all, 32,919 
autosomal SNPs met the quality control criteria (call rate 
>99%; minor allele frequency >0.01; Hardy–Weinberg 
equilibrium, p  >  0.001). Analyses were then performed 
using GEMMA software [32], which uses a linear-
mixed model approach based on a genetic-relationship 
matrix estimated from SNP genotypes to model corre-
lations between the phenotypes of sample subjects. The 
genomic-inflation factor (λGC) for this analysis was 1.021, 
indicating that a sample was appropriate for inclusion in 
an association study. The quantile–quantile (Q–Q) plot 
showed that three SNPs showed a significant deviation 
from the null hypothesis (Fig.  2b, Bonferroni-corrected 
threshold for genome-wide significance (p < 1.5 × 10−6) 
add threshold line in A). Three significant genome-wide 
associations were detected: rs29026690 (p = 1.91 × 10−7, 
odds ratio =  2.745) and rs17872126 (p =  1.91 ×  10−7, 
odds ratio = 0.414) on bovine chromosome 23 (BTA23) 
and rs110616206 (p = 5.37 × 10−7, odds ratio = 6.589) 
on BTA22 (Fig.  2b; Table  1). The two SNPs on BTA23 
were found within an 800  Kb window located at 
27,421,348–28,223,274 bp; these two SNPs did not show 

Fig. 1  Proviral load estimated from SNP typing of DNA samples from 444 BLV-infected Japanese Black cattle (a) and 858 samples from Japanese 
Black cattle located in 22 prefectures of Japan (b) [17]. The proviral load in the 444 test samples was representative of the proviral load in Japanese 
Black cattle nationwide (p value, p = 0.4244; F test). Blood (collected in EDTA-2Na) was obtained from 444 Japanese black cows (aged >4 years), and 
genomic DNA was extracted from whole blood using the QIAsymphony kit (QIAGEN K.K., Tokyo, Japan). The BLV-CoCoMo-qPCR-2 method (RIKEN 
genesis, Kanagawa, Japan) was used to measure the BLV proviral load in 676 cattle at a single time-point; of these, 444 were positive for BLV and 
entered into the association study. Briefly, the BLV long terminal repeat region was amplified using a degenerate primer pair (CoCoMo-FRW and 
CoCoMo-REV) and an FAM-BLV probe. The BoLA-DRA gene (internal control) was amplified using the primer pair DRA-F and DRA-R and the FAM-
DRA probe [31]
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linkage disequilibrium (LD) (r2 = 0.117), indicating that 
BTA23 harbored two independent quantitative trait loci 
(QTL)s (Figs. 2b, 3; Table 1).

Genes within or near these regions were then ana-
lyzed using the UMD3.1 genome assembly tool. Hap-
map57616-rs29026690 (27,421,348  bp on BTA23) was 
located between ENSBTAG00000000580 and ABHD16A 
(ENSBTAG00000000578) (Additional file  1: Table S1), 
whereas ARS-BFGL-NGS-113235 (28,223,274  bp on 
BTA23) was located between the 4th and 5th exons 
of PRR3 (ENSBTAG00000006914). These SNPs reside 
within the BoLA class III and class I regions, respectively 
(Figs.  2b, 3; Additional file  1: Table S1). Therefore, the 
gene density was much higher than that in other areas of 
the genome, and a number of candidate genes that could 
be used to estimate proviral load were present around 
the detected SNPs [33]. Hapmap33580-BTA-136506 was 
located on the centromeric side of BTA22, at a distance of 
6.5 kb from the CONTACTIN3 (CNTN3) gene (Table 1; 
Additional file 1: Table S1, Additional file 2: Fig. S1).

To the best of our knowledge, this is the first report 
to detect SNPs associated with BLV proviral load in 
Japanese Black cattle using GWAS. Two of the identi-
fied SNPs were located in the BoLA region. We found 
it interesting that these two SNPs were located within 
the class III and class I regions because a previous study 

reported involvement of only class II genes [22]. The 
genome reference sequences for the BoLA region have 
many gaps, mainly because class I genes were difficult 
to genotype, making associations with class I genes dif-
ficult to determine. Target resequencing of high density 
SNPs across the MHC region using a next generation 
sequencer should be undertaken to confirm which genes 
are truly responsible for regulating the proviral load. 
Our result showed that the MHC polymorphism is 
important factor for proviral load. The reason why MHC 
polymorphisms were associated with proviral load is the 
polymorphism of classical MHC directly associate with 
antigen presentation and the difference of antigen pres-
entation in each allele leads to the immunological differ-
ence in each host.

Taken together, the results described herein show that 
MHC genotyping of class III and class I alleles can iden-
tify cows with a low proviral load. In the farm with high 
infection rate, eliminating high proviral load cow is an 
effective way for eradicating BLV because proviral load 
is major risk factor for transmitting BLV to other host 
[20]. Therefore, farmer should frequently check the pro-
viral load because the proviral load is variable, although 
it is not cost-effective. Taken together with the infor-
mation of our finding 3 SNPs and our previously report 
about resistant BoLA class II allele [22], we can identify 

Table 1  SNPs showing a significant association with BLV proviral load

a  SNP ID assigned by Illumina, Inc
b  Reference SNP (refSNP) ID assigned in the single nucleotide polymorphism database (dbSNP)
c  Positions are based on the bovine genome, assembled in UMD3.1
d  Minor allele is minor frequency allele determined in this study
e  Major allele is major frequency allele determined in this study
f  Odds ratio is the effective value for estimating how strongly the SNPs associated to the proviral load, using following formula

Odds ratio =

Minor allele frequency (case)
Minor allele frequency (control)
Major allele frequency (case)

Major allele frequency (control)

Chromosome Ilumina_IDa Reference 
cluster IDb

Positionc p Minor 
alleled

Minor alleled 
(case)

Minor alleled 
(control)

Major 
allelee

Odds 
ratiof

23 Hapmap57616-
rs29026690

rs29026690 27421348 1.91 × 10−7 A 0.2903 0.1297 G 2.745

23 ARS-BFGL-
NGS-113235

rs17872126 28223274 1.91 × 10−7 G 0.2849 0.4906 A 0.414

22 Hapmap33580-
BTA-136506

rs110616206 27280154 5.37 × 10−7 A 0.0914 0.01504 G 6.589

(See figure on previous page.) 
Fig. 2  Three-hundred and fifty-nine BLV-infected cows were genotyped using a BovineSNP50 DNA Analysis BeadChip (Illumina Inc., San Diego, 
CA), and SNPs associated with the BLV proviral load were examined. a Quantile–quantile (Q–Q) plot. The observed distribution of the −log10 
nominal p values (y-axis) demonstrates a significant departure from the null hypothesis (expected values are shown on the x-axis) (λGC = 1.021). 
Red line represents the line as y = x. b Manhattan plot showing the association between 33,006 SNPs (BovineSNP BeadChip) and the BLV proviral 
load in DNA samples from 359 Japanese Black cattle. The chromosomes are denoted by different colors (blue odd numbers; orange even numbers). 
The chromosome number is indicated on the x-axis. The blue line represents the Bonferroni-corrected threshold for genome-wide significance (−
log10(p) = 5.82)



Page 5 of 7Takeshima et al. Retrovirology  (2017) 14:24 

Fig. 3  Regional Manhattan plot of the locus on chromosome 23 that harbors SNPs associated with BLV proviral load. The imputed SNPs are shown 
by arrows. Genes (Chr23:27,116,737 to Chr23:28,311,070) are listed, and the positions of SNPs associated with the BLV proviral load are indicated by 
arrows. The horizontal blue lines represent the Bonferroni-corrected thresholds for genome-wide significance (−log10(p) = 5.82). The indicated posi‑
tions are based on the bovine genome (assembled in UMD3.1)
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the BLV resistant cow. It will be helpful to develop a low 
cost method of eradicating BLV from farms because we 
can reduce the frequently measurement of proviral load.
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