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Abstract: Landslide susceptibility prediction (LSP) modeling is an important and challenging
problem. Landslide features are generally uncorrelated or nonlinearly correlated, resulting in
limited LSP performance when leveraging conventional machine learning models. In this study, a
deep-learning-based model using the long short-term memory (LSTM) recurrent neural network
and conditional random field (CRF) in cascade-parallel form was proposed for making LSPs based
on remote sensing (RS) images and a geographic information system (GIS). The RS images are the
main data sources of landslide-related environmental factors, and a GIS is used to analyze, store,
and display spatial big data. The cascade-parallel LSTM-CRF consists of frequency ratio values of
environmental factors in the input layers, cascade-parallel LSTM for feature extraction in the hidden
layers, and cascade-parallel full connection for classification and CRF for landslide/non-landslide
state modeling in the output layers. The cascade-parallel form of LSTM can extract features from
different layers and merge them into concrete features. The CRF is used to calculate the energy
relationship between two grid points, and the extracted features are further smoothed and optimized.
As a case study, the cascade-parallel LSTM-CRF was applied to Shicheng County of Jiangxi Province
in China. A total of 2709 landslide grid cells were recorded and 2709 non-landslide grid cells were
randomly selected from the study area. The results show that, compared with existing main traditional
machine learning algorithms, such as multilayer perception, logistic regression, and decision tree,
the proposed cascade-parallel LSTM-CRF had a higher landslide prediction rate (positive predictive
rate: 72.44%, negative predictive rate: 80%, total predictive rate: 75.67%). In conclusion, the proposed
cascade-parallel LSTM-CRF is a novel data-driven deep learning model that overcomes the limitations
of traditional machine learning algorithms and achieves promising results for making LSPs.

Keywords: landslide susceptibility prediction; deep learning; cascade-parallel recurrent neural
network; conditional random field; logistic regression; multilayer perceptron; decision tree; remote
sensing; geographic information system
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1. Introduction

Landslides are one of the most common geological disasters worldwide and cause considerable
damage to public infrastructure and human life every year [1,2]. The predictive modeling of landslide
occurrence is one of the main challenges in geological hazard research. A landslide susceptibility
map (LSM) is an effective visualization technology for the localization of a landslide region and
sustainable land management [3–5]. Moreover, the landslide susceptibility model based on geological
environmental conditions can supply the government with an important theoretical basis for land
resource planning and disaster prevention and reduction.

The process of landslide susceptibility prediction (LSP) modeling primarily includes a catalog of
landslides, environmental factors extraction, model architecture construction, model training, landslide
susceptibility mapping, and model evaluation [6,7]. The catalog of landslides (landslide area, boundary,
locations) are measured using global positioning systems and put into a geographic information
system (GIS) for landslide storage and management [8,9]. The environmental factors are extracted
from the remote sensing (RS) images, such as Landsat8 TM image, digital elevation model (DEM),
aerial imagery, and LiDAR, based on the GIS spatial analysis, including terrain analysis, hydrological
analysis, and map algebra [10]. As a whole, the LSP modeling is built on the platform of GIS because
of the spatial big data analysis, storage, mapping, and management abilities [11].

Importantly, based on the above obtained spatial data sources, the input data, network architecture,
parameter settings, and optimization algorithm of the model all affect the accuracy of landslide
predictions. In recent decades, researchers have developed various predictive models combined with
the GIS, which includes heuristic models and statistical models [12], e.g., information value model [13],
logistic regression [14,15], entropy index [16], certainty factor [17,18], analytic hierarchy process [19,20],
etc. However, these models have certain limitations in LSP applications. For example, models often
require feature data to be subject to a certain statistical distribution or an independent and identically
distributed assumption, but environmental factors often fail to meet these prior knowledge requirements.
In recent years, machine learning methods have been widely used in landslide susceptibility modeling
and have achieved remarkable results because of their high prediction accuracy and absence of a
prior knowledge requirement. As such, this approach produces a higher prediction accuracy, can
more precisely identify the nonlinear relationship between input and output variables, and retains
more characteristic information from the original data [21–24]. This approach includes multiple
adaptive regression splines [25,26], fuzzy logic [27,28], artificial neural network [15,29], multilayer
perceptron [30], decision tree [31–33], random forest [34–36], support vector machine [37–39], rule-based
approach [40], and multi-criteria evaluation techniques [41], among others.

Selected disadvantages of traditional machine learning models occur in the application of LSP:
(1) the models generally require a large amount of prior knowledge and assumptions; (2) the networks
are not sufficiently deep to fully extract the underlying landslide features; (3) the networks are not
sufficiently wide to consider the correlations between sub-regions; and (4) the models encounter
problems, such as over-fitting, time-consuming computation, ease of falling into local optima, and
sensitivity to missing data, which affect the accuracy of prediction.

Deep learning is an emerging multilayer neural network learning algorithm that can overcome the
shortcomings of traditional machine learning models to a certain extent. Compared with traditional
machine learning methods, deep-learning-based models are capable of extracting inherent and deep
features. Deep learning methods are data-driven without requiring additional prior knowledge or
assumptions [42–44], and can effectively identify useful information among miscellaneous data and
obtain the optimal parameters for constructing models in the process of model training. At the same
time, the impact of over-fitting on model prediction accuracy can be eliminated by using a considerable
number of iterations. Moreover, as advanced data mining models, deep learning algorithms have been
widely used in various fields, such as image recognition [44], face recognition [45], medical artificial
intelligence [46], natural hazards mapping [47], etc. Due to their strong capability of feature extraction,
it is necessary to apply deep learning methods to predict the landslide susceptibility in the study
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area [48]. The current basic models of deep learning include the deep neural network, convolutional
neural network, recurrent neural network, and a series of new structures, such as the long short-term
memory (LSTM) [49] structure and residual network (ResNet) [50], which are state-of-the-art models
with a high performance across numerous applications and are valuable in the theoretical study of deep
learning, among others. In addition, many methods, such as the rectified linear unit activation function,
have been developed to solve the problems of gradient disappearance and over-fitting in traditional
networks. Moreover, model calibration is necessary for landslide susceptibility prediction. Venables
and Ripley [51] present a guide to using S environments to perform statistical analyses, practical
problems, and real data sets. Common calibration methods for landslide succeptibility (LS) assessment
includes (i) linear discriminant analysis (LDA) [51–53], (ii) quadratic discriminant analysis (QDA) [53],
(iii) logistic regression (LR) [54], and (iv) neural network (NN) modeling [53,55]. A comprehensive
calibration for neural-network-based LSP modeling aims to improve the output characteristic of all
nodes, resulting in a computationally intensive problem.

In summary, landslide susceptibility prediction plays a significant role in resisting landslides and
reducing disasters. It is also a challenging problem because landslide features are generally uncorrelated
or nonlinearly correlated, resulting in limited LSP performance when leveraging traditional machine
learning models. To overcome the limitations where traditional machine learning algorithms require
substantial prior knowledge and achieve promising results regarding LSPs, a novel data-driven deep
learning model using the LSTM recurrent neural network and conditional random field (CRF) in
cascade-parallel form was proposed for LSP based on the remote sensing (RS) images and a geographic
information system (GIS). In the proposed model, the cascade-parallel LSTM can extract and merge
features from different layers without prior knowledge, and CRF is used to further smooth and
optimize those extracted features. Meanwhile, a dropout strategy is adopted to prevent the problem of
over-fitting in traditional neural networks.

The study and comparison of machine learning models based on deep learning algorithms and
other traditional models for LSP is of great significance. Taking Shicheng County in China as a case
study, this study proposed a recurrent neural network, namely a cascade-parallel LSTM model, to
predict landslide susceptibility in the study area. Considering the influence of the relationship between
adjacent grids on landslide susceptibility, the conditional random field (CRF) was further introduced
to optimize the models. Furthermore, logistic regression (LR), multilayer perceptron (MLP), and C5.0
decision tree (C5.0 DT) methods were selected for analysis and comparison.

2. Materials and Methods

2.1. Materials

2.1.1. Introduction to Shicheng County

Shicheng County is located in the northeast portion of Ganzhou City, Jiangxi Province, with a
longitude ranging from 116◦05′46”–116◦38′03” N, a latitude ranging from 25◦57′47”–26◦36′13” E and a
total area of 1581.53 km2, as illustrated in Figure 1. Shicheng County is a typical southeast low mountain
and hilly region, the topography of which is enveloped by many mountains in the northeast, rolling hills
in the southwest, and flat terrain in the middle. Moreover, this region resides in a subtropical humid
monsoon climate zone with ample sunshine, an annual mean temperature of 18.1 °C, and abundant
rainfall, where the annual precipitation is 1919.6 mm. Furthermore, Shicheng basin formation in this
area is attributed to the influence of tectogenesis, and the Guifeng Group and the Late Cretaceous of the
Ganzhou Group are its main outcropping strata. The Guifeng Group is the prime landscape formation
of the Danxia landform, which is divided into the Hekou formation with cracked landforms in its red
sandstone, and the Tangbian and Lianhe formations, from bottom to top. The Anyuan-Yingtan fault
zone, the Caledonian Indosinian-Huali granite, and the Cretaceous basin, which are distributed in
the form of beads, are located on the west side of the basin. The Heyuan-Shaowu fault zone, which
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has obvious control of the formation and distribution of the Meso Cenozoic basin, is located on the
east side.Sensors 2020, 20, x FOR PEER REVIEW 4 of 26 
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Figure 1. Location map in the study area. DEM: Digital elevation model.

2.1.2. Landslide Distribution Map

The catalog of the landslide distribution map is the key to the LSP, where the accurate landslide
locations and detailed geological information are primarily reflected. The landslide locations are
acquired based on historical landslide disaster reports, field investigations, and interviews with
residents conducted by the Land and Resources Department of Jiangxi Province. A total of 369
landslides have been recorded in Shicheng County from 1970 to 2012 (Figure 1). The main features of
these landslides can be described as small-scale, high-frequency, with a wide distribution.

The total area covered by the landslides in Shicheng County is about 2.44 × 106 m2 with the
smallest area being 1.0 × 103 m2 and the largest area being 1.6 × 104 m2. The landslide masses are
generally composed of quaternary silty clay intercalated with crushed stones, and the depth of these
sliding masses ranges from 2 m to 8 m. In addition, these landslides can be regarded as shallow soil
landslides with a movement type of clay/silt slide [56]. Finally, the landslides in Shicheng County are
mainly triggered by the seasonal heavy rainfall and unreasonable constructive activities (such as slope
toe cutting and road network construction)

2.2. Environmental Factors Extraction from RS and GIS

A total of 14 environmental factors were extracted from RS and the GIS, including topographic,
land cover, hydrological, and lithology factors.

2.2.1. Terrain Analysis Using DEM Data

The topographic factors (including elevation, slope, aspect, profile curvature, plan curvature,
and relief amplitude) and hydrological factors (distances to rivers and topographic wetness index
(TWI)) were extracted from the DEM with a 30-m resolution (http://gdem.ersdac.jspacesystems.or.jp).
The profile curvature represents the vertical plane parallel to the slope direction; it is calculated as
the slope of the slope using the terrain analysis tool in ARCGIS 10.2, ESRI, USA. Meanwhile, the plan
curvature represents the various features of the concave terrain from the horizontal direction and
is calculated as the slope of the aspect [57] in ARCGIS software. Meanwhile, the relief amplitude,
which represents the slope surface relief characteristics of Shicheng County, was calculated using the
maximum height difference method in ARCGIS software [58].

http://gdem.ersdac.jspacesystems.or.jp
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2.2.2. Land Cover Factors Acquisition from Google Earth and Landsat TM8 Images

The environmental factors of the total surface radiation and population density were downloaded
from Google Earth 7.1.8.3036 (32-bit). The total surface radiation, defined as the sum of direct and
diffuse solar radiation received on the horizontal surface, affects the hydrological environments and
land cover types of the slope [59]. Population density, which represents the population in a certain
area, mainly plays an important role in human construction activities [60].

The Landsat TM8 image taken on 5 October 2013, path/row 121/42 with a 30-m resolution
(http://ids.ceode.ac.cn/index.aspx) was used to extract the land cover factors, which are expressed
using the normalized difference vegetation index (NDVI), the modified normalized difference water
index (MNDWI), and the normalized difference build-up index (NDBI) [61]. NDVI mainly represents
the vegetation growth and cover rates of the study area (Equation (1)). MNDWI represents the surface
water distribution features, as shown in Equation (2). In addition, the NDBI reflects the building
distribution features on the surface of the landslide, as shown in Equation (3). The P(B3), P(B4), P(B5),
and P(B6) represent the visible green band, visible red band, near-infrared band, and middle infrared
band, respectively, of the Landsat 8 TM image.

NDVI =
P(B5) − P(B4)
P(B5) + P(B4)

(1)

NDBI =
P(B6) − P(B5)
P(B6) + P(B5)

(2)

MNDWI =
P(B3) − P(B6)
P(B3) + P(B6)

(3)

2.2.3. Analysis of Hydrological Factors

The effects of hydrological factors on landslides are reflected through the topographic wetness
index (TWI) and the distances to rivers. TWI represents the effects of topography and soil moisture
content on the probability of landslide occurrence. The distances to rivers represents the distance of
grid cells to the rivers and drainages in the area, suggesting the effects of surface water on landslides.
The distances to rivers can be calculated based on the multi-ring buffering method in ARCGIS software.

The river networks of the study area are extracted through the hydrological analysis tool [62].
First of all, the DEM data was filled by the fill tool of the hydrological analysis tool to handle the defects
of the original data. Second, the flow direction was calculated based on the filled DEM data, then the
flow accumulation of each grid cell was calculated based on the flow direction and the filled DEM.
Third, the flow accumulation threshold was set to 5000 according to the trial-and-error method [63],
and the grid cells with a flow accumulation threshold greater than 5000 could form the river networks.
Finally, a river network with a linear vector format could be obtained through the grid turn line tool in
ARCGIS software.

TWI, representing the impacts of topographic factors on the soil moisture content along the runoff

areas, has been widely used to describe the hydrological influences on landslide occurrences. TWI can
be expressed as given in Equation (4), where As refers to the upstream catchment area and β represents
the slope angle of a certain grid cell:

TWI = ln(As/tan β) (4)

http://ids.ceode.ac.cn/index.aspx
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2.2.4. Analysis of the Lithology Factor

Lithology is represented by the rock types, which are the material basis of landslide development,
with a great influence on the shear strength and permeability of the rocks and soils in the landslide
mass. In this study, a rock type map was provided by the Land and Resources Department of Jiangxi
Province and was mapped through the spatial analysis tool of ARCGIS software. The rock types in
Shicheng County are mainly defined as metamorphic, carbonate, and clastic rocks.

2.3. Frequency Ratio (FR) Method

The application of the FR method is usually based on the assumption that future landslide events
will occur in the geological environment of the past and present landslides [48,64]. Moreover, FR
quantifies the relationship between the observed landslides and each environmental factor and is
defined as the ratio of the proportion of landslide grid numbers in each subclass factor to the proportion
of study area grid numbers in each subclass factor. The higher the FR, the higher the probability that a
landslide will occur in the subcategory of the corresponding factors:

FR ja =
S′ja/S

M′ja/M
(5)

where FR ja is the frequency ratio of the ath subcategory in the jth environmental factor, S ja
′ is the

number of landslide grids of the ath subcategory in the jth environmental factor, S is the total number
of landslide grids, M′ja is the number of study grids of the ath subcategory in the jth environmental
factor, and M is the number of total grids in the study area.

2.4. Modeling Processes of Cascade-Parallel LSTM-CRF

The proposed cascade-parallel LSTM-CRF model for LSP consists of five steps:

(1) A large landslide inventory and related environmental factors are collected from a global
positioning system, RS, and GIS technologies.

(2) The frequency ratio values (FRs) of those environmental factors are calculated and labeled, and
then are used as input variables of the machine learning models.

(3) The landslide and non-landslide grid cells are used as the output variables of these models.
(4) The landslide susceptibility models are built based on the cascade-parallel LSTM-CRF, as well as

the other models for comparisons.
(5) The LSMs of Shicheng County and the model accuracy evaluation are performed.

2.5. Theory of Cascade-Parallel LSTM-CRF

In this study, the cascade-parallel LSTM and CRF were proposed for LSP, as shown Figure 2.
The model consists of sub-region feature modeling, fully connected layer classification, and implicit
state modeling. The proposed model has a higher LSP performance and overcomes the limitations in
terms of achieving a wider range of landslide data prediction. With the stacked structure, it can extract
more comprehensive and accurate landslide features, which facilitates classification. Furthermore,
CRF can optimize the extracted features and smooth the predicted results of mutations.
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Figure 2. Algorithm flowchart. BP: Back propagation, CRF: Conditional random field, FC: Full
connection, LSTM: Long short-term memory.

2.5.1. Sub-Region Feature Modeling

The modeling area is first divided into consecutive sub-regions Se, (e = 1, 2, . . . , dM/Ne), where
M is the number of grids in the whole area, N is the defined number of grids in each sub-region, and
d•e denotes the ceiling operation (i.e., x is rounded up to the nearest integer). The FR vectors xe of the J
environmental factors in the eth sub-region are used as the raw input data of the eth cascade LSTM.
As shown in Figure 2, the batch size is equal to the number of grids in each sub-region. The batch
gradient descent (BGD) method is used in each sub-region. In light of the complicated characteristics
of landslide factors, this section uses cascade LSTM [65] to extract the corresponding features of
landslides, which shows superior performance over the single LSTM.

By leveraging the cascade of K LSTM cells and fully connected feed-forward units, the deep
features and space patterns of the input FR vectors xe are extracted for landslide/non-landslide
classification. The LSTM cell is shown in Figure 3.
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Due to the high coupling and sophisticated nonlinear correlations among landslide environmental
factors, landslide environmental factors cannot be used as features of prediction. Therefore, it is
necessary to establish a cascade deep network structure that extracts effective features of different
weights from different layers by decoupling the complex relationships through multiple implicit layers.
The input layer of the cascade-parallel LSTM-CRF is the real matrix Ri× j of the landslide environment
factors, where the row vector {i |1 ≤ i ≤M, i ∈ Z} is the number of grids and M is the total number of
grids, the column vector

{
j |1 ≤ j ≤ J, j ∈ Z

}
is the number of landslide environment factors and J is the

total number of landslide environment factors, and RM×J passes through an implicit layer of K LSTM
cells cascaded in series. The LSTM unit is shown in Figure 3.

When the kth LSTM cell is processing the data of the jth environmental factor of the ith grid point
using forward propagation, the update formulas for the forget gate layer ( fk,i, j), the input gate layer
(ik,i, j), and the output gate layer (ok,i, j) are written as follows:

fk,i, j = σ
(
W f ·

[
hk−1, xi j

]
+ b f

)
(6)

ik,i, j = σ
(
Wi ·

[
hk−1, xi j

]
+ bi

)
(7)

ok,i, j = σ
(
Wo ·

[
hk−1, xi j

]
+ bo

)
(8)

where “σ” represents the sigmoid function used as the activation function; W f , Wi, and Wo are
the weight matrices of each gate of the LSTM cell; hk−1 and xi j represent the hidden state from the
previous unit and the jth environmental factor of the ith grid point, respectively; b f , bi, and bo are the
corresponding bias terms; and fk,i, j outputs a number between 0 and 1. The internal data calculation
process of LSTM is as follows:

C̃k,i, j = tanh
(
Wc ·

[
hk−1, xi j

]
+ bC

)
(9)

Ck,i, j = fk,i, j ∗Ck−1 + ik,i, j ∗ C̃k,i, j (10)

hk,i, j = ok,i, j ∗ tanh(Ck,i, j) (11)

where Ck,i, j is the current cell state, C̃k,i, j is the candidate state generated by the current input gate
layer based on the previous hidden layer, and hk,i, j is the hidden layer state. First, the input gate layer

generates the candidate state value C̃k,i, j. Second, the forget gate layer decides which information is
discarded (when fk,i, j = 1, it means that the previous cell state is completely retained; when fk,i, j = 0,
it means that the previous cell state is completely discarded). The value of the new candidate state
is added to the input gate layer to create an update of the cell state. Finally, the output gate layer
outputs Ck,i, j and the hidden variable hk,i, j based on the current cell state. During the process of forward
propagation, the formula for the change from the input of raw data to the output from cascade LSTM
is as follows:

yout =
K∏

k=1

M∑
i=1

J∑
j=1

ok,i, j ∗ tanh
(

fk,i, j ∗Ck−1 + ik,i, j ∗Ck,i, j
)

(12)

where M, J and K represent the total number of grid points, the environmental factors of the single grid
point, and the LSTM cells, respectively. The internal weights of the LSTM cells and bias parameters are
updated using backpropagation. When the kth LSTM cell is processing the ith grid, the error of an
output cell is as follows:

δk(i) =
∂Lcross−entropy

∂xi
(13)
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The error of the entire output gate layer can be readily computed based on the error of the output
cell as follows:

δo(i) = σ′(o(i))

 K∑
v=1

tanh(hv(i))
∑

k

Wk
cδk(i)

 (14)

The three gate layers of the LSTM act as three switches, which have the function of the selective
forgetting of old cell states, selective logging of input information, and selective determination of
which portion of the cell state is output. The three gates of LSTM [66] control the state of the cells,
which are similar to the conveyor belt, making one-dimensional data transmit throughout the chain
smoothly. Hence, LSTM is ideal for processing 1D (one-dimensional) landslide raw data. In this study,
the algorithm can fuse the features of each layer of the LSTM through the data stream connection
between layers, which extracts more abundant features than the single layer of LSTM.

To prevent the model from over-fitting during training, a dropout process was adopted in the
LSTM cells. The specific process is described as follows. First, in a batch of training samples, a portion
of neurons in the LSTM cells are randomly deleted, and the remaining neurons are fed to the next
layer. Second, after obtaining this batch of training samples, the deleted neurons are restored, and
certain neurons in the LSTM cells are randomly removed once again. The corresponding parameters
are updated via the Adam method, which is performed on the un-removed neurons. This process
is repeated. The dropout in this study was set to 0.2, which remarkably reduced the probability of
over-fitting. This approach is beneficial to the subsequent independent and non-redundant optimal
feature extraction. For the entire area, dM/Ne sub-regions are predicted with parallel implementation.
The cascading LSTMs are applied to each sub-region.

2.5.2. Fully Connected Layer Classification

LSP is a two-category task. Therefore, a classification layer is required in the model to predict
whether the grid has a landslide. The K cascade LSTM extracts the 32-dimensional landslide features
of the landslide factors for each grid, and all features form a fully connected layer. A classification layer
formed by two neurons follows the fully connected layer. This process maps the 32-dimensional feature
space to the 2-dimensional space through a sigmoid function, i.e., the landslide/non-landslide space.
Additionally, the nonlinear sigmoid function maps the real features in (−∞,+∞) to the landslide
probability values in [0, 1], producing a landslide prediction.

2.5.3. Hidden State Modeling

The extracted features are observed states, and the landslide/non-landslide is the hidden state.
With the fully connected output as the conditional random field input, the extracted features are further
optimized and classified. For the LSP task (or general structured prediction), it is beneficial to consider
the correlations between labels in neighborhoods, and it is reasonable to assume that the labels in each
input sub-region are correlated.

The landslide factor is the observed state, and the landslide/non-landslide is the implied state.
The prediction results obtained by the fully connected layer are all from the observed state, without
consideration of the spatial correlation between the hidden states. For example, if the grids are spatially
related and other raster predictions in a certain neighborhood of a certain grid are landslides, then the
grid is more likely to contain a landslide. For example, based on the assumption that a spatial correlation
exists between grids, if other grids in a certain neighborhood of a grid are predicted to be landslides,
then this grid is more likely to contain a landslide. In this study, according to the order characteristics of
landslide data, a CRF [67,68] is introduced after the fully connected layer for hidden state modeling to
produce a landslide/non-landslide prediction sequence yhidden =

{
y1

hidden , y2
hidden, · · · , yn

hidden

}
and make

more accurate predictions. At the same time, CRF can smooth out the sudden changes in the prediction
results and correct the unreasonable prediction. Assuming that the fully connected layer output
yhidden =

{
y1

hidden , y2
hidden, · · · , yn

hidden

}
and the true label sequence during the training process phase
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ylabel= {y1
label, y2

label, · · · , yn
label

}
satisfy the Markov property, then the conditional probability p

(
ylable

∣∣∣ypred
)

is calculated as follows:

p
(
ylable

∣∣∣ypred
)
=

1
Z(x)

exp

∑
i,k

λktk
(
yi−1

label, yi
label, ypred, i

)
+

∑
i,l

µlsl
(
yi

label, ypred, i
) (15)

where Z
(
ypred

)
=

∑
y

exp
{

n∑
i=1

wi fi
(
ylable, ypred

)}
denotes the normalized factor, tk is the transfer

characteristic function,sl is the transfer characteristic function, and λk and µl are the corresponding
weight coefficients. In this study, the maximum likelihood estimation method was used to optimize
the CRF. The likelihood function is given as follows:

L(W) =
∑

i

logp
(
yi

label

∣∣∣yi
label

)
(16)

The goal of optimization is to obtain the maximum conditional probability of the above formula.
This study used the Viterbi algorithm to optimize the CRF calculation process. The final prediction
result yhidden is obtained from the output ypred of the fully connected layer and the conditional probability

p
(
ylable

∣∣∣ypred
)

calculated using the CRF.

2.5.4. Loss Function

A cross entropy is introduced as the loss function of the entire model to achieve optimization and
convergence. The loss function based on cross entropy is written as Equation (17). The reasons for
choosing cross entropy in this study are listed as follows: (1) Because the difference in the original
data of the landslide factor is relatively small, the logarithmic function in the cross entropy is used to
expand the gap between the data, thereby reducing the numerical calculation error. (2) Because the
influences of different influence factors on the landslide are different, the cross entropy is introduced to
ensure that each impact factor has a different weight. The model can find the direction of the fastest
gradient descent and accelerate the convergence of the model. (3) Cross entropy makes the probability
of optimization more accurate, i.e., the probability of a landslide is closer to 1, and the probability of a
non-landslide is closer to zero.

Lcross−entropy = −
1
n

n∑
i=1

(yi
labellog(yi

hidden) + (1− yi
label)log(1− yi

hidden)) (17)

3. Results

3.1. Landslide-Related Spatial Dataset

3.1.1. Landslide-Related Environmental Factors

In the existing study, no agreement was found regarding the causes of landslide events due to the
complexity of the geological environment and the sensitivity of landslide evolution [69]. However, based
on studies between landslide and environmental factors conducted by researchers in different regions,
the environmental factors consist of five main categories: topography and geomorphology, hydrologic
environment, basic geology, land cover, and human activities [70]. Therefore, 14 environmental factors
were selected as input variables for landslide prediction in this study: elevation, slope, aspect, plan
curvature, profile curvature, relief amplitude, NDBI, total surface radiation, NDVI, population density
index, distances to rivers, MNDWI, TWI, and lithology (Figure 4).
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Sensors 2020, 20, 1576 12 of 25

It is significant to determine an appropriate spatial resolution of grid cells for predicting landslide
susceptibility. This is because too low of a spatial resolution cannot ensure the reliability of the LSP
while too high of a spatial resolution will strongly increase the complexity of the LSP modeling [71,72].
In this study, the original spatial resolutions of the grid cells of the DEM and Landsat TM images were
both 30 m. This resolution value can effectively characterize the topography of Shicheng County and
can avoid excessive computation [73]. In addition, a lot of literature suggests that a spatial resolution
of 30 m is feasible and satisfactory for LSP [6,30,48,70,74,75]. Hence, the spatial resolution of grid cells
in this study was set to 30 m.

3.1.2. Frequency Ratio Values of Environmental Factors

The frequency ratio values of these environmental factors were calculated to express the nonlinear
correlations between environmental factors and landslides, as shown in Figure 5. The relief amplitude
often appears in the range of 22–71. The plan curvature reflects the convergence and divergence of
surface water flow [34], and the region of 0–27.5 is indicative of landslide events. The slope shows
the difference in the surface water collecting capacity [76]. In addition, the aspect is closely related to
landslide development and is often considered in the LSP, which is prone to landslide events in the
ranges of 67.5–157.5 and 247.5–292.5. NDBI and population density intensively embody the range
of human engineering activities with a high landslide probability. NDVI and total surface radiation
reflect the impact of land cover on landslides [1], and an NDVI of 0.2–0.59 and a total surface radiation
of 0.46–0.59 indicate a favorable environment for landslide occurrence. Moreover, the distances to
rivers are the most common hydrologic environmental factor that affects the development of landslides,
and the results show that the area with a distance to rivers within 250 m had the densest landslides.
MNDWI was also selected as an environmental factor, and the landslides were mostly distributed in
the range of 0.145–0.612. TWI reflects the centralized distribution state of water on the surface [77],
and many landslides occur in range of 6.1–9.6. In addition, landslides are more likely to occur in the
area with clastic rock than areas with metamorphic and carbonate rocks.

3.1.3. Model Training and Testing Datasets

It is necessary to prepare the training dataset and the test dataset for model training and testing
prior to the prediction and modeling of landslide susceptibility. In this study, 369 landslides were
converted into 2709 grid points in ARCGIS 10.2 software and randomly divided such that 70% and 30%
went toward constructing the training and test sets, respectively. The same number of non-landslides
were randomly divided using the same proportions to satisfy the binary classification condition.
In addition, the FR values of the 14 environmental factors were used as input variables for the machine
learning models, and the corresponding landslide and non-landslide results were marked as 1 and 0,
which were treated as model output variables when constructing the dataset.
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3.2. LSP Results of Shicheng County

The LSP of Shicheng County was implemented using each of the cascade-parallel LSTM-CRF, LR,
C5.0 DT, and MLP models.

3.2.1. LSP Using the Cascade-Parallel LSTM-CRF Model

The hardware configuration required for the cascade-parallel LSTM-CRF model in the operating
environment is shown in Table 1. In this study, the hyper-parameter search was adopted to acquire the
optimal parameters in the cascade-parallel LSTM-CRF, where the number of LSTM units, learning
rate, and total training parameters were 5, 0.001, and 40,432, respectively. The trained cascade-parallel
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LSTM-CRF was used to predict the landslide susceptibility indices (LSIs) (Figure 7a) and to obtain the
LSM (Figure 6a). In addition, the study area was divided into five categories, namely extremely low, low,
moderate, high, and extremely high, using Jenks natural breaks optimization, and the corresponding
area proportions were 33.56%, 25.41%, 18.33%, 10.98%, and 11.72%, respectively (Figure 7a).

Table 1. Software environment and hardware configuration in the experiment.

Software/Hardware Parameters

Software Environment

TensorFlow1.4.0 + Keras2.1.4
(for cascade-parallel LSTM-CRF)

SPSS Modeler 18.0 + Matlab 2018
(for logistic regression, multilayer perceptron, and C5.0 decision tree)

CPU Intel(R) Core(TM) i5-7400@3.00 GHz

GPU Nvidia GeForce GTX1080

RAM 8.00 GB DDR3

Hard Disk Western Digital WDC WD10EZEX-08WN4A0

Sensors 2020, 20, x FOR PEER REVIEW 17 of 26 

 

The neural network algorithm simulates human learning primarily by strengthening and 
adjusting the connection weight between the input layer and the output layer, and the performance 
in the network is used to update the internal system structure due to an external stimulus [83]. In 
this study, an extensively applied backpropagation algorithm was adopted to construct the MLP 
neural network. MLP neural network modeling consists of three stages: 1) in the process of the 
forward transmission of the input data, the sigmoid function is used to process the sum of the 
products of the weights between layers, and the error between the output value and the theoretical 
value is calculated; 2) in the iterative process of backward transmission, the calculated error value is 
used to continuously update the connection weights to obtain the optimal error value; and 3) the 
trained network structure is used in the classification and prediction of continuous data in the entire 
research area. 

The number of required neurons in a single hidden layer was calculated to be 25 based on the 
minimum prediction error method. Therefore, the numbers of neurons in the input layer, the hidden 
layer, and the output layer were 14, 25, and 1, respectively, and via different tests, the momentum, 
learning rate, and training time were 0.36, 0.05, and 500, respectively. Moreover, the trained MLP 
model was used to calculate the LSIs (Figure 7.d) and to acquire the LSM (Figure 6.d), which was 
divided into the five categories of extremely low, low, moderate, high, and extremely high, with the 
corresponding area proportions of 27.7%, 22.9%, 22.7%, 16.9%, and 9.9%, respectively (Figure 7.d). 

 

 

Figure 6. Landslide susceptibility map (LSM) produced by the four models. LR: Logistic regression, 
C5.0 DT: C5.0 decision tree, MLP: Multilayer perceptron. 

 

Figure 6. Landslide susceptibility map (LSM) produced by the four models. LR: Logistic regression,
C5.0 DT: C5.0 decision tree, MLP: Multilayer perceptron.



Sensors 2020, 20, 1576 15 of 25

Sensors 2020, 20, x FOR PEER REVIEW 18 of 26 

 

 
Figure 7. Landslide susceptibility index (LSI) distribution features of (a) LR, (b) MLP, (c) C5.0 
decision tree, and (d) cascade-parallel LSTM-CRF. 

3.3. Accuracy Evaluation 

Quality evaluation of the models is a key step in successful landslide prediction. In this study, 
the predictive rate curves and statistical indicators were used to assess the predictive performance of 
the models. 

3.3.1. Predictive Rate Accuracy 

The performance evaluation of the model is related to the model’s application of LSP in the 
study area [84]. To analyze and compare the prediction ability of each model, the prediction rate 
curve was adopted to evaluate the fitting degree between landslide grid cells in the testing dataset 
and the predicted landslide susceptibility indices in the study area. First of all, the calculated LSI 
values were sorted in descending order. Second, these sorted LSI values were categorized into 20 
equal intervals with 5% cumulative intervals. Third, the percentage of the landslide grid cells in the 
testing dataset of each interval was determined based on the former obtained 20 equal intervals. At 
last, the prediction rate curves of all four models were drawn. The area under the predictive rate 
curve (AUC) could clearly explain the LSP performance of the model with the threshold value, 
which was closer to 1, indicating that the model’s performance was better.  

The predictive rate curves for different models are shown in Figure 8. In the top 10% of the 
very high susceptibility index interval, the cumulative percentages of landslide grids in the test set of 
the cascade-parallel LSTM-CRF, C5.0 DT, LR, and MLP models were 44.04%, 29.84%, 43.85%, and 
43.81%, respectively. Moreover, in the top 20% of the study area with a high susceptibility index and 
above, the percentages of landslide grids in the corresponding models were 67.48%, 63.58%, 61.68%, 
and 61.43%, respectively. The prediction rate curve intuitively reflected the fact that the 
cascade-parallel LSTM-CRF, LR, and MLP models had a positive prediction performance in very 
highly prone areas. Overall, the AUC values of the cascade-parallel LSTM-CRF, C5.0 DT, LR, and 
MLP models were 0.868, 0.838, 0.833, and 0.826, respectively, indicating that the cascade-parallel 
LSTM-CRF model had a better predictive ability than other models. 

 

 

Figure 7. Landslide susceptibility index (LSI) distribution features of (a) LR, (b) MLP, (c) C5.0 decision
tree, and (d) cascade-parallel LSTM-CRF.

3.2.2. LSP Using the LR Model

LR is a common statistical model that is widely used in LSP. The advantage of LR is that
the independent variables need not be normally distributed, and the dependent variables can be
continuous, discrete, and binary [78]. LR can define the relationship between the landslide occurrence
and environmental factors and give the landslide coefficient of the corresponding factors. The logistic
regression model can be expressed as follows:

z = a0 + a1x1 + a2x2 + · · ·+ anxn, (18)

P = ln(
p

1− p
) =

1
1 + e−z , (19)

where z is the dependent variable, including landslides (1) and non-landslides (0); a0 is the regression
intercept; xn(n = 1, 2, · · · , n) is the environmental factor; an(n = 1, 2, · · · , n) is the regression coefficient;
and P is the probability of landslide occurrence with a range from 0 to 1.

Considering the information redundancy between factors, 14 input variables were adopted to
conduct correlation analysis in SPSS 23.0 software, and the results showed that the correlation between
the factors was weak. All factors were imported into the LR model for calculation, and the profile
curvature, relief amplitude, and total surface radiation were removed in the first calculation because
the significance value was greater than 0.05. The remaining 11 environmental factors were imported
into LR again, and the results are shown in Table 2. The regression coefficients of all factors were
positive, indicating that each factor had a catalytic effect on the generation of landslides. Furthermore,
lithology was the most influential factor for landslides in Shicheng County, followed by slope, MNDWI,
plane curvature, population density, elevation, and NDBI. The regression coefficients of each factor
were used to obtain the LSIs (Figure 7b) of the study area to generate the LSM (Figure 6b). The research
area was divided into the five categories of extremely low, low, moderate, high, and extremely high,
with the corresponding area proportions of 28.64%, 23.81%, 21.33%, 13.43%, and 12.79%, respectively
(Figure 7b).
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Table 2. The parameters in the LR model.

Environmental Factors B S.E. Wald Sig. Exp (B)

Elevation 0.827 0.145 32.406 0 2.287

Slope 1.276 0.080 252.078 0 3.583

Aspect 0.691 0.159 18.917 0 1.996

Plan curvature 1.088 0.093 138.101 0 2.968

MNDWI 1.093 0.121 81.136 0 2.983

Distance to river 0.627 0.039 264.112 0 1.872

TWI 0.624 0.177 12.462 0 1.866

Lithology 2.397 0.269 79.468 0 10.990

NDVI 0.402 0.141 8.156 0.004 1.494

NDBI 0.810 0.102 62.701 0 2.249

Population density 0.899 0.150 36.063 0 2.457

Constant −11.385 0.497 524.967 - -

B is the regression coefficient, S.E. is the standard error, Wald is the Wald chi-square test, Sig. is the significance of
the regression coefficient, and Exp(B) is the power of the regression coefficient.

3.2.3. LSP Using the C5.0 DT Model

The C5.0 DT is a tree structure that can intuitively interpret decision rules based on input
conditions. The sample data were segmented using the input variable with the highest information
gain in entropy, and the information gain reflects the change of variable information before and after
the data are divided. The smaller the new conditional entropy change and the greater the information
gain, the better the prediction accuracy of the model [79,80]. Moreover, the pruning of each leaf node
is crucial to improving the model accuracy, which is beneficial for removing the environmental factors
that have an insignificant effect on the decision results. The lower the purity of each leaf, the higher
the classification accuracy. Additionally, the tree growth is limited with the pruning degree to avoid
over-fitting of the model and to obtain a concise and accurate model.

In this study, the modeling of C5.0 DT was conducted in SPSS Modeler 18.0 software, the main
contents of which included the input of variables, tree growth, tree pruning, and model validation.
The boosting algorithm was adopted to improve the model prediction accuracy, and the pruning
degree and the number of each branch node are the default values. The LSIs were calculated using the
trained C5.0 DT, as shown in Figure 7c. The LSM generated in Shicheng County is shown in (Figure 6c).
Furthermore, the study area was divided into extremely low, low, moderate, high, and extremely
high areas, with the corresponding areas accounting for 30.38%, 24.13%, 19.74%, 12.19%, and 13.55%,
respectively (Figure 7c).

3.2.4. LSP Using the MLP Model

MLP is an artificial neural network technology that has been widely used in pattern recognition
and classification [81], and it is often adopted for solving the complicated nonlinear problem between
landslides and various environmental factors in the process of LSP. In addition, the MLP’s advantage
is its powerful ability to work with inaccurate and fuzzy data [82], and the main components of MLP
include an input layer, a hidden layer containing at least one neuron, and an output layer. Random
initial weights are assigned among all neuron nodes, and the hidden layer does not contact the external
environment, which addresses the sum of the product of input values and connection weights between
each layer with a nonlinear function.
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The neural network algorithm simulates human learning primarily by strengthening and adjusting
the connection weight between the input layer and the output layer, and the performance in the
network is used to update the internal system structure due to an external stimulus [83]. In this
study, an extensively applied backpropagation algorithm was adopted to construct the MLP neural
network. MLP neural network modeling consists of three stages: (1) in the process of the forward
transmission of the input data, the sigmoid function is used to process the sum of the products of the
weights between layers, and the error between the output value and the theoretical value is calculated;
(2) in the iterative process of backward transmission, the calculated error value is used to continuously
update the connection weights to obtain the optimal error value; and (3) the trained network structure
is used in the classification and prediction of continuous data in the entire research area.

The number of required neurons in a single hidden layer was calculated to be 25 based on the
minimum prediction error method. Therefore, the numbers of neurons in the input layer, the hidden
layer, and the output layer were 14, 25, and 1, respectively, and via different tests, the momentum,
learning rate, and training time were 0.36, 0.05, and 500, respectively. Moreover, the trained MLP model
was used to calculate the LSIs (Figure 7d) and to acquire the LSM (Figure 6d), which was divided into
the five categories of extremely low, low, moderate, high, and extremely high, with the corresponding
area proportions of 27.7%, 22.9%, 22.7%, 16.9%, and 9.9%, respectively (Figure 7d).

3.3. Accuracy Evaluation

Quality evaluation of the models is a key step in successful landslide prediction. In this study,
the predictive rate curves and statistical indicators were used to assess the predictive performance of
the models.

3.3.1. Predictive Rate Accuracy

The performance evaluation of the model is related to the model’s application of LSP in the study
area [84]. To analyze and compare the prediction ability of each model, the prediction rate curve
was adopted to evaluate the fitting degree between landslide grid cells in the testing dataset and the
predicted landslide susceptibility indices in the study area. First of all, the calculated LSI values were
sorted in descending order. Second, these sorted LSI values were categorized into 20 equal intervals
with 5% cumulative intervals. Third, the percentage of the landslide grid cells in the testing dataset of
each interval was determined based on the former obtained 20 equal intervals. At last, the prediction
rate curves of all four models were drawn. The area under the predictive rate curve (AUC) could
clearly explain the LSP performance of the model with the threshold value, which was closer to 1,
indicating that the model’s performance was better.

The predictive rate curves for different models are shown in Figure 8. In the top 10% of the very
high susceptibility index interval, the cumulative percentages of landslide grids in the test set of the
cascade-parallel LSTM-CRF, C5.0 DT, LR, and MLP models were 44.04%, 29.84%, 43.85%, and 43.81%,
respectively. Moreover, in the top 20% of the study area with a high susceptibility index and above,
the percentages of landslide grids in the corresponding models were 67.48%, 63.58%, 61.68%, and
61.43%, respectively. The prediction rate curve intuitively reflected the fact that the cascade-parallel
LSTM-CRF, LR, and MLP models had a positive prediction performance in very highly prone areas.
Overall, the AUC values of the cascade-parallel LSTM-CRF, C5.0 DT, LR, and MLP models were 0.868,
0.838, 0.833, and 0.826, respectively, indicating that the cascade-parallel LSTM-CRF model had a better
predictive ability than other models.



Sensors 2020, 20, 1576 18 of 25
Sensors 2020, 20, x FOR PEER REVIEW 19 of 26 

 

 
Figure 8. Prediction rate curves of LSIs calculated by the four models. 

3.3.2. Statistical Index Accuracy 

In this study, the statistical indexes, including the positive predictive rate (PPR), negative 
predictive rate (NPR), and total accuracy (TA), were used to measure the predictive performance of 
the models. The positive and negative predictive rates respectively represent the proportion of 
landslides and non-landslides that were correctly classified in the actual statistical process. Total 
accuracy represents the total predictive rate with which landslides and non-landslides are correctly 
classified. The corresponding expressions are given as: 

TPPPR
TP FP

=
+

  (20)

TNNPR
TN FN

=
+

 (21)

TP TNTA
TP TN FP FN

+=
+ + +

 (22)

where TP  and FP  respectively represent the number of landslide and non-landslide grids that 
are classified correctly, and TN  and FN  respectively represent the number of landslide and 
non-landslide grids that are classified mistakenly. 

The performance of each model obtained using statistical indicators is presented in Table 3. In 
the predictive statistics process, the positive prediction rate of the C5.0 DT model produced the 
highest proportion of correct landslide classifications (76.78%), followed by the cascade-parallel 
LSTM-CRF model (72.44%), the MLP model (71.58%), and the LR model (71.04%). Regarding correct 
non-landslide classification, the cascade-parallel LSTM-CRF model produced the highest negative 
predictive rate of 80%, and those of the MLP, LR, and C5.0 DT models were 71.46%, 70.83%, and 
69.73%, respectively. The cascade-parallel LSTM-CRF model has the best prediction performance 
regarding both landslides and non-landslides, with a total overall accuracy of 75.69%, followed by 
C5.0 DT (72.72%), MLP (71.61%), and LR (70.94%). In terms of the classification accuracy of 
landslides and non-landslides, the cascade-parallel LSTM-CRF model was more suitable than the 
other traditional models for LSPs. 

Figure 8. Prediction rate curves of LSIs calculated by the four models.

3.3.2. Statistical Index Accuracy

In this study, the statistical indexes, including the positive predictive rate (PPR), negative
predictive rate (NPR), and total accuracy (TA), were used to measure the predictive performance
of the models. The positive and negative predictive rates respectively represent the proportion of
landslides and non-landslides that were correctly classified in the actual statistical process. Total
accuracy represents the total predictive rate with which landslides and non-landslides are correctly
classified. The corresponding expressions are given as:

PPR =
TP

TP + FP
(20)

NPR =
TN

TN + FN
(21)

TA =
TP + TN

TP + TN + FP + FN
(22)

where TP and FP respectively represent the number of landslide and non-landslide grids that are
classified correctly, and TN and FN respectively represent the number of landslide and non-landslide
grids that are classified mistakenly.

The performance of each model obtained using statistical indicators is presented in Table 3. In the
predictive statistics process, the positive prediction rate of the C5.0 DT model produced the highest
proportion of correct landslide classifications (76.78%), followed by the cascade-parallel LSTM-CRF
model (72.44%), the MLP model (71.58%), and the LR model (71.04%). Regarding correct non-landslide
classification, the cascade-parallel LSTM-CRF model produced the highest negative predictive rate of
80%, and those of the MLP, LR, and C5.0 DT models were 71.46%, 70.83%, and 69.73%, respectively.
The cascade-parallel LSTM-CRF model has the best prediction performance regarding both landslides
and non-landslides, with a total overall accuracy of 75.69%, followed by C5.0 DT (72.72%), MLP
(71.61%), and LR (70.94%). In terms of the classification accuracy of landslides and non-landslides,
the cascade-parallel LSTM-CRF model was more suitable than the other traditional models for LSPs.
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Table 3. Comparison between Landslide prediction performances.

Prediction Performance

Prediction Models

Cascade-Parallel
LSTM-CRF C5.0 DT LR MLP

True positive 673 529 574 582

True negative 556 652 578 581

False positive 256 160 234 231

False negative 139 283 238 230

PPR (%) 72.44 76.78 71.04 71.58

NPR (%) 80.00 69.73 70.83 71.64

TR (%) 75.67 72.72 70.94 71.61

4. Discussion

4.1. Discussion of the LSP Model Accuracy

The prediction rate and statistical indexes of the model accuracies evaluation show that the
cascade-parallel LSTM-CRF model had the highest LSP performance, followed by the C5.0 DT, LR,
and MLP models. However, it is not guaranteed that the deep learning model in this paper, among all
machine learning models, is the optimal choice; however, the comparison of the models can reflect the
ability of the proposed model to indeed overcome the shortcomings of traditional machine learning
models. The cascade-parallel LSTM is one of the better performing models among all machine learning
models. In further research, we aim to compare as many other machine learning models as possible to
find the shortcomings of the proposed model and improve the model as much as possible to improve
the accuracy of the landslide susceptibility predictions.

4.2. Model Iteration and Accuracy

The loss is defined as the error between the theoretical value and the predicted value, which
decreases with the updating of weights during backpropagation. The accuracy refers to the degree
to which the predicted value is close to the theoretical value. The variation curves of the loss and
accuracy in the model with a varying number of iterations are shown in Figure 9. The loss dropped
sharply within 4000 iterations and stabilized at approximately 0.3 after 9000 iterations. During the
same period, the accuracy of the model increased from 0.7 to 0.85, increased slowly until it became
stable, and the final accuracy reached approximately 0.868.Sensors 2020, 20, x FOR PEER REVIEW 21 of 26 
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4.3. Distribution Characteristics of Landslide Susceptibility

Landslide susceptibility maps obtained from the above four models are shown in Figure. According
to the susceptibility index of the entire study area, the distribution of the susceptibility calculated by
each model was roughly similar, and the distribution rules were consistent with the actual geological
environment in the study area. According to superposition analysis of the landslide susceptibility
maps and the environmental factor maps, it was observed that very high and high prone areas were
mainly distributed near rivers, where NDBI and population density were relatively high, indicating
that human engineering activities had a great impact on landslides. Moreover, most of the landslides
were distributed in areas with a small NDVI and a large total surface radiation, which indicates that
vegetation coverage had a certain inhibitory effect on landslide occurrence. Furthermore, landslides
were always concentrated in brittle rock areas, such as areas with metamorphic and clastic rocks, which
can create a favorable environment for the development of landslide events.

In contrast, very low and low-landslide-prone areas were primarily distributed in areas far
from rivers and carbonate rocks, which had relatively dense vegetation coverage, poor impounding
conditions, less human activity, and a low probability of landslide occurrence. In addition, carbonate
rocks were more conducive to slope stability and not conducive to landslides compared with
metamorphic rocks and clastic rocks.

4.4. Advantages of the Cascade-Parallel LSTM-CRF Model

A cascade-parallel LSTM-CRF model for landslide prediction based on deep learning was
proposed in this study. Compared with other traditional prediction models, this model has the
following advantages in LSP: (1) The prediction accuracy obtained by this algorithm was high, which
was mainly embodied in the correct classification stage of landslides and non-landslides. The total
predictive rate in the process of training was 75.67%, and the precision of statistical indicators in the test
set was 0.868, both higher than those of the C5.0 DT, LR, and MLP models. (2) This algorithm is mainly
based on deep learning and is data-driven, which overcomes the limitations of traditional prediction
models related to input data, such as the need for substantial prior knowledge, the satisfaction of certain
distribution characteristics, mutual independence between factors, etc. Hence, the algorithm greatly
improves the applicability in landslide prediction and has a high practical value. (3) The main feature
of this algorithm is the adoption of the cascade-parallel LSTM structure, which uses the perception
range characteristics of different LSTM structures as data features and extracts and fuses the features
of different input factors to acquire deeper and more complete features of each factor; furthermore,
dropout is adopted to prevent over-fitting in the training process. (4) Considering that the susceptibility
of a grid cell is affected by the susceptibility results of adjacent grids, this study introduced CRF, and
the cross entropy function is used to change the direction of the gradient descent in the algorithm and
accelerate the model convergence to optimize the model.

5. Conclusions

In this study, the cascade-parallel LSTM-CRF model was constructed by introducing a deep
learning algorithm and combining it with CRF to predict landslide susceptibility in Shicheng County
based on remote sensing images and GIS. The cascade-parallel LSTM-CRF model was compared with
traditional prediction models, and 14 environmental factors were chosen based on the geological
conditions relevant to landslide occurrence. The models were trained and tested based on adopting
data samples, which were randomly split using a 70/30 training/testing ratio. Finally, the predictive
rate curve and statistical indices were used to evaluate the performance of each model.

The results show that the cascade-parallel LSTM-CRF model had a better prediction performance
than other models. The advantages of this algorithm are listed as follows: (1) The proposed algorithm
has a higher LSP performance than traditional machine learning algorithms. (2) The proposed algorithm
overcomes the limitations associated with traditional machine learning algorithms requiring substantial
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prior knowledge. Therefore, this algorithm is universal and practical, and can be applied to a wider
range of landslide data predictions. (3) The stacked structure was adopted in this algorithm. Using
the cascade-parallel LSTM, different layers of features can be extracted and merged from different
layers, such as concrete and abstract. At the same time, the strategy of preventing over-fitting of the
network was adopted, such that it can extract more comprehensive and accurate landslide features
that facilitate classification. (4) CRF was further introduced in the cascade-parallel LSTM in this study.
The predicted results are optimized by calculating the energy relationship between the two grid points,
optimizing the extracted features and smoothing the predicted results of mutations.

Moreover, the distribution results of landslide susceptibility of each model were consistent with
the actual geological environment in the study area. In conclusion, the introduction of the deep
learning algorithm is of great significance to the prediction of landslide susceptibility, which can supply
the local government with theoretical guidance for the rational allocation of land resources and the
implementation of disaster prevention and mitigation measures.

Author Contributions: Conceptualization: L.Z., F.H., and L.H.; methodology: L.Z. and L.H.; software: L.H. and
L.F.; validation: J.H., J.C., and Z.Z.; formal analysis: Y.W.; investigation: L.H. and L.F.; resources: F.H.; data
curation: Z.Z.; writing—original draft preparation: L.Z., L.H., L.F., and F.H.; writing—review and editing: L.Z.,
J.H., L.F., and J.C.; visualization: J.C.; supervision: F.H.; project administration: F.H.; funding acquisition: L.Z.,
F.H., and J.H. All authors have read and agreed to the published version of the manuscript

Funding: This research is funded by the National Natural Science Foundation of China (nos. 41807285 and
41972280); the National Science Foundation of Jiangxi Province, China (no. 20192BAB216034); the China
Postdoctoral Science Foundation (no. 2019M652287); and the Outstanding Youth Fund Project of Science and
Technology Department of Jiangxi Province (No. 2018ACB21038).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, W.; Pourghasemi, H.R.; Panahi, M.; Kornejady, A.; Wang, J.; Xie, X.; Cao, S. Spatial prediction of
landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio,
generalized additive model, and support vector machine techniques. Geomorphology 2017, 297, 69–85.
[CrossRef]

2. Cullen, C.A.; Al-Suhili, R.; Khanbilvardi, R. Guidance index for shallow landslide hazard analysis. Remote Sens.
2016, 8, 866. [CrossRef]

3. Wang, L.-J.; Guo, M.; Sawada, K.; Lin, J.; Zhang, J. Landslide susceptibility mapping in Mizunami City, Japan:
A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression
spline models. Catena 2015, 135, 271–282. [CrossRef]

4. Huang, F.; Yin, K.; Huang, J.; Gui, L.; Wang, P. Landslide susceptibility mapping based on self-organizing-map
network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [CrossRef]

5. Chang, Z.; Du, Z.; Zhang, F.; Huang, F.; Chen, J.; Li, W.; Guo, Z. Landslide susceptibility prediction based on
remote sensing images and gis: Comparisons of supervised and unsupervised machine learning models.
Remote Sens. 2020, 12, 502. [CrossRef]

6. Shahabi, H.; Khezri, S.; Ahmad, B.B.; Hashim, M. Landslide susceptibility mapping at central Zab basin,
Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models.
Catena 2014, 115, 55–70. [CrossRef]

7. Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Landslide susceptibility assessment in the Hoa
Binh province of Vietnam: A comparison of the Levenberg–Marquardt and Bayesian regularized neural
networks. Geomorphology 2012, 171–172, 12–29. [CrossRef]

8. Moayedi, H.; Osouli, A.; Tien Bui, D.; Foong, L.K. Spatial Landslide Susceptibility Assessment Based on
Novel Neural-Metaheuristic Geographic Information System Based Ensembles. Sensors 2019, 19, 4698.
[CrossRef]

9. Amatya, P.; Kirschbaum, D.; Stanley, T. Use of Very High-Resolution Optical Data for Landslide Mapping
and Susceptibility Analysis along the Karnali Highway, Nepal. Remote Sens. 2019, 11, 2284. [CrossRef]

10. Zhao, C.; Lu, Z. Remote Sensing of Landslides—A Review. Remote Sens. 2018, 10, 279. [CrossRef]

http://dx.doi.org/10.1016/j.geomorph.2017.09.007
http://dx.doi.org/10.3390/rs8100866
http://dx.doi.org/10.1016/j.catena.2015.08.007
http://dx.doi.org/10.1016/j.enggeo.2017.04.013
http://dx.doi.org/10.3390/rs12030502
http://dx.doi.org/10.1016/j.catena.2013.11.014
http://dx.doi.org/10.1016/j.geomorph.2012.04.023
http://dx.doi.org/10.3390/s19214698
http://dx.doi.org/10.3390/rs11192284
http://dx.doi.org/10.3390/rs10020279


Sensors 2020, 20, 1576 22 of 25

11. Zhang, B.; Zhang, L.; Yang, H.; Zhang, Z.; Tao, J. Subsidence prediction and susceptibility zonation for
collapse above goaf with thick alluvial cover: A case study of the Yongcheng coalfield, Henan Province,
China. Bull. Eng. Geol. Environ. 2016, 75, 1117–1132. [CrossRef]

12. Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping
using random forest, boosted regression tree, classification and regression tree, and general linear models
and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2015, 13,
839–856. [CrossRef]

13. Wang, Q.; Wang, Y.; Niu, R.; Peng, L. Integration of Information Theory, K-Means Cluster Analysis and
the Logistic Regression Model for Landslide Susceptibility Mapping in the Three Gorges Area, China.
Remote Sens. 2017, 9, 938. [CrossRef]

14. Erener, A.; Mutlu, A.; Sebnem Düzgün, H. A comparative study for landslide susceptibility mapping using
GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining
(ARM). Eng. Geol. 2016, 203, 45–55. [CrossRef]

15. Sevgen, E.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. A novel performance assessment approach using
photogrammetric techniques for landslide susceptibility mapping with logistic regression, ann and random
forest. Sensors 2019, 19, 3940. [CrossRef]

16. Tien Bui, D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Alizadeh, M.; Chen, W.; Mohammadi, A.; Ahmad, B.B.;
Panahi, M.; Hong, H.; et al. Landslide detection and susceptibility mapping by airsar data using support
vector machine and index of entropy models in cameron highlands, malaysia. Remote Sens. 2018, 10, 1527.
[CrossRef]

17. Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.;
Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic
regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya.
Nat. Hazards 2012, 65, 135–165. [CrossRef]

18. Chen, W.; Li, W.; Chai, H.; Hou, E.; Li, X.; Ding, X. GIS-based landslide susceptibility mapping using
analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City,
China. Environ. Earth Sci. 2015, 75, 63. [CrossRef]
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