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A B S T R A C T

Theoretically and with the help of numerical simulation the coagulation rate of nanoparticle suspensions is
analyzed. Analytical expressions are proposed that describes the rate of stationary coagulation of the nano-
particles suspended in a solvent (dna=dt, where na is the particle concentration) and the characteristic coagulation
time θ ¼ � na=ðdna =dtÞ. In the contrast to traditionally used equations, the proposed expressions allow one to
describe with high accuracy the rate of stationary coagulation of not only low concentrated suspensions, where
the volume content of nanoparticles is ρ ≪ 1 %, but also rather highly concentrated ones, at ρ � 1 % and more
(ρ ¼ nava where va is a particle volume), which are relevant for most of the industrial applications. Analytical
expressions are written for both three-dimensional geometry, which is relevant for real colloids, and two-
dimensional geometry, which is useful to compare results of the analytical solution and numerical simulation.
Computer experiments are performed in the framework of the two-dimensional method of stochastic dynamics.
Satisfactory agreement of the obtained analytical expressions with the results of numerical calculations is
demonstrated. The dependences of the coagulation time on the height of the interparticle energy barrier and on
the suspension concentration are analyzed. It is shown that, in contrast to the obtained theoretical expressions, the
traditionally used formulas overestimate the characteristic coagulation time for highly concentrated suspensions
by more than an order of magnitude.
1. Introduction

Various emulsions, suspensions and colloidal solutions are intensively
used in many fields [1, 2, 3, 4, 5]. Recently, an increased interest to the
properties of suspensions happens due to their widespread use in the field
of nanotechnology [4, 5, 6, 7, 8, 9]. One of the most important charac-
teristics of a suspension is stability, i.e., the ability to maintain its prop-
erties, in particular, the concentration na of suspended particles over
time. High attraction forces of nanosized particles determine the lyo-
phobicity (instability) of their colloidal solutions [10]. From a thermo-
dynamic point of view, coagulation of such suspensions is inevitable,
over time, all of the suspended particles, trying to reduce their free sur-
face, coagulate with the formation of large aggregates. The rate of this
process is conveniently described by the characteristic coagulation time
[3] or the relaxation time [10], θ ¼ � naðdna=dtÞ�1. The time θ can vary
widely. For values θ < 1 second, one can speak of a strong instability of
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the solution, which makes its practical use nearly impossible. On the
contrary, with large values θ, for example, several days or even years, we
can speak of a relatively stable solution.

The theoretical solution to the simplified problem of coagulation of
particles suspended in a liquid medium was given by M. Smoluchowski
[11, 12]. Long-range particle interactions were not taken into account,
and their coalescence (coagulation) occurred when the particle came into
contact with the "sphere of influence" of another particle. In the frame-
work of such a consideration, a result is obtained for the temporal dy-
namics of aggregate concentration na, which can be represented as:

naðtÞ¼ n0
1þ t=θ

; (1)

where n0 is an initial concentration of aggregates (particles), and the
parameter θ takes on the meaning of half-coagulation time [3], during
which the particle concentration is halved
nov).
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θ¼ 1
n04πDR

; D ¼ kBT
mγ

; γ ¼ 18η
ρ d2 ; (2)

a a

R is the radius of the “sphere of influence”, D is the aggregate diffu-
sion coefficient, m is the mass, kB is Boltzmann constant, T is the tem-
perature. The parameter γ characterizing the dissipative properties of the
liquid is determined in (2) according to the well-known Stokes formula
[13] for spherical particles with diameter da and density ρa; η is the fluid
viscosity. The Smoluchowski approach is widely used to describe the
kinetics of coagulation of dispersed systems in the so-called diffusion
mode [10, 14, 15, 16], and sometimes even applied to systems with
strong interparticle interaction [10, 16, 17].

The interparticle forces between particles dispersed in aqueous media
causea potential barrier that prevents the particle coalescence [1, 2, 3, 4,
5, 10]. This fact significantly changes the coagulation kinetics, and in
particular, makes the use of Eq. (1) unreasonable. A theoretical approach
to the consideration of coagulation of a dispersion system taking into
account the interparticle potential barrier was proposed by Fuchs [18],
who suggested the coagulation frequency J (the number of pair-wise
connections of single particles per unit time in unit volume) [18, 19,
20] in the form:

J ¼ na4πD

, Z ∞

da

1
r2
exp

�
UðrÞ
kBT

�
dr: (3)

Using this equation, one can calculate the “stability ratio” of the
dispersed systems [9, 19, 20, 21, 22]. In particular, in the work [21] a
relation that determines the empirical dependence of the “stability ratio”
on the height of the energy barrier was obtained. It is easy to verify that
Eq. (3) gives the temporal dynamics of concentration naðtÞ in the form (1)
again, with a characteristic time θ � 1=n0.

In this paper, we demonstrate that the Eqs. (1), (2) and (3) are valid
only for dilute systems (na → 0) and do not allow describing computer
simulation data for highly concentrated suspensions, when ρ ¼ nava ’ 1
% (va is the volume of a particle). In the framework of the Fuchs approach
[18], we are going to write a more complete and correct equation, which
will be tested according to two-dimensional modeling using the sto-
chastic dynamics method.

2. Coagulation rate: analytical expressions for three- and two-
dimensional geometries

In accordance with the original Fuchs approach [18], let us consider a
particle diffusion in the potential field UðrÞ of a selected particle:

∂n
∂t ¼ div j; j ¼ �Drnþ nF

mγ
; (4)

where jðrÞ is the particle flux density, FðrÞ is the interparticle interaction
force,

jð3DÞ ¼ dN
dsdt

e!r; jð2DÞ ¼ dN
dldt

e!r ; F ¼ �rU; (5)

e!r is the unit normal vector to either the element of the sphere ds (in 3D
geometry) or the circular arc dl (in 2D geometry) around the selected
particle. Hereinafter, we consider both 2D and 3D geometries at the same
time, marking the corresponding values with a superscript in case of any
differences. Since the problem is spherically (in 3D) or cylindrically (in
2D) symmetric, the particle concentration is nðr; tÞ ¼ nðr; tÞ and it is
related to the radial distribution function as nðr; tÞ ¼ naðtÞ gðr; tÞ, where
na is concentration of the suspension. The flux density has a non-zero
radial component only, i.e., j ¼ j e!r and the Eq. (4) take the form:

∂nð3DÞ

∂t ¼ 1
r2

∂
∂r

�
r2 j

�
;

∂nð2DÞ

∂t ¼ 1
r
∂
∂r ðr jÞ; j¼ �D

∂n
∂r �

n
mγ

dU
dr

; (6)
2

We consider the potential barrier preventing particle aggregation to
be sufficiently high, thus we can speak about stationary conditions, i.e., ∂
n=∂t ¼ 0. This allows us to write the radial dependence of the particle
flux density:

jð3DÞ ¼ c1
r2
; jð2DÞ ¼ c1

r
; (7)

where c1 is a constant. Substituting the radial dependence (7) of the flux
density in the last Eq. (6), we obtain for the function nðrÞ an ordinary
differential equation, the general solution of which has the form:

nð3DÞ
�
r
�¼�c1

D
exp

�
� UðrÞ

kBT

�Z r

Rab

1
s2
exp

�
UðsÞ
kBT

�
dsþ c2 exp

�
� UðrÞ

kBT

�
; (8)

nð2DÞ
�
r
�¼�c1

D
exp

�
� UðrÞ

kBT

�Z r

Rab

1
s
exp

�
UðsÞ
kBT

�
dsþ c2 exp

�
� UðrÞ

kBT

�
; (9)

where another integration constant c2 is introduced.
Generally speaking, the parameter Rab determines some arbitrary

value of the radius, which in any case cannot be less than the sum of the
radii of the interacting particles (or aggregates). In the terminology of
[12] the parameter Rab represents the radius of the “sphere of influence”,
on the surface of which there is an “absorption” of particles that are too
close to the selected one. Due to the rapid decrease in the integrands in
Eqs. (8) and (9) the exact value of Rab is insignificant, and in what follows
we will mean Rab as the average diameter of interacting particles (ag-
gregates), i.e., Rab ¼ da. The introduction of the “sphere of influence”
allows us to formulate the first boundary condition for the function nðrÞ:

nðdaÞ¼ 0; (10)

and determine one of the integration constants. As a result, relations
(8) and (9) take the form:

nð3DÞ
�
r
�¼�c1

D
exp

�
� UðrÞ

kBT

�Z r

da

1
s2
exp

�
UðsÞ
kBT

�
ds; (11)

nð2DÞ
�
r
�¼�c1

D
exp

�
� UðrÞ

kBT

�Z r

da

1
s
exp

�
UðsÞ
kBT

�
ds: (12)

As the second boundary condition, one can require the equality of the
function nðrÞ with the given solution concentration far from the selected
particle, i.e.,

lim
r→∞

nðrÞ¼ na; (13)

that gives:

nð3DÞ
�
r
�¼ na exp

�
� UðrÞ

kBT

�Z r

da

1
s2
exp

�
UðsÞ
kBT

�
ds

� Z ∞

da

1
s2
exp

�
UðsÞ
kBT

�
ds:

(14)

nð2DÞ
�
r
�¼ na exp

�
� UðrÞ

kBT

�Z r

da

1
s
exp

�
UðsÞ
kBT

�
ds

� Z ∞

da

1
s
exp

�
UðsÞ
kBT

�
ds:

(15)

Here, it is worth noting that far from the selected particle the form of
the radial distribution function strongly depends on many-particle per-
turbations (two, three, or more), which are not taken into account in the
presented consideration. As a result, we can expect that solutions (14)
and (15) will be sufficiently rigorous only in the limit of low concen-
tration (na → 0). For finite values of na, the function nðrÞ must reach its
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“asymptotic” value much earlier, at distances of the order of the average
interparticle distance in the solution Rs, which is determined in accor-
dance with the distribution law of the nearest neighbor [12],

ωð3DÞðrÞ¼ 4πr2na exp
�� 4πr3na

�
3
�
; ωð2DÞðrÞ¼ 2πr na exp

�� πr2na
�
:

(16)

The equation for the probability of detecting the nearest neighbor in
the interval (r; rþ dr) for 2D geometry is obtained in exactly the same
way as the equation for ωð3DÞðrÞ presented in [12]. For the average dis-
tance Rs, the distributions (16) give

Rð3DÞ
s ¼Γð4 = 3Þ

�
3

4πna

�1=3

; Rð2DÞ
s ¼ 1

2
ffiffiffiffiffi
na

p : (17)

Now, using instead of (13) the condition

nðRsÞ¼ na; (18)

instead of Eqs. (14) and (15) we have:

nð3DÞ
�
r
�¼ na exp

�
UðRsÞ � UðrÞ

kBT

�Z r

da

1
s2
exp

�
UðsÞ
kBT

�
ds

� Z Rs

da

1
s2
exp

�
UðsÞ
kBT

�
ds

(19)

nð2DÞ
�
r
�¼ na exp

�
UðRsÞ � UðrÞ

kBT

�Z r

da

1
s
exp

�
UðsÞ
kBT

�
ds

� Z Rs

da

1
s
exp

�
UðsÞ
kBT

�
ds:

(20)

It is easy to see that in the limit Rs → ∞ the Eqs. (19) and (20) turn
into (14), (15).

Substituting the distributions (19) or (20) into the last relation (6), for
a stationary flux of particles falling in a unit of time on the “sphere of
influence” Jp, we obtain:

Jð3DÞp ¼4πr2j¼�Kð3DÞna; Kð3DÞ ¼4πD exp
�
UðRsÞ
kBT

�� Z Rs

da

1
s2
exp

�
UðsÞ
kBT

�
ds:

(21)

Jð2DÞp ¼2πr j¼�Kð2DÞna; Kð2DÞ ¼2πD exp
�
UðRsÞ
kBT

�� Z Rs

da

1
s
exp

�
UðsÞ
kBT

�
ds:

(22)

Now, recalling that the (central) particle that we have selected is not
stationary, we have to double the diffusion coefficient to generalize the
result of (21), (22) to the relative motion of the incident and absorbing
particles (see [12], for example). In order to obtain a complete decrease
of particles number per unit volume, the value of Jp has to be multiplied
by the concentration na and divided by 2 in order not to take into account
the merger of two particles twice. As a result we have:

dna
dt

¼ � Kn2a; θ ¼ 1
Kna

; (23)

where the coefficient K is again determined by Eqs. (21) and (22).
If we consider sufficiently diluted solutions for which the average inter-

particledistanceRs significantly exceeds thedistanceRmax corresponding toa
potential barrier (UðRmaxÞ ¼ Umax), then the equations for the coefficient K
are simplified. In three-dimensional geometry, we come to the traditionally
used Eq. (3), and in two-dimensional to its analogue, with coefficients:

Kð3DÞ ¼4πD
� Z ∞

da

1
s2
exp

�
UðsÞ
kBT

�
ds; Kð2DÞ ¼2πD

� Z ∞

da

1
s
exp

�
UðsÞ
kBT

�
ds:

(24)
3

Otherwise, if we restrict our consideration to solutions for which
Umax ≫ kBT, we can approximate the potential energy UðrÞ in integrals
(21), (22) by the equation [18]:

UðrÞffiUmax � mω2ðr � RmaxÞ2
2

; (25)

and write for the coefficient K the relations:

Kð3DÞ ¼
ffiffiffi
2
π

r
ω
γ
R2
maxvT exp

�
UðRsÞ � Umax

kBT

�
; vT ¼

ffiffiffiffiffiffiffiffi
kBT
m

r
; (26)

Kð2DÞ ¼
ffiffiffiffiffi
2π

p ω
γ
RmaxvT exp

�
UðRsÞ � Umax

kBT

�
; (27)

where vT is the average thermal velocity of suspended particles. The
latter relations can be considered as a generalization of the overdamped
limit of Kramers [18, 23], describing the flow of particles through a
one-dimensional barrier between two potential wells of different depths.

The independence of the coefficient K from the solution concentra-
tion, observed in the framework of approximations (24), makes it easy to
integrate Eq. (23), eventually resulting in the classical Eq. (1) with the
corresponding parameters θ. In the general case of Eqs. (21) and (22) and
in the framework of approximations (26), (27), i.e., for solutions that
cannot be called dilute, the coefficient K, in view of the dependence on
the value of Rs, should strongly depend on the concentration na. In this
case, of course, the result (1) ceases to be valid.

3. Numerical simulation technique

Numerically, the problem of coagulation of a colloidal solution of
nanosized particles is modeled in the framework of the two-dimensional
method of stochastic dynamics [17, 24, 25, 26, 27, 28, 29, 30]. An
ensemble of nanoparticles suspended in a liquid is considered. The model
cell is a square in the Oxy plane; periodic boundary conditions apply at
the boundaries. The number of particles inside the model cell is Np ¼
2500. Particles have a perfectly spherical shape with a diameter da ¼ 10
nm. Particle material is aluminum oxide with the density ρa ¼ 3970
kg/m3 [31]. Dispersion medium is water with the dielectric constant εr ¼
80 at the temperature of 20 �C. To estimate the viscosity η of water, the
data [31] on its temperature dependence in the range of 273–400 K are
approximated by the function:

lnðη = ηrÞ¼ η0 þ η1ðT =TrÞþ η2ðT=TrÞ2 þ η3ðT=TrÞ3; (28)

where ηr ¼ 1:0 mPa⋅s, Tr ¼ 300 K, η0 ¼ 34:75, η1 ¼ � 77:40, η2 ¼
56:93, η3 ¼ � 14:46.

Particle motion is described by the Langevin equation [24]:

m
d v!
dt

¼
X
j

f
!

ij � m γ v!þ g!; (29)

where v! is the velocity of the particle i, f
!

ij is the interparticle force

between the particles i and j, g! is the fluid random force. To solve the
stochastic Eq. (29) numerically, the corrected numerical scheme of [25]
is used in the form suggested in [32]:

v!ðt þ ht=2Þ ¼ α
�
v!ðt � ht=2Þ þ F

!
m
ht

�
þ vT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p
r!G

;

r!ðt þ htÞ ¼ r!ðtÞ þ v!ðt þ ht=2Þht ;
(30)

where ht is the integration step, α ¼ expð � γhtÞ, r!G
is the “Gaussian

noise” with parameters μG ¼ 0 and σG ¼ 1. The first equation of the
system (30) is an exact solution of the Langevin Eq. (29) for the velocity
[12, 28].



Figure 1. The maximum values of the energy of dispersion attraction Uaand
electrostatic repulsion Ue(solid lines) achieved by contact of particles rij ¼ da þ
hg , depending on their diameter. The dashed line is the height of the energy
barrier; dotted lines show levels of gravitational forces and thermal fluctuations;
ζ-potential is 50 mV.
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Interparticle interactions fij include dispersion attraction (force fa,
energy Ua) and electrostatic repulsion (force fe, energy Ue). The energy of
dispersion attraction, neglecting the retardation, has a form described in
[33, 34]:

Ua ¼�A
12

	
d2
a

r2 � d2
a

þ d2a
r2

þ 2 ln
�
1� d2a

r2

�

; fa ¼ � dUa

dr
; (31)

where A ¼ 4π2ε is Hamaker's constant, ε is the energy parameter of the
intermolecular potential. When the retardation is taken into account, the
equation for the energy of dispersion attraction has a much more
cumbersome form [35], which creates certain inconveniences for
analytical differentiation and for use in calculations. To avoid these in-
conveniences and increase the speed of calculations we tabulated the
force of dispersion attraction faðrÞ within an interval hg � r� da � hg þ
2La, where hg is the minimal gap between particles (reaching the gap the
particles coagulate), La is the characteristic retardation length. At large
distances, the force fa reaches asymptotic fass:

fass
12La

�A
¼
�
y
2� 5y� 8y2 þ 3y3

ð1� yÞ3 þ 2 lnð1� yÞ
�

x
5

þ 105� 63yþ 27y2 � 5y3

70ð1� yÞ5 y3x2; (32)

where x ¼ L2a=r
2, y ¼ d2a=r

2. The transition to the asymptotic (32) is
controlled by the parameter pass:

faðrÞ¼ fassð1þ passxÞ; (33)

which is determined by the condition for matching functions faðrÞ and
fassðrÞ at the point r ¼ da þ hg þ 2La.

To describe the electrostatic interaction of the particles due to the
formation of double electric layers [2, 36, 37], the Deryagin's formula
[37] was used, which gives:

Ue ¼ πε0εrΨ 2d
2
a

r
exp

�
� r � da

RD

�
; fe ¼ � dUe

dr
; (34)

where RD is the Debye radius, ε0 is the electric constant, Ψ is the potential
of the diffuse part of the double electric layer, taken equal to the ζ po-
tential [27]. The applicability of the Eq. (34) is limited by the condition
of a small particle charge: v�i Ψ ≪ 25 mV, where v�i is a valence of ions in
the solution. This condition is often not satisfied for real suspensions [38,
39, 40, 41]. However, according to the analysis performed in [32],
violation of this condition weakly affects the spatial distribution of the
potential, which indicates a rather wide range of applicability of the
relations (34). The values used in further calculations for all parameters
included in relations (31)–(34) are presented in the Table 1.

Figure 1 shows the ratio of the maximum energies of dispersion and
electrostatic interactions to the energy of thermal fluctuations. Over the
entire range of particle sizes, the energy of dispersion attraction, ach-
ieved by direct contact, is several orders of magnitude higher than the
energy of electrostatic repulsion and the level (kBT) of thermal
Table 1. Parameters of the particles interaction.

Parameter Value

ε 272 kB

La 50 nm

dg 10 nm

ha 0.1 nm

RD 400 nm

εr 80

Ψ 50 mV

ρm 3970 kg/m3

4

fluctuations in the system. Thus, the approach of particles to direct
contact leads to their irreversible aggregation. Figure 1 also shows
gravitational energy corresponding to the displacement of a particle by
its diameter. It can be seen that taking in account the gravitational forces
becomes necessary for particles with a diameter of more than 1 μm.

The approach of the particles is counteracted by the forces of elec-
trostatic repulsion, which at distances of r > 1 nm become dominant due
to a sharp decrease in the attraction forces. As a result, a potential barrier
is formed (see Figure 2). At ζ-potential of 50 mV for particles with a size
of da ¼ 10 nm, the height of the potential barrier preventing particle
aggregation is about 10 kBT. This is not enough for the long-term stability
of the solution. Thus, it can be expected that particles with a size da ¼ 10
nm will gradually aggregate.

Figure 2 shows why, in addition to energy parameters, the stability of
a suspension depends on the concentration of suspended particles. If the
concentration of a relatively stable suspension of particles increases and,
accordingly, the average distance Rs between particles decreases to
values of the order of Rmax, then the suspension ceases to be stable. The
particles aggregate, since the distances which correspond to the energy
barrier already overcome.

4. Numerical results and discussion

As a comparison and verification of theoretical expressions (14)–(27)
and calculation programs, a stationary coagulation process in the system
with a particle size da ¼ 10 nm and a relative volume density ρ ¼ nava ¼
0:7 % has been simulated; here va ¼ πd3a=6 is a particle volume. To meet
the stationarity condition na ¼ const at the instant of aggregate forma-
tion, i.e., when two particles stick together, one of the particles is sup-
posed to be fixed and the second one to moved randomly in the free space
of the solution at a sufficient distance ðΔr¼ 6daÞ from the other particles.
The same value Δr was taken as a minimal interparticle distance when an
initial random configuration was generated.

Figure 3 shows a radial distribution function of the nanoparticles:
gðrÞ ¼ nðrÞ=na. The initial distribution is determined by the condition for
generating the initial structures and is averaged out 300 independent
generations. Settling at a stationary distribution occurs in about 5 μs. The
stationary distribution curve is constructed by averaging out 300 distri-
butions, which are taken with a time interval of about 2 μs. The figure
shows, on the example of 2D geometry, that Eqs. (19) and (20) correctly
reproduce the form of the function gðrÞ in the vicinity of the energy



Figure 2. The interaction energy depending on the distance between particles
h ¼ r� dafor particles with a diameter of 10 nm and a ζ-potential of 50 mV
(solid line). Dashed lines correspond to reduced interactions by a factor of ϒ ¼
0:8, 0.6, 0.4, 0.2, and 0.1. The symbols show the mean interparticle distances
Rsin the simulated systems.
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barrier at r ¼ Rmax ¼ 1:26da. For the sake of comparison, the function
gðrÞ defined by Eq. (15) is also shown there. Quite an accurate repro-
ducibility of the pair density of particles in the vicinity r ¼ Rmax allows us
to believe the transition rate of particles through the energy maximum to
be correctly determined, and therefore, the coagulation rate in the system
to be accurately estimated according to equations (21) – (23).

For a more reliable verification of the correctness of these equations,
we have varied the height of the potential barrier in the model system. In
order to analyze the effect of the height of the energy barrier of inter-
particle interactions on the rate of stationary coagulation, all interparticle
forces were reduced by a factor ϒ . In addition to the initial system (ϒ ¼
1:0), calculations have been performed for values ϒ ¼ 0:8, 0.6, 0.4, 0.2,
0.1. A reduction of the potential barrier for the systems to model was
shown in Figure 2. The resulting values of the characteristic coagulation
time θ ¼ �naðdna=dtÞ�1 are shown in Figure 4 depending on the height of
the energy barrier. The figure proves the Eqs. (21) and (22) to accurately
reproduce the dependence of the characteristic coagulation time on the
Figure 3. Radial distribution function gðrÞ ¼ nðrÞ=naof the nanoparticles. Curve
1 is the initial particle distribution; curve 2 is the stationary distribution, which
is set at t > 5 μs. Dashed lines correspond to the theoretical expressions of (15)
(line 4) and (20) (line 3). Inset: the region near the energy maximum (r ¼ Rmax)
on an enlarged scale.
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height of the energy barrier. So, for the initial system (ϒ ¼ 1:0), the
calculated value is θ ffi 22 ms, and the theoretical result is θ ffi 19 ms. At
the same time, the use of the traditional approach, i.e., of the Eq. (24),
overestimates the coagulation time θ by about an order of magnitude.
Here, one can note a rather high accuracy of the simplified Eq. (27). For
the initial system at ϒ ¼ 1:0 they give a somewhat underestimated result
θ ffi 16 ms, but with an increase in the barrier height the deviation from
the result calculated in accordance with the more accurate Eq. (22)
rapidly decreases (see inset in Figure 4).

To analyze an effect of nanoparticle concentration on their coagula-
tion rate, the systems have been simulated with a volume content of the
nanoparticles ρ from 0.7% to 7%, which corresponds to a decrease in the
ratio Rs=da from 5.3 to 1.7. The results of numerical modeling are
compared with the theoretical expressions (described in section 2) in
Figure 5. The figure shows that at densities ρ < 3%, Eqs. (22) and (27)
are in a satisfactory agreement with the data of the numerical experi-
ments. An increase in density, when ρ > 3%, leads to noticeable dis-
crepancies, which is associated with excessive convergence of the
average interparticle distance Rs and the coordinate of the energy barrier
Rmax ffi 1:26da. So, for the system with density ρ ¼ 7%, the interaction
energy of particles at a distance Rs is UðRsÞ ffi 8:0kBT, which is not much
lower than the height of the barrier Umax ffi 9:8kBT. At ρ ¼ 3% the energy
UðRsÞ ffi 5:2kBT. Thus, it can be asserted that a satisfactory agreement
between the simulation data and the theoretical expressions (22) and
(27) is observed when the energy UðRsÞ drops about half (or more) from
its maximum value. To describe the simulation data in Figure 5 an
empirical correction has been used:

θ¼ θth
�
1þ p1ρþ ðp2ρÞ2

�
; (35)

where θth is the coagulation time determined by the theoretical expres-
sions (22), p1 ¼ 9:1 and p2 ¼ 22. In the region of dilute solutions, at
ρ < 0:1%, the theoretical curves quickly approach the result corre-
sponding to the traditional approximation (24) and coincide with it when
ρ → 0. However, in the high concentrations region, the traditional
approximation is absolutely not applicable. For example, at ρ ¼ 1% the
estimated coagulation time is θ ffi 7 ms, while the use of Eq. (24) over-
estimates this value by more than an order of magnitude (up to 120 ms).

Figure 6 represents a much more stable system with the parameters
da ¼ 100 nm and ζ ¼ 25 mV. The height of the energy barrier in this
system Umax ffi 27kBT, which gives at the same concentrations approxi-
mately 7 orders of magnitude higher coagulation times than in the system
Figure 4. Coagulation time for stationary conditions depending on the height of
the energy barrier. Symbols are the results of numerical simulations. Lines
correspond to the theoretical Eq. (22) (solid line), (27) (bottom dashed line) and
(24) (top dashed line). Inset: continuation of theoretical curves to the region of
high energy barriers.



Figure 5. Dependence of coagulation time on the volume content of nano-
particles. Symbols are the numerical simulation data, lines correspond to the Eq.
(22) (solid line), (27) (dashed line, red), (24) (dotted line, blue) and (35)
(dashed-dotted line).

Figure 7. Temporal dynamics of aggregate concentrations in the solution. Solid
lines are the numerical simulation data on the total aggregates number (line 1),
binary aggregates, i.e., consisting of two particles (line 2), and triple aggregates
(line 3). Dashed lines correspond to the theoretical dependences of the total
aggregates number in accordance: with Eq. (1) at θ ¼ 23:6μs (line 10), θ ¼ 11 ms
(line 100); with Eqs. (22), (23), and (35) (line 20).
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shown in Figure 5. The numerical simulation of the coagulation in such a
system is quite difficult, since it is necessary to “monitor” the system for
too long. Therefore, Figure 6 represents only the results of theoretical
analysis. It can be seen that the large height of the energy barrier makes
the difference between relations (21), (22) and approximations (26), (27)
even more invisible. In this case the error in the traditional relations (24)
increases much faster with increasing concentration of the solution. If the
solution at ρ ¼ 0:1% can be considered as a diluted one and the Eq. (24)
can be used, then already at ρ ¼ 1% these equations overestimate the
coagulation time by 27 times: the relation (22) give θ ffi 1:4 years here,
and the relation (24) give θ ffi 37 years.

Figure 7 represents the temporal dynamics of the structure of the
solution with parameters da ¼ 10 nm, ζ ¼ 50 mV and the volume content
of the suspended particles ρ ¼ 7%. These data have been obtained by a
method different from the stationary conditions used to calculate the
data presented in Figures 3, 4, 5, and 6. In the calculations shown in
Figure 7, we did not artificially fix the concentration of particles, but
simulated a situation as close as possible to real conditions. As a result, by
the end of the simulation time (slightly more than 100 μs), a noticeable
fraction of binary aggregates formed in the solution, i.e., consisting of
two particles, triple aggregates, quaternary ðn4 ffi 4:3=μm2Þ, and even one
Figure 6. Dependence of coagulation time on the volume content of nano-
particles for the system: da ¼ 100 nm, ζ ¼ 25 mV. The designations are the same
as in Figure 5.

6

aggregate of five particles (n5 ffi 0:36/μm2). In the framework of tradi-
tional theoretical approach, i.e., by Eqs. (1), (23), and (24), we have θ ¼
11 ms and the dependence naðtÞ, which is not consistent with simulation
results (see line 100). As noted in Section 2, the dependence of the coef-
ficient K, which in accordance with the Eq. (23) determines the coagu-
lation rate, on the concentration of suspended particles makes the
Smoluchowski law (1) inapplicable. As can be seen in Figure 7, the curve
corresponding to this law, even with an exact initial value θ ¼ 23:6 μs
corresponding to Eq. (22), deviates strongly from the results of the nu-
merical simulation (see line 10). Consideration of the influence of con-
centration in the Eqs. (22), (23), and (35) allows one to reproduce the
simulation data much better, although not absolutely accurately (see line
20). For a more rigorous description of the temporal dynamics of a so-
lution, it is necessary to take into account factors such as the fractality of
growing aggregates [9, 26], changes in the height of the potential barrier
[22], etc. Comparison of Figures 5 and 6, in particular, shows a sharp
increase in the barrier Umax=kBT with an increase in aggregate size.
However, these issues are beyond the scope of the present study.

5. Conclusion

As a result of the study, analytical expressions are proposed that
determine the coagulation rate of nanoparticles suspended in a solvent
dna=dt, where na is the nanoparticles concentration, and the character-
istic coagulation time θ ¼ � na=ðdna =dtÞ. In contrast to the traditionally
used ratios, the obtained equations allow one to describe with high ac-
curacy the rate of stationary coagulation of not only low concentrated
suspensions, when the volume content of nanoparticles ρ ≪ 1%, but also
rather highly concentrated ones, at ρ � 1% and higher (ρ ¼ nava, where
va is the volume of a particle). Analytical expressions have been written
for cases of three-dimensional geometry ðva ¼ πd3a=6Þ, which is relevant
for working with real nanoscale colloidal solutions, and two-dimensional
geometry ðva ¼ πd2a=4Þ, which is convenient for comparison with the
corresponding results of numerical simulation. Computer experiments
have been performed in the framework of the two-dimensional method of
stochastic dynamics. Satisfactory agreement of the obtained theoretical
expressions with the results of numerical calculations has been demon-
strated. The dependences of the coagulation time on the height of the
interparticle energy barrier θðUmax =kBTÞ and on the volume content of
the suspended particles θðρÞ have been studied. It has been shown that, in
contrast to the obtained theoretical expressions, the traditionally used
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ratios for highly concentrated suspensions (ρ � 1 %) overestimate the
characteristic coagulation times by more than an order of magnitude.
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