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Abstract
This review focuses on the types of cancer antigens that can be recognised by the immune system and form due to altera-
tions in the cancer genome, including cancer testis, overexpressed and neoantigens. Specifically, neoantigens can form when 
cancer cell-specific mutations occur that result in alterations of the protein from ‘self’. This type of antigen can result in an 
immune response sufficient to clear tumour cells when activated. Furthermore, studies have reported that the likelihood of 
successful immunotherapeutic targeting of cancer by many different methods was reliant on immune response to neoantigens. 
The recent resurgence of interest in the immune response to tumour cells, in conjunction with technological advances, has 
resulted in a large increase in the predicted, identified and functionally confirmed neoantigens. This growth in identified neo-
antigen sequences has increased the contents of training sets for algorithms, which in turn improves the prediction of which 
genetic mutations may form neoantigens. Additionally, algorithms predicting how proteins will be processed into peptide 
epitopes by the proteasome and which peptides bind to the transporter complex are also improving with this research. Now 
that large screens of all the tumour-specific protein altering mutations are possible, the emerging data from assessment of 
the immunogenicity of neoantigens suggest that only a minority of variants will form targetable epitopes. The potential for 
immunotherapeutic targeting of neoantigens will therefore be greater in cancers with a higher frequency of protein altering 
somatic variants. There is considerable potential in the use of neoantigens to treat patients, either alone or in combination 
with other immunotherapies and with continued advancements, these potentials will be realised.

Introduction

While the immune system has been known to play a role 
in the control of tumourigenic cells since the start of the 
twentieth century (historical review: Strebhardt and Ullrich 
2008), research has yet to identify consistent methods to 
manipulate it to clear tumour cells. Significant technologi-
cal advances have allowed researchers to molecularly char-
acterise tumours and responding immune cells, which has 
resulted in breakthroughs that have translated to pharma-
cologically actionable markers and targets (as reviewed in 
Pritchard 2018). In order to reduce potential side effects to 
the patient, markers that are unique to cancer cells are par-
ticularly desirable. This review will focus on the immuno-
genic antigens that are expressed by cancer cells, the meth-
ods by which a particular type of antigen can be identified 

from genomic data and what is understood about the immu-
nogenic potential of these antigens. Immune cells that can 
recognise cancer cells displaying antigen markers that are 
specific to tumour cells include  CD4+ and  CD8+ T-cells and 
B-cell subsets. This review only examines the immune tar-
gets displayed by cancer cells that are recognised by T-cells; 
a recommended review of the role of B-cells is Yuen et al. 
(2016).

Immune recognition of antigens

In order to be displayed on cells, these antigens have to go 
through a process of protein cleavage and binding to MHC 
molecules; then in order to be recognised by the T-cell, a 
T-cell receptor (TCR) capable of binding the displayed pep-
tide/MHC complex (pMHC) must be present. These pro-
cesses are outlined in the following section.
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The major histocompatibility complex

The MHC (major histocompatibility complex) is expressed 
nearly ubiquitously on the majority of cells in vertebrates. 
The MHC displays protein fragments sampled from both 
within and outside the cell to alert the immune system to 
infection by pathogens. As the MHC display peptides from 
all protein sources, the T-cells recognising the MHC/peptide 
complexes have to be able to distinguish ‘self’ from ‘non-
self’ to avoid autoimmunity. In humans, the HLA proteins 
are encoded by genes that form a cluster on chromosome 
6. They are broadly split into two types: MHC-class I and 
MHC-class II molecules. Humans have three classical MHC-
class I genes, called HLA-A, HLA-B and HLA-C, and three 
classical MHC-class II molecules: HLA-DR, HLA-DQ and 
HLA-DP; non-classical MHC molecules also exist. Differ-
ent subtypes of T-cells recognise MHC/peptide complexes, 
with  CD8+ T-cells recognising internally derived peptides 
bound to MHC-class I and  CD4+ T-cells recognising pep-
tides derived from external proteins bound to MHC-class II. 
A recommended comprehensive review on the structure of 
the MHC molecules is Blum et al. (2013).

Protein processing by the proteasome

Proteins are processed into peptide fragments by the pro-
teasome (Uebel and Tampe 1999). There are different pro-
teasomes that can generate peptides for MHC-class I pres-
entation, dependent on the cell source (Basler et al. 2013; 
Kloetzel 2004). The manner by which proteins are cleaved 
to form short peptides capable of binding to the MHC mol-
ecules has been examined. This has largely been based on in-
depth assessment of the processing of specific proteins [e.g. 
enolase by the immunoproteasome (Toes et al. 2001) and 
β-casein by the 26S proteasome (Emmerich et al. 2000)] and 
by examining the known peptides produced and bound to 
MHC molecules, in the context of the whole protein. Despite 
the relatively few studies examining how whole proteins are 
processed through the different proteasomes, these data have 
been used as training sets for development of in silico pre-
diction tools such as NetChop (Kesmir et al. 2002), BP-NN 
(Wang et al. 2013) and mhc-pathway (Tenzer et al. 2005).

Peptide binding to MHC molecules

After peptides have been processed in the cytosol by the pro-
teasome, they are selected for movement to the endoplasmic 
reticulum (ER) by their ability to bind the TAP (transporter 
associated with antigen processing) complex (Lehnert and 
Tampe 2017). The ability of the peptide to bind to TAP is 
also an aspect of MHC processing that has been investigated 
for predictability testing (e.g. Bhasin et al. 2007; Peters et al. 

2003; Tenzer et al. 2005; Zhang et al. 2006). Once within 
the ER, peptides are loaded on to the HLA proteins based on 
their ability to fit in the binding groove. The HLA/peptide 
complex is then shuttled to the cell surface in complex with 
chaperone proteins for display to the immune system.

The nature of the binding of peptides to the MHC mole-
cules and factors that can influence these interactions are dis-
cussed in the next sections; for more comprehensive reviews 
on the structure of the MHC molecules and recognition of 
the MHC-peptide complex by T-cells, please see Blum et al. 
(2013) and Wucherpfennig et al. (2010), respectively.

Peptide binding to MHC‑class I

X-ray crystallographic structure of the MHC-class I mol-
ecule showed that the binding groove is composed of two 
α-helical regions forming the sides and eight antiparallel 
β-strands that form its floor (Bjorkman et al. 1987a, b). 
MHC-class I molecules bind short peptide epitopes, with 
the N- and C-terminal ends being anchored into pockets 
at each end of the peptide binding groove (Natarajan et al. 
1999). The different MHC-class I HLA subtypes tend to 
bind specific amino acids in these anchor points. The major-
ity of MHC-class I binding peptides are 9 amino acids long 
(Fig. 1); however, peptides from 8 to 15 amino acids have 
been discovered. This is due to ‘bulging’ of the central sec-
tion of the peptides, which allows the peptide to still fit 
within the binding groove (Fremont et al. 1992; Guo et al. 
1992; Tynan et al. 2005). Furthermore, it has been shown 
that some pMHC-class I complexes are more immunogenic 
that others. Prediction models show that the amino acid posi-
tion of a presented peptide is an important factor in this 
immunogenicity, where amino acids with large aromatic 
side chains may be better recognised by T-cells (Calis et al. 
2013).

Peptide binding to MHC‑class II

The MHC-class II epitope binding site consists of a groove 
and several pockets; X-ray crystallographic studies have 
shown these structures are provided by a β-sheet and two 
α-helices (Stern et al. 1994; Zhu et al. 2003). Unlike MHC-
class I, the peptides that bind to MHC-class II proteins are 
not limited by the size of the binding groove, due to the 
MHC-class II peptide binding groove being open at both 
ends, allowing the binding of peptides up to 30 amino acids 
(Nelson and Fremont 1999). This results in different num-
bered positions within the peptide being able to bind to the 
anchor residues of MHC-class II molecules and makes resi-
due motifs, rather than anchor positions important in defin-
ing and predicting peptides with optimal binding.
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MHC‑class I/TCR interaction

The T-cell receptor is composed of two membrane anchored 
polypeptides, α and β that each contain one constant(C) and 
one variable domain. It is these hypervariable loops that 
recognise the pMHC complex displayed by cells. The pMHC 
complexes must form an immunological synapse with a TCR 
on T-cell in order to induce an immune response, which 
is dependent on additional co-stimulation and secretion of 
immunostimulatory cytokines by the activated T-cells to be 
sustained (Grakoui et al. 1999; Monks et al. 1998; Smith-
Garvin et al. 2009; reviewed in Smith-Garvin et al. 2009). 
Cross-reactivity between TCR and pMHC recognition is 
likely given the number of possible combinations, which 
is an important consideration when manipulating TCR for 
immunotherapeutic purposes (Tan et al. 2015). Large-scale 
detection of antigen-specific T-cells is now possible using 
peptide MHC multimer technology (Bentzen et al. 2016; 
Luimstra et al. 2018), and the production of chimeric anti-
gen receptors (Sharma and Kranz 2016), adoptive transfer 
of neoepitope reactive T-cells (Prickett et al. 2016) and TCR 
gene therapy (Blankenstein et al. 2015; Kato et al. 2018; 
Linnemann et al. 2014) have been shown to be promising 
treatment modalities utilising in silico prediction models.

Types of cancer antigens

There are 3 broad classifications of tumour antigens that can 
be recognised as immune targets by T-cells: (a) cancer testis 
antigens (CT), (b) tumour-associated antigens (TA), and (c) 
tumour-associated antigens (TAA), including viral antigens 
(White et al. 2014) [e.g. human papilloma virus on cervical 
or oropharyngeal cancers (Gillison et al. 2000; Walboom-
ers et al. 1999)] and neoantigens. This review will focus on 
those arising from genomic changes within cells as part of 
the tumourigenic process.

CT antigens

CT antigens are a family of tumour-associated epitopes 
expressed on human tumours, but not on other tissues except 
for testis and placenta. Epigenetic alteration(s) appear to 
be the main mechanism regulating CT expression both in 
normal and neoplastic cells (Karpf and Jones 2002; Zend-
man et al. 2003). These epigenetic modifications allow for 
tissue-specific expression of transcripts in differentiated tis-
sues and during development (Baylin and Jones 2011). The 
first description of epigenetic control of a CT antigen was of 
MAGE-1 promoter hypomethylation (De Smet et al. 1996, 
1999), where demethylation removes the expression silenc-
ing mark. Since then, DNA methylation and histone post-
translational modifications have been shown to be the most 
commonly employed mechanism controlling re-expression 
of the genes encoding CT antigens in tumour cells (Fratta 
et al. 2011; Siebenkas et al. 2017), reviewed in (Akers et al. 

Fig. 1  Total number of unique 
catalogued MHC-class I and 
MHC-class II peptides in the 
Immune Epitope Database 
(IEDB). Graph depicts the total 
number of unique peptides of 
each length stored in the data-
base; the total number of MHC-
class I peptides are 229,036 and 
MHC-class II are 54,607
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2010). Examples include NY-ESO-1 (Gnjatic et al. 2006) 
and members of the MAGE family (Chomez et al. 2001); a 
comprehensive list and evaluation of CT antigens are avail-
able at http://www.cta.lncc.br/ (Ludwig Institute for Cancer 
Research).

CT antigens represent promising therapeutic targets due 
to the following factors: (a) outside of tumour cells, expres-
sion is limited to germ cells (Chen et al. 2009; dos Santos 
et al. 2000; Greve et al. 2014; Hofmann et al. 2008; Sahin 
et al. 1998; Zendman et al. 2001); (b) epitopes from CT 
antigens are not displayed in the testis, as those cells do 
not express MHC-class I (Fiszer and Kurpisz 1998); (c) as 
the immune system has not interacted with the CT proteins, 
it is capable of being recognised as ‘non-self’ (Kalejs and 
Erenpreisa 2005). Further, immune responses to CT anti-
gens are frequently observed in cancer patients (Akcakanat 
et al. 2004; Ayyoub et al. 2003; Milne et al. 2008; Qian et al. 
2004; Tsuji et al. 2009; Wang et al. 2004) and there is an 
association between CT antigen expression and activity of 
tumour immune infiltrates (Rooney et al. 2015).

TA antigens

TA antigens are overexpressed by cancer cells and comprise 
a large group that broadly can encompass any protein found 
at increase levels compared with normal tissue. They can be 
classified as (a) differentiation antigens, which are normal 
proteins overexpressed as a consequence of the tumouri-
genic proliferation of cells of a specific function [e.g. pig-
ment production genes, such as tyrosinase in melanomas 
(Brichard et al. 1993) and the B-cell lineage-specific CD19 
(Wang et al. 2012)]; or (b) overexpressed antigens, which are 
proteins that are minimally expressed by healthy, normal tis-
sues, but are constitutively overexpressed by tumours as part 
of their malignant phenotype [e.g. PRAME (Kessler et al. 
2001), p53 (Barfoed et al. 2000) and ERBB2 in breast can-
cer (Ellsworth et al. 2008)]. A comprehensive list of these 
antigens is available in an online database: https ://caped .icp.
ucl.ac.be/Pepti de/list.

As TA antigens are derived from proteins that are over-
expressed in a relatively high proportion of a given tumour 
type, as well as across different cancers, they represent 
attractive targets for the development of immunotherapy. 
While a number of antigenic peptides have been reported 
where immunoreactivity is observed (Vigneron et al. 2013), 
their use as an immunotherapy target is not devoid of risk. 
As they are expressed in normal tissue, TA antigens are more 
likely to have induced immunological tolerance and are less 
likely to stimulate effective anti-tumour immune responses 
(Cloosen et al. 2007; Yu et al. 2004).

Types of neoantigen

Neoantigens can arise from any genomic mutation altering 
protein sequence, including non-synonymous mutations 
(e.g. Lennerz et al. 2005; Pritchard et al. 2015a), retained 
introns (e.g. Lupetti et al. 1998), post-translational modifi-
cation that alters amino acid (e.g. Skipper et al. 1996), gene 
fusions (e.g. Chang et al. 2017) and frameshift in/del vari-
ants (e.g. Inderberg et al. 2017; Linnebacher et al. 2001). 
Next-generation sequencing (NGS) can be used to identify 
each of these types of variants, except for post-translational 
modification, which relies on techniques such as mass spec-
trometry. As the genomic variations are specific to cancer 
cells and are not present in the germline, they are not subject 
to central and peripheral tolerance. First identified in murine 
models (De Plaen et al. 1988; Monach et al. 1995), neoan-
tigens have subsequently been shown to illicit an immune 
response capable of clearing tumour (Lennerz et al. 2005; 
Segal et al. 2008).

Immunotherapeutic potential of cancer 
antigens

While the above-mentioned tumour antigens have been 
shown to elicit a robust immune response using autologous 
and donor in vitro testing (e.g. Jager et al. 1998; Knuth et al. 
1984; Lennerz et al. 2005; Murray et al. 1992; Pritchard 
et al. 2015a; van der Bruggen et al. 1991; Vella et al. 2009), 
the translation of this to clinical application has largely 
resulted in low overall response rates (Ilyas and Yang 2015; 
Neller et al. 2008), with some notable exceptions (e.g. Bol-
lard et al. 2014; Roskrow et al. 1998; Tran et al. 2014, 2016; 
Zacharakis et al. 2018). As neoantigens are more likely to 
be different to ‘self’ than CT or TA antigens, the affinity of 
the TCR recognising the HLA-bound peptide and subse-
quent strength of the immune response tends to be stronger 
(Aleksic et al. 2012; Tan et al. 2015). Furthermore, as TA 
antigens are produced by normal cells and CT antigens may 
have significant homology to proteins produced on normal 
cells, their use poses a risk of autoimmunity [e.g. destruc-
tion of normal melanocytes in the skin, eye and ear (John-
son et al. 2009)], which can sometimes have devastating 
unintended consequences to the patient (e.g. Cameron et al. 
2013; Morgan et al. 2010, 2013). The more successful clini-
cal approaches have therefore tended to be using viral (e.g. 
Bollard et al. 2014; Heslop et al. 2010; Louis et al. 2010; 
Schuessler et al. 2014; Smith et al. 2017) and neoantigen 
targeting (Sahin et al. 2017; Tran et al. 2014, 2016).

This review will now focus on the neoantigens; for more 
general overviews of the processes involved in antigen pro-
cessing and targeting these antigens immunotherapeuti-
cally, the following reviews are recommended: Coulie et al. 

http://www.cta.lncc.br/
https://caped.icp.ucl.ac.be/Peptide/list
https://caped.icp.ucl.ac.be/Peptide/list
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(2014), Lu and Robbins (2016), Pritchard (2018), Tashiro 
and Brenner (2017).

Identification of neoantigens

Some tumours are more highly mutated than others (Law-
rence et al. 2013), resulting in a difference in likelihood of 
immunogenic neoantigen production between cancer types 
(Schumacher and Schreiber 2015). As melanoma is among 
the most genomically mutated tumours, with a high number 
of non-synonymous single-nucleotide variants (Hayward 
et al. 2017; Lawrence et al. 2013), it is one of the most 
frequently studied (e.g. Lauss et al. 2017; Lennerz et al. 
2005; Ott et al. 2017; Pasetto et al. 2016; Pritchard et al. 
2015a; Snyder et al. 2014; Stronen et al. 2016; van Rooij 
et al. 2013; Verdegaal et al. 2016). Prior to the advent of 
massively parallel NGS, the method to identify neoantigens 
was by labour-intensive individual cDNA library screening 
(e.g. as performed in Lennerz et al. 2005) and as a result, 
the number of identified and studied neoantigens was fairly 
low. Once whole exome/genome sequencing became a rou-
tine technique (reviewed in Goodwin et al. 2016), the ability 
to identify tumour-specific genetic mutations altering the 
protein coding regions became rapid and high throughput, 
facilitating neoantigen prediction. Mass spectrometry can 
also be used to identify peptides bound to the MHC mol-
ecules on the surface of cells (Bassani-Sternberg et al. 2016; 
Freudenmann et al. 2018; Hunt et al. 2007; Mommen et al. 
2014; Pritchard et al. 2015b; Purcell 2004; Purcell and Gor-
man 2004; Tan et al. 2011). Despite these advances, neoan-
tigens are only rarely detected on cancer cells using mass 
spectrometry and further studies are required to discover 
why this is the case (Abelin et al. 2017; Bassani-Sternberg 
et al. 2016; Carreno et al. 2015; Gloger et al. 2016; Gubin 
et al. 2014; Hogan et al. 1998; Jarmalavicius et al. 2012; 
Pritchard et al. 2015b; Yadav et al. 2014).

The majority of recent studies have therefore focused on 
a forward approach of performing NGS on germline and 
tumour DNA to identify protein altering mutations that are 
specific to the cancer cells, followed by epitope prediction 
via in silico algorithms, as detailed in the following sections.

Prediction of neoantigen(s) in the era 
of next‑generation sequencing technology

The prediction of neoantigens relies on the in silico process-
ing of genomic data and requires knowledge of the donors 
HLA type, tumour mRNA expression, germline DNA and 
tumour DNA. The tumour mRNA expression data such as 
whole genome microarrays (e.g. Pritchard et al. 2015a) or 
RNA-seq (e.g. Karasaki et al. 2017; van Rooij et al. 2013) 
are overlaid on tumour-specific cancer mutation information, 

to identify variants in transcribed genes. These variants are 
then run through epitope prediction algorithms, to identify 
peptide sequences that potentially bind to individual-spe-
cific HLA-alleles, which requires the amino acid sequence 
to be translated from the surrounding genetic sequence. A 
confounding factor is population polymorphism, which if 
in phase with the somatic variant may additionally alter 
amino acids from the reference sequence. There are many 
epitope prediction algorithms available, including SYFPEI-
THI (Schuler et al. 2007), RANKPEP (Reche et al. 2002), 
NetMHCpan (Jurtz et al. 2017), NetMHCcons (Karosiene 
et al. 2012), PickPocket (Zhang et al. 2009), MHCflurry (in 
pre-print, https ://doi.org/10.1101/17424 3), ANN (Singh 
and Mishra 2008) and SMM (Peters and Sette 2005). These 
algorithms employ different prediction models but have all 
been trained using characterised epitope/MHC combina-
tions, resulting in the prediction of the likelihood of short 
peptide sequences binding to a given HLA-allele. Bioinfor-
matic pipelines have been created that use whole genome/
exome sequencing data and integrate the analysis to include 
HLA-allele typing, mRNA expression data, peptide process-
ing prediction and HLA-allele binding for the wildtype and 
mutated peptide. These include pVAC-seq (Hundal et al. 
2016), MuPeXi (Bjerregaard et al. 2017a), Cloudneo (Bais 
et al. 2017) and TIminer (Tappeiner et al. 2017). Immune 
evasion and editing can be a limitation to specific T-cell 
immunotherapy, resulting either in failure to initiate tumour 
clearance or acquired resistance to therapy. This includes 
loss of HLA expression by chromosomal 6 loss of heterozy-
gosity (LOH) or the down-regulation of support molecules 
by various methods (e.g. Anagnostou et al. 2017; Chowell 
et al. 2018; Schrors et al. 2017). To partially address this 
issue, the computational tool LOHHLA (loss of heterozygo-
sity in human leukocyte antigen) allows allele-specific copy 
number estimation of the HLA locus from next-generation 
sequencing data (McGranahan et al. 2017). The refinement 
of neoantigen prediction by a combination of the above 
methods will improve the likelihood of immunogenic neo-
antigens being identified, which has the potential to improve 
immunotherapeutic approaches targeting neoantigens.

Prediction of MHC‑class I compared to MHC‑class II 
neoantigen binding

As the majority of studies identifying peptides that bind 
to MHC molecules have focused on those recognised by 
cytotoxic  CD8+ T-cells, the prediction of antigen binding 
to MHC-class I molecules is the most studied. This is influ-
enced both by the function of the cytotoxic  CD8+ T-cells in 
directly triggering programmed cell death and the way in 
which the peptide fits into the MHC-class I binding groove, 
which makes the prediction of this binding more amenable 
to machine learning. Specifically, as previously described, 

https://doi.org/10.1101/174243
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the lack of definitive N- and C-anchor points within the 
MHC-class II binding groove makes the prediction of pep-
tides that may bind more difficult (Wang et al. 2008).

While the role of the  TH1 subset of  CD4+ T-cells in 
priming, supporting, recruiting and proliferation of  CD8+ 
T-cells is well established,  CD4+ T-cells recognising immu-
noreactive MHC-class II-restricted neoantigens have also 
been described (e.g. Linnemann et al. 2015; Pieper et al. 
1999; Tran et al. 2015; Veatch et al. 2018; Wang et al. 1999; 
reviewed in Sun et al. 2017). The number of MHC-class 
II-restricted epitopes catalogued is substantially lower com-
pared to MHC-class I. The number of unique peptides of 
different lengths that are classified as binding to MHC-class 
I (n = 229,035) and MHC-class II (n = 54,606) in the IEDB 
database (Vita et al. 2010) https ://www.iedb.org/ is shown 
in Fig. 1, with the most frequently identified peptide length 
found to bind to MHC-class I being 9 amino acids long and 
15 amino acids long for MHC-class II.

MHC‑class I peptide consensus binding sequences In MHC-
class I, the population polymorphisms that dictate HLA-
subtype can affect the peptide binding groove, including 
the anchor residues at the N- and C-terminals, resulting in 
different peptide epitopes preferentially binding depending 
on amino acid sequence. Once sufficient peptides binding to 
different HLA subtypes have been characterised, consistent 
motifs within these amino acid sequences can be identified. 
Figure 2 shows the consensus motif for six HLA-A subtypes 
and Fig. 3 shows the motifs for eight HLA-B subtypes. The 
peptides used to create these motifs were selected from 
the IEDB, based on those with a sufficient number of pep-
tides to assess (n ≥ 50) and targeting those that have been 
shown by functional experiment to elicit a T-cell response. 
These figures illustrate that there are clear anchor motifs at 
the C- (HLA-A, Fig. 2) and N- (HLA-B, Fig. 3) terminals 
for the selected HLA subtypes. Additionally, for the more 
common HLA types (such as HLA-A*01:01 and HLA-

Fig. 2  Consensus logos motifs for peptides binding to selected MHC-
class I HLA-A alleles. The logo motifs were created using WebLogo 
(http://www.weblo go.berke ley.edu/logo.cgi). Peptides for each HLA 
type were grouped by peptide length and input to WebLogo, with 
default settings polar amino acids (G, S, T, Y, C, Q, N) are green, 
basic (K, R, H) blue, acidic (D, E) red and hydrophobic (A, V, L, 

I, P, W, F, M) amino acids are black. Where sufficient peptides are 
present (n > 10) for each peptide length, a consensus logo motif was 
created. a HLA-A*01:01 (n = 147); b HLA-A*02:01 (n = 2536); c 
HLA-A*03:01 (n = 213); d HLA-A*11:01 (n = 222); e HLA-A*24:02 
(n = 282) f HLA-A*68:01 and HLA*68:02 (combined n = 51). (Color 
figure online)

https://www.iedb.org/
http://www.weblogo.berkeley.edu/logo.cgi
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A*02:01, Fig.  2 and HLA-B*07:02 and HLA-B*40:02, 
Fig. 3), consensus binding amino acids are emerging at the 
N- and C-terminals, respectively. The simple (single amino 
acid binding) and complex (e.g. common properties of sev-
eral amino acids) types of common features visible in the 
consensus logo motifs in Figs. 2 and 3 inform the epitope 
binding prediction algorithms described in “Types of neo-
antigen” section.

Neoantigen‑specific T‑cell receptors

Antigen-specific TCR gene transfer via patient-derived 
T-cells provides the opportunity to break self-tolerance and 
improve the affinity by which cognate TCR binding to ‘self’-
derived epitopes can occur. TCR gene therapy has been a 
successful means of targeting CT and TA antigens (e.g. 

Morgan et al. 2006; Robbins et al. 2011); however, off target 
reactivity has been an issue for these therapies, particularly 
if cross-reactivity between the modified TCR and other ‘self’ 
antigen occurs (e.g. Cameron et al. 2013; Tan et al. 2015).

As neoantigens occur only within tumour tissue, they do 
not induce central tolerance and neoantigen-specific TCRs 
may therefore be more specific and have a higher affinity 
than TCR targeted to non-mutated antigens. Preclinical stud-
ies have shown that the adoptive transfer of neoantigen-spe-
cific TCR engineered T-cells can be effective against solid 
tumours (Bendle et al. 2010; Boulter et al. 2003); however, 
in practice, unexpected cross-reactivities have hampered 
their use (e.g. Morgan et al. 2010, 2013), highlighting the 
need for careful manipulation of the immune system. NGS 
technologies are enabling comprehensive description of 
patient-specific TCR repertoires, allowing the identification 

Fig. 3  Consensus logos motifs for peptides binding to selected MHC-
class I HLA-B alleles. The logo motifs were created using WebLogo 
(http://www.weblo go.berke ley.edu/logo.cgi). The overall height of the 
stack indicates the sequence conservation at that position, while the 
height of symbols within the stack indicates the relative frequency of 
each amino or nucleic acid at that position. Peptides for each HLA 
type were grouped by peptide length and input to WebLogo, with 
default settings polar amino acids (G, S, T, Y, C, Q, N) are green, 
basic (K, R, H) blue, acidic (D, E) red and hydrophobic (A, V, L, I, 

P, W, F, M) amino acids are black. Where sufficient peptides are pre-
sent (n > 50) for each peptide length, a consensus logo motif was cre-
ated. a HLA-B*07:02 (n = 337); b HLA-B*15:01, B*15:02, B*15:03 
(combined n = 224); c HLA-B*27:01, B*27:02, B*27:04, B*27:05 
(combined n = 114); d HLA-B*35:01, B*35:02 (combined n = 296); 
e HLA-B*40:01, B*40:02 (combined n = 94); f HLA-B*44:01, 
B*44:02, B*44:03 (combined n = 118); g HLA-B*51:01 (n = 100); h 
HLA-B*57:01, B*57:03 (combined n = 80). (Color figure online)

http://www.weblogo.berkeley.edu/logo.cgi
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of the frequencies of unique TCR clonotypes among TILs 
(reviewed in Rosati et al. 2017). Multiple technologies have 
emerged for the isolation of TCR genes, allowing the rapid 
identification of large TCR libraries from intratumoural 
T-cells. This has therefore facilitated the careful assess-
ment of antigen specificity of intratumoral TCRs independ-
ent from primary material. Furthermore, the availability of 
such TCR gene libraries may facilitate efforts to locate target 
epitopes within the cancer anti-genome (Hanson et al. 2016; 
Howie et al. 2015; Kato et al. 2018; Kwong et al. 2009).

Accuracy of epitope prediction in identifying 
immunoreactive antigens

As each of the algorithms described in the “Types of neo-
antigen” section are influenced by the training data set, the 
less common HLA-alleles tend to have less peptides pre-
sent, resulting in less confident (higher) binding scores. 

This means these less common HLA subtypes tend to be 
consistently predicted to bind less well, compared to the 
more common HLA subtypes (e.g. as assessed in Pritchard 
et al. 2015a, b). These analyses are extended in Fig. 4, using 
the epitope dataset stored in the IEDB with proven T-cell 
stimulating ability (total n = 3632), which were run through 
four prediction algorithms present in IEDB (ANN, SMM, 
NetMHCcons and PickPocket). The cumulative percentage 
plots illustrate that all four prediction algorithms have a 
similar prediction profile for the most common HLA-A*02 
allele; however, the other five HLA-A alleles examined show 
different abilities of the algorithms to predict similar results. 
Additionally, for the most common HLA-A*02 allele, just 
under 50% of the binding scores are < 50 nM, traditionally 
defined as ‘strong’ binders, while between 70 and 80% of the 
scores are < 500 nM, traditionally defined as ‘weak’ binders. 
This pattern is similar for the other HLA-A alleles assessed 
(HLA-A*01, HLA-A*03, HLA-A*11, HLA-A*24 and 
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Fig. 4  Cumulative percentage plots of epitope prediction score for 
HLA-A subtypes. Using the epitope dataset present in the IEDB with 
proven T-cell stimulating ability and known HLA-A subtype (total 
n = 3451), four prediction algorithms present in IEDB (ANN, SMM, 
NetMHCcons and PickPocket) were used to provide epitope predic-
tion scores. The cumulative percentage plots were created to show the 

proportion of scores that fit within the traditional binding scores for 
‘strong’ (< 50  nM) and ‘weak’ (< 500  nM) interactions. These val-
ues are indicated by the red dotted lines. a HLA-A*01:01 (n = 147); 
b HLA-A*02:01 (n = 2536); c HLA-A*03:01 (n = 213); d HLA-
A*11:01 (n = 222); e HLA-A*24 (n = 282); f HLA-A*68 (combined 
n = 51)
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HLA-A*68) for ANN and NetMHCcons; however, SMM 
and PickPocket are more conservative predictors for these 
less common alleles, with between 0 and 50% of all peptides 
classified as ‘weak’ binders.

A further analysis using the IEDB MHC-class I T-cell 
activating epitopes that bind to both HLA-A and HLA-B 
alleles (n = 5510) has been carried out. These were run 
through the same four prediction algorithms as above and 
then all binding scores graphed (Fig. 5). These graphs illus-
trate that using the aforementioned standard thresholds to 
indicate “strong” and “weak” binding, as indicated by the 
red dotted lines, is likely to miss a large number of epitopes 
that have been proven to elicit T-cell responses; this is par-
ticularly striking in the less common HLA subtypes. These 
data also further illustrate the differences in binding predic-
tion scores between the different algorithms assessed. Given 
that these analyses were carried out using functionally char-
acterised immunogenic peptides, an interpretation of these 
data might be that those algorithms with a large number of 

prediction scores > 1000 nM are less robust predictors for 
those HLA-alleles.

Data from repositories such as IEDB analysed in a man-
ner such as performed here can be used to aid the selection 
of the most informative algorithms for the HLA subtypes of 
interest. Indeed, it has been shown that by analysing immu-
nogenic neopeptides and peptides from the same studies that 
do not elicit a T-cell response, prediction of binding pat-
terns may be improved (Bjerregaard et al. 2017b). Further, 
as more studies identify and functionally examine the pep-
tides binding to HLA-alleles are carried out, the more robust 
these analyses will become; the current interest in this field 
is significantly increasing available data.

Use of neoantigen prediction in practice

A large number of published studies have assessed the abil-
ity of protein altering mutations in cancer cells to form 
neoantigens using in silico tools (e.g. Balachandran et al. 
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Fig. 5  Individual peptide scores plotted for each prediction algorithm. 
Using the IEDB MHC-class I T-cell activating epitopes that bind to 
defined HLA-A or HLA-B alleles (n = 4814), four prediction algo-
rithms present in IEDB (ANN, SMM, NetMHCcons and PickPocket) 
were used to provide epitope prediction scores. These are individually 

plotted to visualise the number of available peptides to assess and the 
performance of each algorithm against each other and the traditional 
binding scores for ‘strong’ (< 50 nM) and ‘weak’ (< 500 nM) interac-
tions. These values are indicated by the red dotted lines. (Color figure 
online)
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2017; Brown et al. 2014; Gros et al. 2016; Hodges et al. 
2017; Lauss et al. 2017; Linnemann et al. 2015; Luksza et al. 
2017; Matsushita et al. 2012; McGranahan et al. 2016; Ock 
et al. 2017; Pritchard et al. 2015a; Rizvi et al. 2015; Robbins 
et al. 2013; Snyder et al. 2014; Tran et al. 2016; Van Allen 
et al. 2015; van Rooij et al. 2013; Verdegaal et al. 2016). 
While these various tools have an important role to play 
in the prediction of immunogenic antigens, the majority of 
the identified epitopes do not initiate an immune response 
(e.g. as assessed in Gros et al. 2016; Linnemann et al. 2015; 
McGranahan et al. 2016; Pritchard et al. 2015a; Robbins 
et al. 2013; Schmidt et al. 2017; Snyder et al. 2014; van 
Rooij et al. 2013). The possible reasons behind suboptimal 
immunogenicity of peptide vaccines for cancer are reviewed 
by Kumai et al. (2017).

A recent study specifically tackled the question of how 
many predicted epitopes are capable of eliciting an immune 
response, using the CEF peptide pool (consisting of 32 indi-
vidual peptides from Cytomegalo-, Epstein–Barr-, and Influ-
enza viruses) and a panel of 42 HLA typed HLA-A*02:01 
positive individuals. There were 241 different peptide stimu-
lating  CD8+ responses predicted, on the basis of individual 
HLA-typing. Broadly, 51% of these predictions stimulated 
a response, of varying strengths, with only 15% occurring in 
the high frequency range (> 100 spots/400,000 PBMC) and 
17% in mid-frequency (> 10 spots/400,000 PBMC) and 19% 
at the detection limit (1 spot/400,000 PBMC). Fifty-seven 
unpredicted responses were seen, meaning that of all the 
responses detected, 68% were predicted and 32% were not. 
In total, 49% of the predicted peptides were not detectably 
targeted by  CD8+ cells (Moldovan et al. 2016). These data 
are intriguing on several levels. The first is that the CEF 
peptides are among the most studied immune responses and 
that both predicted and unpredicted  CD8+ T-cell response 
after exposure to these peptides are observed indicates there 
are still significant aspects of epitope prediction that are not 
yet achieved. The second is that despite prediction in these 
well characterised antigens, a large proportion did not elicit 
any detectable immune response. Finally, despite detecting a 
 CD8+ T-cell response to approximately half of the epitopes 
predicted, only a fraction were a dominant response. Extrap-
olation of these data to that observed for neoantigen pre-
diction in studies that do not test the potential epitopes for 
immune cell recognition should cause a pause for thought 
in how these data are reported and presented.

Testing of neoantigen immunogenicity

It is clear from the published studies that while the data from 
the prediction algorithms can be used to inform on the poten-
tial epitopes created, there still needs to be laboratory testing 
for immunogenicity of these epitopes. There are a number of 

methods by which this can be performed, including screening 
of the predicted peptides across mixed lymphocyte-tumour 
culture (MLTC) (e.g. Lennerz et al. 2005; Pritchard et al. 
2015a), exposure of tandem mini-genes (e.g. Gros et al. 2016; 
Lu et al. 2014; Mennonna et al. 2017; Tran et al. 2014, 2015) 
or pMHC multimers (e.g. Cohen et al. 2015; Stronen et al. 
2016; van Rooij et al. 2013) to immune cells, and the pulsing 
of putative peptides with antigen presentation cells (such as 
dendritic cells or B-cells) and co-culture with T-cells, followed 
by T-cell exposure to predicted peptide pools (e.g. Rajasagi 
et al. 2014). These approaches can identify existing memory 
T-cell immune responses in patients, or reactive naïve T-cells 
in patients/donors, both of which have potential clinical utility.

Immunotherapeutic potential 
of neoantigens

Neoantigens have been shown to contribute to the success of 
various immunotherapies, including the checkpoint inhibi-
tors targeting PD-1/PD-L1/CTLA4 (e.g. Balachandran et al. 
2017; Snyder et al. 2014; van Rooij et al. 2013) and other 
forms of immunotherapy, including dendritic cell vaccines 
[e.g. unpublished observations and Pritchard et al. 2015a, 
assessing patients from clinical trials (O’Rourke et al. 2003, 
2007)] and adoptive T-cell transfer (e.g. Tran et al. 2016; 
Verdegaal et al. 2016). Additionally, as neoantigens are 
capable of stimulating tumour clearance (e.g. Zacharakis 
et al. 2018), there are currently a number of registered clini-
cal trials that include combination of immunotherapies with 
a personalised neoantigen component (e.g. with anti-PD-1 
checkpoint inhibition NCT02950766, renal cell carcinoma; 
NCT03199040, triple-negative breast cancer) and den-
dritic cell vaccine raised against defined neoantigens (e.g. 
NCT03300843, melanoma, gastrointestinal, breast, ovarian 
and pancreatic cancers, NCT03558945, pancreatic cancer) 
and adjuvant personalised neoantigen peptide vaccine, 
with the immunostimulant poly-ICLC (e.g. NCT02510950, 
glioblastoma and astrocytoma and NCT01970358, mela-
noma). Although it may be possible to target the more 
common ‘driver’ gene mutations such as BRAF (Sharkey 
et al. 2004; Somasundaram et al. 2006; Veatch et al. 2018), 
KRAS (Bergmann-Leitner et al. 1998; Shono et al. 2003), 
p53 (Ichiki et al. 2004) and NRAS (Linard et al. 2002), the 
required combination of non-synonymous variant and spe-
cific HLA-allele make neoantigens more likely to be a per-
sonalised therapy option.

As illustrated with examples above, the major limitation 
to the use of neoantigens in immunotherapy is the reliable 
personalised prediction of those that will have undergone 
proteasomal cleavage, transport to the ER, binding to the 
individuals HLA molecule and recognition by the T-cell 
receptor to stimulate an immune response capable of tumour 
clearance.
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Conclusion

The somatic mutations acquired by cancer cells can be rec-
ognised as ‘non-self’ by the immune system and are capable 
of inducing an immune response that can selectively tar-
get and remove tumour cells. There are a number of steps 
required in order for the peptides to be displayed to the 
immune system and each of these processes has optimal 
conditions under which they occur. Therefore, despite there 
being a large number of potential neoantigens in some can-
cers with high mutation burden, only a fraction are able to 
ultimately mount an immune response. With the improve-
ment in molecular and in silico capabilities in recent years, 
the number of identified immunogenic neoantigens has sub-
stantially increased. As demonstrated here, the current meth-
ods do not consistently identify epitopes that are a priori 
known to mount an immune response. With a greater num-
ber of verified neoantigens, the better the ability of trained 
in silico prediction tools to reliably identify those that may 
have clinical utility. There is considerable potential in the 
use of neoantigens to treat patients, either alone or in com-
bination with other immunotherapies and with continued 
advancements, these potentials will be realised.
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