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Abstract
We extended a class of coupled PDE–ODE models for studying the spatial spread of
airborne diseases by incorporating human mobility. Human populations are modeled
with patches, and a Lagrangian perspective is used to keep track of individuals’ places
of residence. The movement of pathogens in the air is modeled with linear diffusion
and coupled to the SIR dynamics of each human population through an integral of
the density of pathogens around the population patches. In the limit of fast diffusion
pathogens, the method of matched asymptotic analysis is used to reduce the coupled
PDE–ODEmodel to a nonlinear system of ODEs for the average density of pathogens
in the air. The reduced system of ODEs is used to derive the basic reproduction
number and the final size relation for the model. Numerical simulations of the full
PDE–ODE model and the reduced system of ODEs are used to assess the impact
of human mobility, together with the diffusion of pathogens on the dynamics of the
disease. Results from the two models are consistent and show that human mobility
significantly affects disease dynamics. In addition, we show that an increase in the
diffusion rate of pathogen leads to a lower epidemic.
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1 Introduction

Airborne transmission of infectious diseases has been a subject of increasing interest
in recent times. Analyzing the potential risk of airborne transmission by incorporating
human mobility into studies can provide important information for designing safe
environmentswith appropriate level of controls formitigating risks.Many airborne and
waterborne diseases are transmitted directly via host–host and/or indirectly through the
host–source–host route (Boone and Gerba 2007; Trisha et al. 2021). Airborne diseases
such as measles, influenza, and tuberculosis are primarily transmitted from human–
environment–human (indirect transmission pathway) and can as well be transmitted
from human–human (direct transmission pathway) (Hartley et al. 2006; Nelson et al.
2009; Noakes and Sleigh 2009). The emergence of severe acute respiratory syndrome
(SARS) in 2002–2003 caused a public health concern (Steven et al. 2003)with a
highly infectious coronavirus causing the SARS disease (Lipsitch et al. 2003) known
to primarily spread through localized contact with contaminated droplets. In addition,
retrospective studies including but not limited toLi et al. (2005) suggested that airborne
dispersal may play an important role in the transmission of the disease with evidence
showing that uninfected individuals were infected without enough close contact with
an infectious individual (Scales Damon et al. 2003).

In the context of models for infectious diseases transmission, the Lagrangian
approach offers a theoretical framework that explicitly tracks the heterogeneity of
host population and mobility (Fred et al. 2019). Despite the complexity of explicitly
considering the mixing patterns and connections that exist between local communi-
ties and different regions, the Lagrangian method used for residence time has shown
its ability to analytically explain the failure of feasible mobility restriction measures
and their impact on disease transmission (Brauer 2012; Fred et al. 2019). Several
mathematical models that studied heterogeneity and different mobility scenarios have
been exploredwithin the heterogeneousmixing framework (Brauer 2008b, 2012; Fred
et al. 2019). However, none of these studies considered epidemic models with diffu-
sion of pathogens and/or indirect transmission route using our approach of a coupled
PDE–ODE model.

In fact, many authors including but not limited to the authors in David et al. (2020),
Noakes and Sleigh (2009), Wang andWang (2021), Yamazaki et al. (2021) and Zhang
et al. (2016) extensively studied and analyzed the transmission of airborne and water-
borne diseases using different modeling approaches. For example, (Noakes and Sleigh
2009) used a stochastic version of the Wells–Riley’s model coupled with a simple
zonal ventilation model that allowed for the effects of small populations applicable
in healthcare settings. They demonstrated the role of airflow and population size on
the risk of infection and the importance of stochastic effects, especially in small pop-
ulations, was emphasized. Their approach enabled an understanding of the possible
spatial transmission of infection that allowed design and operational control strate-
gies to be explored without explicitly modeling the role of diffusion. Wang and Wang
(2021) developed a multipatch cholera epidemic model to assess disease dynamics in
a periodic environment. They illustrated the impact of asymptomatic infections and
population dispersal on the spread of cholera. Although useful results were obtained,
their modeling framework did not show the effect of diffusion and human mobil-
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ity on the transmission of the disease. Similarly, (Yamazaki et al. 2021) proposed a
new reaction–convection–diffusion model to study the impact of cholera transmission
among humans using a second-order differential operator. This model differs from the
current study in structure and dynamics in that a second-order differential operator
was used without addressing the potential effect of the movement of humans between
patches. Furthermore, (Zhang et al. 2016) formulated a reaction–diffusion waterborne
pathogen model to investigate the influence of diffusion, spatial heterogeneity, and
multiple transmission pathways on the spread of waterborne disease. While the work
done in Zhang et al. (2016) considered the influence of dispersal using a different
model, the spatiotemporal spread of the disease with the impact of human mobility
was not taken into consideration. In addition, the work of David et al. (2020) which is a
prequel to the current study used a novel PDE–ODE model to study the spatial spread
of airborne diseases between homogeneous populations. The current work extends the
work done in David et al. (2020) by explicitly modeling the role of human mobility.

In light of the aforementioned studies, we thought it could be possible to consider
a more realistic but simpler scenario (in the case of superspreaders) rather than the
detailed network or PDE models. To model the effect of human mobility with het-
erogeneous mixing, one may assume that the population is divided into subgroups
with different activity levels. To the best of our knowledge, no previous studies and
articles considered our modeling approach of using a coupled PDE–ODE system in
assessing the role of human mobility and heterogeneous mixing on the transmission
of airborne diseases. This work aims to indirectly overcome the complications faced
by using a PDEmodel. We base our analytical results on the reproduction number and
the epidemic final size relation in a heterogeneous mixing environment. Our results
are computed using a nonlinear system of ODEs derived from the coupled PDE–ODE
using strong localized perturbation theory in the limit of fast diffusing pathogens.
We use the Lagrangian method to track an individual’s place of residence at all time
following the approach in Bichara et al. (2015), Brauer (2008b), Fred et al. (2019),
Carlos et al. (2016), Espinoza et al. (2016) and Funke (2018). This allows us to theo-
retically and numerically evaluate how human movement between patches (regions)
affect the spread of diseases. Our extended model which includes human mobility and
a diffusion term may be an alternative way to study the spread of airborne diseases in
an heterogeneous mixing environment.

The rest of the paper is structured as follows. In Sect. 2, we extend the coupled
PDE–ODE model developed in David et al. (2020) by incorporating human mobility
using the Lagrangian method. We non-dimensionalize the extended model in Sect. 2.1
and use matched asymptotic expansions method to reduce the dimensionless coupled
model to a nonlinear system of ODEs in the limit of fast diffusing pathogens. In
Sects. 3.1 and 3.2, for a scenario with two populations, the reduced ODE model is
used to compute the basic reproduction number and final size relation of the epidemic,
respectively. The coupled PDE–ODEmodel togetherwith the reduced systemofODEs
is used to numerically study the effect of different human mobility patterns on the
disease dynamics for a two-patch scenario. A brief discussion of results and possible
future directions concludes the paper in Sect. 4.
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2 Mathematical Model

Here, we represent human populations with localized patches that have partially trans-
mitting boundaries through which pathogens are shed into the atmosphere by infected
individuals. These pathogens diffuse and decay at a constant rate in the air. A sus-
ceptible individual becomes infected by coming in contact with pathogens (indirect
transmission pathway). We assume that the spread of infection in each population
patch depends on the density of pathogens around the patch, and did not explicitly
model pathogens within the patches. Similarly, we model human movement between
patches using a Lagrangian method. Let � ⊂ R

2 be our 2-D bounded domain of
interest containing m population patches represented, by � j for j = 1, . . . ,m, which
are separated by an O(1) distance. In the region between the patches � \ ∪m

j=1 � j

(bulk region), the density of pathogens P(XXX , T ) satisfies

∂P
∂T

= DB �P − δP, T > 0, XXX ∈ � \ ∪m
j=1 � j ; (1a)

∂nXXX P = 0, XXX ∈ ∂�; DB ∂nXXX j P = −r j I j , XXX ∈ ∂� j , j = 1, . . . ,m,

(1b)

where DB > 0 and δ > 0, respectively, represent the dimensional diffusion coefficient
and decay rate of pathogens in the bulk region, r j > 0 is the dimensional shedding
rate of pathogen by an infected individual in the j th patch, and ∂nXXX is the outer normal
derivative on the boundary of the patches pointing into the bulk region.

First, we assume that the population of the entire system is constant throughout the
epidemic period, that is, N = ∑m

j=1 N j . Here, γ j i denote the fraction of residents of
patch j that are in patch i , where

∑m
i=1 γ j i = 1 for j = 1, . . . ,m. The parameters

μ j and α j are the dimensional transmission and recovery rates, respectively, for indi-
viduals in the j th patch, and pc is a typical value for the density of pathogens. The
dynamics of the diffusing pathogens in the bulk region is coupled to the population
dynamics of the j th patch as follows

dS j

dT
= −

m∑

i=1

μi S j γ j i

∫

∂�i

(P/pc) dSXXXi ; (1c)

dI j

dT
=

m∑

i=1

μi S j γ j i

∫

∂�i

(P/pc) dSXXXi − α jI j ; (1d)

dR j

dT
= α jI j , j = 1, . . . ,m, (1e)

whereS j , I j , andR j are the susceptible, infected, and recovered/removed population
in the j th patch, respectively, with the total population at time T written asN j (T ) =
S j (T ) + I j (T ) + R j (T ).

The integrals in (1c) and (1d) are over the boundary of the j th patch and are used
to account for the total density of pathogens around the patch. These terms show that
the spread of infection within a patch depends on the density of pathogens around
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the patch. It is important to emphasize that our model does not explicitly account for
pathogens within the patches. The Robin boundary condition DB ∂nXXX P = −r j I j

on the boundary of the j th patch accounts for the amount of pathogens shed into the
atmosphere by infected individuals in the patch. This condition shows that the amount
of pathogens shed into the atmosphere from the j th patch depends on the population
of infected individuals in the patch.

2.1 Non-dimensionalization of the Coupled PDE–ODEModel

Next, we non-dimensionalize the coupled PDE–ODE model (1). The dimensions of
the variables and parameters of the model are defined as follows:

[P] = pathogens

(length)2
, [DB] = (length)2

time
, [pc] = pathogens, [T ] = time,

[XXX ] = length, [μ j ] = length

time
, [N j ] = [S j ] = [I j ] = [R j ] = individuals,

[r j ] = pathogens

individual × time × length
, [δ] = [α j ] = 1

time
, i, j = 1, . . . ,m.

(2)

where [z] represents the dimension of z. We assume that the population patches are
circular with common radius ρ, which is small compared to the length-scale L of the
domain�, and introduce a small scaling parameter ε = ρ/L � 1. The dimensionless
variables are defined as follows

P = L2

pc
P, S j = S j

N j
, I j = I j

N j
, R j = R j

N j
, xxx = XXX

L
, t = δ T . (3)

so that S j , I j , and R j are the proportion of susceptible, infected, and recov-
ered/removed individuals in the j th patch, respectively, and P ≡ P(xxx, t) is the
dimensionless density of pathogens in the bulk region. Upon substituting (3) into
(1), we derive that P(xxx, t) satisfies

∂P

∂t
= D � P − P, t > 0, xxx ∈ � \ ∪m

j=1 �ε j ; (4a)

∂nxxx P = 0, xxx ∈ ∂�; D ∂nxxx P = −r j

(N j L

δ pc

)

I j , xxx ∈ ∂�ε j , j = 1, . . . ,m,

(4b)

where D ≡ DB/(δ L2) is the effective diffusion rate of pathogens in the bulk region.
From the ODE system ((1c)–(1e)), we derive the dimensionless system of ODEs for
the population dynamics of the j th patch as
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dS j

dt
= −

m∑

i=1

( μi

δ L

)
S j γ j i

∫

∂�εi

P dsxxx ;

dI j
dt

=
m∑

i=1

( μi

δ L

)
S j γ j i

∫

∂�εi

P dsxxx − φ j I j ;

dR j

dt
= φ j I j , j = 1, . . . ,m,

(5)

where φ j = α j/δ is the dimensionless recovery rate and �ε j = {xxx : |xxx j − xxx | < ε}
represents the j th patch of radius ε � 1 with center at xxx j . Note that we have used the
scaling dSXXX = L dsxxx in the integrals on the boundary of the patches. We set

β j

2πε
= μ j

δL
and

σ j

2πε
= r j

N j L

δ pc
, (6)

where β j and σ j are O(1). We have assumed that
(
μ j/δ L

)
and r j

(N j L/δ pc
)
are

O(1/ε) in order to effectively capture the density of pathogens shed into the bulk
region by infected individuals in each patch, since the patches are relatively small
compared to the length-scale of the domain. This re-scaling enables us to write the
dimensionless transmission and shedding rates, β j and σ j , respectively, as functions
of the circumference of the j th patch. Upon substituting (6) into (4) and (5), we obtain
that the dimensionless density of the pathogens P(xxx, t) satisfies

∂P

∂t
= D � P − P, t > 0, xxx ∈ � \ ∪m

j=1 �ε j ; (7a)

∂nxxx P = 0, xxx ∈ ∂�; 2πεD ∂nxxx P = −σ j I j , xxx ∈ ∂�ε j , j = 1, . . . ,m,

(7b)

which is coupled to the dimensionless SI R dynamics of the j th patch as follows

dS j

dt
= − 1

2πε

m∑

i=1

βi S j γ j i

∫

∂�ε j

P dsxxx ;

dI j
dt

= 1

2πε

m∑

i=1

βi S j γ j i

∫

∂�ε j

P dsxxx − φ j I j ;

dR j

dt
= φ j I j , j = 1, . . . ,m,

(7c)

where

β j = 2πε

δL
μ j , σ j = 2πε

δ pc
r j N j L and φ j = α j

δ
. (8)

are the dimensionless transmission, shedding, and recovery rates for the j th patch,
respectively. Table 1 shows all parameters and their respective descriptions.
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Next, we study the dimensionless coupled model (7) in the limit of fast diffusing
pathogens, where D = O(ν−1) � 1, with ν = −1/ loge(ε) and ε � 1, using the
method of matched asymptotic expansions. We define

D = D0

ν
, where D0 = O(1) and ν = − 1

loge(ε)
� 1. (9)

Substituting D = D0/ν into (7a) and (7b), we obtain

∂P

∂t
= D0

ν
� P − P, t > 0, xxx ∈ � \ ∪m

j=1 �ε j ; (10a)

∂nxxx P = 0, xxx ∈ ∂�; 2πε
D0

ν
∂nxxx P = −σ j I j , xxx ∈ ∂�ε j , j = 1, . . . ,m,

(10b)

Following the approach of David et al. (2020), we derive a two-term asymptotic
expansion in terms of ν for the density of pathogens in the bulk region given by

P = P0 + ν

D0

m∑

i=1

σi Ii G(xxx; xxxi ) + . . . , (11)

where P0 ≡ P0(t) is the average density of pathogens in the bulk regionwhich satisfies

dP0
dt

= −P0 + 1

|�|
m∑

j=1

σ j I j , (12)

and G(xxx; xxx j ) is the Neumann’s Green function satisfying

�G = 1

|�| − δ(xxx − xxx j ), xxx ∈ �; ∂nG = 0, xxx ∈ ∂�; (13a)

G(xxx; xxx j ) ∼ − 1

2π
loge |xxx − xxx j | + R j , as xxx → xxx j , and

∫

�

G dxxx = 0, (13b)

with regular part R j ≡ R(xxx j ). Similarly, near the j th population patch, we derive

Q j =
(

P0(t) + σ j I j
2πD0

)

+ ν

D0

[

−
(

σ j I j
2π

)

loge

( |xxx − xxx j |
ε

)

+σ j I jR j +
m∑

i 
= j

σi Ii G(xxx j ; xxxi )
⎤

⎦ + · · · , j = 1, . . . ,m,

(14)

On the boundary of the j th patch, where |xxx − xxx j | = ε, (14) reduces to

Q j =
(

P0(t) + σ j I j
2πD0

)
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+ ν

D0

⎛

⎝σ j I jR j +
m∑

i 
= j

σi Ii G(xxx j ; xxxi )
⎞

⎠ + . . . , j = 1, . . . ,m, (15)

To couple the dynamics of the diffusing pathogens to that of human population in the
j th patch, we substitute (15) into the ODE system (7c) to obtain

dS j

dt
= −

m∑

i=1

βi S jγ j i

(

p(t) + σi Ii
2πD0

)

− ν

D0

m∑

i=1

βi S jγ j i �i

dI j
dt

=
m∑

i=1

βi S jγ j i

(

p(t) + σi Ii
2πD0

)

− ν

D0

m∑

i=1

βi S jγ j i �i − φ j I j

dR j

dt
= φ j I j , j = 1, . . . ,m,

(16)

where � j = (G�) j is the j th entry of the vector G�, with � = (σ1 I1, . . . , σm Im)T .
Here, G is the Neumann–Green’s matrix whose entries are defined by

(G) j j = R(xxx j ) for i = j and (G)i j = (G) j i = G(xxxi ; xxx j ) for i 
= j, (17)

where G(xxx j ; xxxi ) is the Neumann–Green’s function satisfying (13) and R j ≡ R(xxx j )

is its regular part at the point xxx = xxx j . For convenience of notation, we have replaced
P0(t) with p(t) in (16). Combining (12) and (16), we obtain an ODE systems for the
average density of pathogen in the atmosphere coupled to the population dynamics in
the patches that is valid in the limit D = O(ν−1), where ν = −1/ log(ε) with ε � 1.
This ODE system is given by

dp(t)

dt
= −p(t) + 1

|�|
m∑

j=1

σ j I j , (18a)

dS j

dt
= −

m∑

i=1

βi S jγ j i

(

p(t) + σi Ii
2πD0

)

− ν

D0

m∑

i=1

βi S jγ j i �i , (18b)

dI j
dt

=
m∑

i=1

βi S jγ j i

(

p(t) + σi Ii
2πD0

)

− ν

D0

m∑

i=1

βi S jγ j i �i − φ j I j , (18c)

dR j

dt
= φ j I j , j = 1, . . . ,m. (18d)

Note that the terms with σ j I j/(2πD0) in (18) do not model direct transmission, but
rather they account for the pathogens shed by infected individuals in the j th patch. The
density of these pathogens depends on the scaled-diffusion rate D0 and the population
of infected individuals in the patch. When the pathogens diffuse slowly (small D0),
there is significant contribution from this term, and this contribution decreases as D0
increases. In the limit D0 → ∞, these terms go to zero and the ODE system reduces
to the model for well-mixed regime present in equation 5 of Funke (2018). In Sects. 3,
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we study the reduced ODE system (18) for two population patches and compute the
basic reproduction number and final size relation for this scenario.

3 Two-PatchModel with HeterogeneousMixing

In this section, we consider a scenario with two population patches (m = 2) centered
at xxx1 = (0.5, 0) and xxx2 = (−0.5, 0) in the unit disk and use the dimensionless coupled
PDE–ODE model (7) and the reduced system of ODEs (18) to study the dynamics
of the disease in these populations. For this scenario, we derive from (7) that the
dimensionless density of pathogens P(xxx, t) in the atmosphere satisfies

∂P

∂t
= D � P − P, t > 0, xxx ∈ � \ {�1 ∪ �2}; (19a)

∂n P = 0, xxx ∈ ∂�; 2πεD ∂n P = −σ1 I1, xxx ∈ ∂�1;
2πεD ∂n P = −σ2 I2, xxx ∈ ∂�2, (19b)

where �1 and �2 are the two population patches centered at xxx1 = (0.5, 0) and
xxx2 = (−0.5, 0), respectively. The dynamics of the diffusion pathogens is coupled to
the population dynamics of the two patches as follows

Patch 1 Patch 2

dS1
dt

= − 1

2πε

2∑

i=1

βi S1 γ1i

∫

∂�εi

P dsxxx ; dS2
dt

= − 1

2πε

2∑

i=1

βi S2 γ2i

∫

∂�εi

P dsxxx ;

dI1
dt

= 1

2πε

2∑

i=1

βi S1 γ1i

∫

∂�εi

P dsxxx − φ1 I1; dI2
dt

= 1

2πε

2∑

i=1

βi S2 γ2i

∫

∂�εi

P dsxxx − φ2 I2;

dR1

dt
= φ1 I1; dR2

dt
= φ2 I2. (19c)

Similarly, we derive the reduced ODE system for the two population patch scenario
from (18) as

dp

dt
= −p + 1

|�| (σ1 I1 + σ2 I2), (20a)

Patch 1 Patch 2

dS1
dt

= −
2∑

i=1

βi S1 γ1i

(

p(t) + σi Ii
2πD0

)

,
dS2
dt

= −
2∑

i=1

βi S2 γ2i

(

p(t) + σi Ii
2πD0

)

,

dI1
dt

=
2∑

i=1

βi S1 γ1i

(

p(t) + σi Ii
2πD0

)

− φ1 I1,
dI2
dt

=
2∑

i=1

βi S2 γ2i

(

p(t) + σi Ii
2πD0

)

− φ2 I2,

dR1

dt
= φ1 I1,

dR2

dt
= φ2 I2, (20b)

where p ≡ p(t) is the average density of pathogens in the atmosphere and D0 is the
scaled diffusion coefficient of the pathogens. The ODE system (20) has a similar struc-
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ture to those studied in David et al. (2020) and Funke (2018). The coupled PDE–ODE
model (19), and the reduced ODE system (20) will be used to study the transmission
dynamics of the disease for two populations scenario.

3.1 Basic Reproduction Number

Here, we use the reduced system of ODEs (20) to compute the basic reproduction
number, R0 (the secondary infections caused by a single infective into a totally sus-
ceptible population). To use the next generational matrix approach for computing R0
as was done in Odo et al. (1990), Holland (2007) and Van den Driessche and Wat-
mough (2002), we construct a system of equations for the infectious classes given
by

dI1
dt

= β1S1γ11

(

p(t) + σ1 I1
2πD0

)

+ β2S1γ12

(

p(t) + σ2 I2
2πD0

)

− φ1 I1,

dI2
dt

= β1S2γ21

(

p(t) + σ1 I1
2πD0

)

+ β2S2γ22

(

p(t) + σ2 I2
2πD0

)

− φ2 I2,

dp

dt
= −p + 1

|�| (σ1 I1 + σ2 I2),

(21)

where γ11 and γ12 are the proportions of the residence of patch 1 that are currently
in patch 1 and patch 2, respectively, with γ11 + γ12 = 1. Similarly, γ21 and γ22 are
the proportions of the residence of patch 2 that are currently in patch 1 and patch 2,
respectively, with γ21 + γ22 = 1.

At thedisease-free equilibriumDFE= (S∗
1 , I

∗
1 , R∗

1 , S
∗
2 , I

∗
2 , R∗

2 , p
∗) ≡ (S1(0), 0, 0,

S2(0), 0, 0, 0), we construct the Jacobian matrix F for new infections and the matrix
V for transfer of infections. Since I1(0) = I2(0) = R1(0) = R2(0) = 0, at the DFE,
we have S∗

1 = N1(0) and S∗
2 = N2(0). Based on this, the matrix F is given by

F =
(

∂Fi

∂x j

)

i, j

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ1β1γ11N1(0)

2πD0

σ2β2γ12N1(0)

2πD0
(β1γ11 + β2γ12) N1(0)

σ1β1γ21N2(0)

2πD0

σ2β2γ22N2(0)

2πD0
(β1γ21 + β2γ22) N2(0)

0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (22)

where the functions (F1,F2,F2) ≡ (I ′
1, I

′
2, p

′) are as given in (21) with (x1, x2, x3) ≡
(I1, I2, p). Similarly, from (21), we construct the Jacobian matrix V for the rates of
transfer of individuals between the infected compartments as
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V =
(

∂Vi

∂x j

)

i, j

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

φ1 0 0

0 φ2 0

− σ1

|�| − σ2

|�| 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (23)

Upon finding the inverse of V and multiplying by F (22) from the left, we obtain
the next generation matrix defined by M = FV−1. Our desired basic reproduction
number is the spectral radius of the next generationmatrix. Computing the eigenvalues
of this matrix, we obtain the basic reproduction number of our model as

R0 = �11 + �22

4πφ1φ2|�|D0
+

√
�
2
11 + ϒ + �

2
22

2φ1φ2
, (24)

where �11, �22, and ϒ are defined as follows

�11 = (2π D0(β1 γ11 + β2 γ12) + β1 γ11 |�|) N1(0) φ2 σ1,

�22 = (2π D0(β1 γ21 + β2 γ22) + β2 γ22 |�|) N2(0) φ1 σ2,

ϒ = 2φ1 φ2 σ1 σ2 N1(0) N2(0)

(
(β1 γ11 + β2 γ12)

2π D0 |�|2 �
−
22 − β1 γ11

4π2 D2
0 |�|�22

+ β1 γ21

4π2 D2
0 |�|�

−
12 + β2 γ12

4π2 D2
0 |�|�

−
21

)

. (25)

Here, the variables �
−
22, �

−
12 and �

−
21 are given by

�
−
22 =

(
2π D0(β1 γ21 + β2 γ22) − β2 γ22 |�|

)
,

�
−
12 =

(
4π D0(β1 γ11 + β2 γ12) + β2 γ12 |�|

)
,

�
−
21 =

(
4π D0(β1 γ21 + β2 γ22) + β1 γ21 |�|

)
,

(26)

To better understand the basic reproduction numberR0 (24),we consider some limiting
scenarios and make simplifying assumptions on the mixing pattern between the two
populations:

1. In the well-mixed limit, where D0 → ∞, the basic reproduction number in (24)
reduces to

R∞
0 = (β1 γ11 + β2 γ12)R1 + (β1 γ21 + β2 γ22)R2, (27)

where R1 = N1(0) σ1/(φ1|�|) and R2 = N2(0) σ2/(φ2|�|). The first term in
(27) given by (β1 γ11 + β2 γ12)R1 accounts for the secondary infections caused
indirectly by a quantity σ1 of the pathogen shed by a single infected individual in
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patch 1 per unit time for a time period 1/φ1. A similar explanation holds for the
second term in (27) given by (β1 γ21 + β2 γ22)R2, but in terms of patch 2.

2. For a symmetric proportionate mixing pattern, where γ11 = γ21 = γ1, and γ12 =
γ22 = γ2, with γ1 + γ2 = 1 and γ11 γ22 − γ12 γ21 = 0, the reproduction number in
(27) becomes

R∞
0 = (β1 γ1 + β2 γ2)N1(0)σ1

φ1|�| + (β1 γ1 + β2 γ2)N2(0)σ2
φ2|�| . (28)

3. When there is no mobility, that is, the members of each patch only mix with
individuals in their patch, we have γ11 = γ22 = 1 (consequently, γ12 = γ21 = 0).
Therefore, the reproduction number in (27) reduces to

R∞
0 = β1N1(0)σ1

φ1|�| + β2N2(0)σ2
φ2|�| . (29)

Note that this scenario is the same as that of section 4 of David et al. (2020), and
the reduced reproduction number (29) for this scenario is the same as equation 4.9
of David et al. (2020).

Our numerical simulations will give further explanations of R0 (for the case where
D0 = O(1)) and R∞

0 (for the well-mixed limit D0 → ∞). We summarize the impli-
cations of the reproduction number R∞

0 in the following easily proved theorem.

Theorem 1 For system (20), the infection dies out wheneverR∞
0 < 1, while the disease

remains stable in the community but not cause an epidemic whenever R∞
0 = 1.

Contrarily, an epidemic occurs whenever R∞
0 > 1.

3.2 Final Size Relation

To represent the epidemic size in terms of the basic reproduction number and the
model parameters, we derive a final size relation for the two-patch epidemic model
(18). Following the approach used in Arino and Brauer (2007), Brauer (2008a), Brauer
(2008b), Brauer (2017a), Brauer (2017b), Brauer (2019), Brauer and Castillo-Chaavez
(2012), Brauer et al. (2018), David et al. (2020) and Funke (2018), we obtain

log
S1,0
S1,∞

= (β1 γ11 + β2 γ12) p0 + (β1 γ11 + β2 γ12)R1

{

1 − S1,∞
N1(0)

}

+ σ1 N1(0) β1 γ11

2π D0 φ1

{

1 − S1,∞
N1(0)

}

+ (β1 γ11 + β2 γ12)R2

{

1 − S2,∞
N2(0)

}

+ σ2 N2(0) β2 γ12

2π D0 φ2

{

1 − S2,∞
N2(0)

}

,

(30a)
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and

log
S2,0
S2,∞

=(β1 γ21 + β2 γ22) p0 + (β1 γ21 + β2 γ22)R1

{

1 − S1,∞
N1(0)

}

+ σ1 N1(0) β1 γ21

2π D0 φ1

{

1 − S1,∞
N1(0)

}

+ (β1 γ21 + β2 γ22)R2

{

1 − S2,∞
N2(0)

}

+ σ2 N2(0) β2 γ22

2π D0 φ2

{

1 − S2,∞
N2(0)

}

,

(30b)

where R1 and R2 are as defined in (27), p0 is the initial average density of pathogens,
N1(0) and N2(0) are the initial populations in patch 1 and patch 2, respectively.
Here, S1,0 and S2,0 denote the initial susceptible populations in the patches 1 and 2,
respectively, while S1,∞ and S2,∞ are the susceptible populations left in patches 1 and
2 after the outbreak. The remaining parameters are defined in Table 1.

Thefinal size relations in (30a) and (30b) for patches 1 and2, respectively, imply that
S1,∞ > 0 and S2,∞ > 0. They give the relationship between the basic reproduction
number R0 and the final epidemic size in patches 1 and 2, respectively. Note that the
total number of infected individuals in patches 1 and 2 over the epidemic period is,
respectively, given by N1(0)−S1,∞ and N2(0)−S2,∞, which can be described in terms

of the attack rates/ratios as

[

1 − S1,∞
N1(0)

]

and

[

1 − S2,∞
N2(0)

]

as in Brauer (2008b). The

final size relation (30) takes a simpler form using the following assumptions.

1. In the case where the outbreak begins with infected individuals and no pathogens,
that is, I1(0) 
= 0, I2(0) 
= 0 and p0 = 0, the final size relation for patches 1 and
2 in (30a) and (30b) can be written as

log
S1,0
S1,∞

= (β1 γ11 + β2 γ12)R1

{

1 − S1,∞
N1(0)

}

+ σ1 N1(0) β1 γ11

2π D0 φ1

{

1 − S1,∞
N1(0)

}

+(β1 γ11 + β2 γ12)R2

{

1 − S1,∞
N1(0)

}

+ σ2 N2(0) β2 γ12

2π D0 φ2

{

1 − S2,∞
N2(0)

}

,

(31)

and

log
S2,0
S2,∞

= (β1 γ21 + β2 γ22)R1

{

1 − S1,∞
N1(0)

}

+ σ1 N1(0) β1 γ21

2π D0 φ1

{

1 − S1,∞
N1(0)

}

+(β1 γ21 + β2 γ22)R2

{

1 − S2,∞
N2(0)

}

+ σ2 N2(0) β2 γ22

2π D0 φ2

{

1 − S2,∞
N2(0)

}

.

(32)
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2. In the limit D0 → ∞ (well mixed), the final size relation (31) and (32) becomes

log
S1,0
S1,∞

= (β1 γ11 + β2 γ12)R1

{

1 − S1,∞
N1(0)

}

+ (β1 γ11 + β2 γ12)R2

{

1 − S2,∞
N2(0)

}

,

log
S2,0
S2,∞

= (β1 γ21 + β2 γ22)R1

{

1 − S1,∞
N1(0)

}

+ (β1 γ21 + β2 γ22)R2

{

1 − S2,∞
N2(0)

}

.

(33)

This result can be written in a matrix form as

⎛

⎜
⎜
⎜
⎝

log
S1,0
S1,∞

log
S2,0
S2,∞

⎞

⎟
⎟
⎟
⎠

=
⎛

⎝
M11 M12

M21 M22

⎞

⎠

⎛

⎜
⎜
⎜
⎝

1 − S1,∞
N1(0)

1 − S2,∞
N2(0)

⎞

⎟
⎟
⎟
⎠

,

where M =
⎛

⎝
(β1 γ11 + β2 γ12)R1 (β1 γ11 + β2 γ12)R2

(β1 γ21 + β2 γ22)R1 (β1 γ21 + β2 γ22)R2

⎞

⎠ .

(34)

3. If the mixing is proportionate, that is, γ11 = γ21 = γ1, and γ12 = γ22 = γ2, the
final size relation (34) becomes

⎛

⎜
⎜
⎜
⎝

log
S1,0
S1,∞

log
S2,0
S2,∞

⎞

⎟
⎟
⎟
⎠

=
⎛

⎝
N11 N12

N21 N22

⎞

⎠

⎛

⎜
⎜
⎜
⎝

1 − S1,∞
N1(0)

1 − S2,∞
N2(0)

⎞

⎟
⎟
⎟
⎠

,

where N =
⎛

⎝
(β1 γ1 + β2 γ2)R1 (β1 γ1 + β2 γ2)R2

(β1 γ1 + β2 γ2)R1 (β1 γ1 + β2 γ2)R2

⎞

⎠ . (35)

4. If the mixing is like-with-like (no mobility), that is γ11 = γ22 = 1, and γ12 =
γ21 = 0, the final size relation (34) reduces to

⎛

⎜
⎜
⎜
⎝

log
S1,0
S1,∞

log
S2,0
S2,∞

⎞

⎟
⎟
⎟
⎠

=
⎛

⎝
W11 W12

W21 W22

⎞

⎠

⎛

⎜
⎜
⎜
⎝

1 − S1,∞
N1(0)

1 − S2,∞
N2(0)

⎞

⎟
⎟
⎟
⎠

, where W =
⎛

⎝
β1 R1 β1 R2

β2 R1 β2 R2

⎞

⎠ , (36)

which can be written as

β2 log
S1,0
S1,∞

= β1 log
S2,0
S2,∞

. (37)
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We can further reduce (37) to obtain

[
S1,0
S1,∞

]β2
=

[
S2,0
S2,∞

]β1
(38)

If β1 > β2 in (38), then

1 − log
S1,0
S1,∞

> 1 − log
S2,0
S2,∞

, (39)

which implies that the attack rate/ratio is greater in the more active patch.

The assumptions above and their effects on the epidemic peak and time will be
explored and discussed in the numerical simulations.

3.3 Numerical Simulations

We present numerical simulations of the dimensional coupled PDE–ODE model (19)
and the reduced systemofODEs (20) for two population patches. For all scenarios con-
sidered in this section, these patches are located at xxx1 = (0.5, 0) and xxx2 = (−0.5, 0)
for patches 1 and 2, respectively, and the coupled PDE–ODE model is solved using
FlexPDE6 PDE solutions Inc (2019). We aim to study the effect of pathogen diffusion
and humanmobility on the disease dynamics in an heterogeneousmixing environment.

In Fig. 1, we used the reduced ODE system (20) to study the effect of the diffusion
rate of pathogens and heterogeneous mixing between two populations on the trans-
mission dynamics of the diseases in the populations. For the results in the left panel
(initial conditions: S1(0) = 299/300, I1(0) = 1/300, R1(0) = 0, S2(0) = 249/250,
I2(0) = 1/250, R2(0) = 0, and p(0) = 0), we have only infected individuals with no
pathogens at the beginning of the outbreak, while for those in the right panel (initial
conditions: S1(0) = 300/300, I1(0) = 0, R1(0) = 0, S2(0) = 250/250, I2(0) =
0, R2(0) = 0, and p(0) = 1), we have only diffusing pathogens with no infected
individuals at the beginning of the epidemic. The second scenario, where the outbreak
begins with only pathogens, can be related to a scenario where pathogens diffuse out
of an infected population to a completely susceptible population. The solid and dashed
curves are for patch 1 and patch 2, respectively. The black, blue, and red curves are for
the scaled diffusion rates D0 = 0.128, D0 = 2.556, and D0 = 76.687, respectively.
Using the relation for D0 and D given in (9), these scaled diffusion rates correspond
to D = 0.5, D = 10, and D = 300, respectively.

We observe from the results in the top panel of Fig. 1 for the scenario with no human
mobility (γ11 = 1, γ12 = 0, γ21 = 0, and γ22 = 1) that the epidemic peak decreases
and the peak time increases, with increase in the scaled diffusion rate. Overall and in
this scenario, patch 2 (dashed curves) experiences a higher peak and shorter peak time
for all values of D0 when compared to patch 1 (solid curves) due to higher transmission
and shedding rates in patch 2 (see Table 1 for more details). In addition, the epidemic
take-off seems delayedwhen the outbreak beginswith some infectives and no pathogen
(left panel), compared to when the outbreak begins with zero infectives and a pathogen
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Effect of pathogen diffusion and human mobility on disease dynamics (ODE model). Numerical
simulations of theODE system (20) for different diffusion rate of pathogens and humanmobility. Left panel:
infection starts with no pathogen, with initial conditions S1(0) = 299/300, I1(0) = 1/300, R1(0) = 0,
S2(0) = 249/250, I2(0) = 1/250, R2(0) = 0, and p(0) = 0, and right panel: infection starts with only
pathogens with initial conditions S1(0) = 300/300, I1(0) = 0, R1(0) = 0, S2(0) = 250/250, I2(0) =
0, R2(0) = 0, and p(0) = 1. Top row: no human mobility (γ11 = 1, γ12 = 0, γ21 = 0, and γ22 = 1),
middle row: symmetric proportionate mixing (γ11 = γ12 = 0.5 and γ21 = γ22 = 0.5), and bottom row:
non-symmetric proportionate mixing (low mobility: γ11 = 0.8, γ12 = 0.2 and γ21 = 0.3, γ22 = 0.7). All
other parameters are given in Table 1. Solid curves are for patch 1 while the dashed curves are for patch 2.
Note that the solid and dashed curves are overlapping for the results in the middle row (Color figure online)

123



Effect of Human Mobility on the Spatial Spread of Airborne… Page 17 of 24 63

Ta
bl
e
1

M
od
el
pa
ra
m
et
er
s,
de
sc
ri
pt
io
ns
,a
nd

va
lu
es

Pa
ra
m
et
er

D
es
cr
ip
tio

n
Pa
tc
h
1,

2
va
lu
es

R
ef
er
en
ce
s

μ
D
im

en
si
on
al
ef
fe
ct
iv
e
co
nt
ac
tr
at
e

0.
3,

1.
2

B
ic
ha
ra

et
al
.(
20

15
)

β
D
im

en
si
on
le
ss

ef
fe
ct
iv
e
co
nt
ac
tr
at
e

C
om

pu
te
d
us
in
g
(8
)

D
er
iv
ed

r
D
im

en
si
on

al
pa
th
og

en
sh
ed
di
ng

ra
te

0.
1,

1
Z
ha
ng

et
al
.(
20

16
)

σ
D
im

en
si
on

le
ss

pa
th
og

en
sh
ed
di
ng

ra
te

C
om

pu
te
d
us
in
g
(8
)

D
er
iv
ed

α
D
im

en
si
on
al
re
co
ve
ry

ra
te

1.
87

Z
ha
ng

et
al
.(
20

16
)

φ
D
im

en
si
on
le
ss

re
co
ve
ry

ra
te

C
om

pu
te
d
us
in
g
(8
)

D
er
iv
ed

N
1
,
N
2

To
ta
lp

op
ul
at
io
n

30
0,
25

0
A
ss
um

ed

D
B

D
im

en
si
on

al
di
ff
us
io
n
ra
te
of

pa
th
og

en
s

D
D
im

en
si
on
le
ss

di
ff
us
io
n
ra
te
of

pa
th
og
en
s

V
ar
ie
d

D
0

Sc
al
ed

di
m
en
si
on

le
ss

di
ff
us
io
n
ra
te
of

pa
th
og

en
s

C
om

pu
te
d
us
in
g
(9
)

D
er
iv
ed

γ
11

Fr
ac
tio

n
of

pa
tc
h
1
re
si
de
nt
s
cu
rr
en
tly

in
pa
tc
h
1

V
ar
ie
d

γ
12

Fr
ac
tio

n
of

pa
tc
h
1
re
si
de
nt
s
cu
rr
en
tly

in
pa
tc
h
2

V
ar
ie
d

γ
21

Fr
ac
tio

n
of

pa
tc
h
2
re
si
de
nt
s
cu
rr
en
tly

in
pa
tc
h
1

V
ar
ie
d

γ
22

Fr
ac
tio

n
of

pa
tc
h
2
re
si
de
nt
s
cu
rr
en
tly

in
pa
tc
h
2

V
ar
ie
d

δ
D
im

en
si
on
le
ss

de
ca
y
ra
te
of

pa
th
og
en
s

0.
25

A
ss
um

ed

p c
Ty

pi
ca
lv

al
ue

fo
r
de
ns
ity

of
pa
th
og

en
s

0.
01

A
ss
um

ed

ε
R
ad
iu
s
of

th
e
po

pu
la
tio

n
pa
tc
h

0.
02

A
ss
um

ed

|�
|

A
re
a
of

th
e
do

m
ai
n
(u
ni
td

is
k)

π
D
er
iv
ed

123



63 Page 18 of 24 J. F. David, S. A. Iyaniwura

(right panel). This observation is more apparent when the diffusion rate is increases
(blue and red curves).

Similar results obtained using the full coupled PDE–ODE model (19) are given in
the top panel of Fig. 2. In the middle panel of Fig. 1, we have the results for the case
of symmetric proportional mixing (γ11 = γ12 = 0.5 and γ21 = γ22 = 0.5). For this
scenario, the activity level in the two populations is assumed to be the same, and as a
result, an equal proportion of the two population are mixing at all time. As observed
from the results in the middle panel of Fig. 1, this mixing patterns lead to a well-mixed
(homogeneous) system. Even though the transmission and shedding rates of patch 2
are higher than those of patch 1, our numerical simulations predict identical epidemics
for the two populations.

In the bottom panel of Fig. 1, we consider the case of non-symmetric proportionate
mixing (lowmobility). For this example, we assume that 80% of the residents of patch
1 mix with only the individuals in their patch, while the remaining 20% mix with
residents of patch 2 (γ11 = 0.8, γ12 = 0.2). On the other hand, we assume 70% of the
residents of patch 2 mix with only members of their patch, while the remaining 30%
mix with residents of patch 1 (γ21 = 0.3, γ22 = 0.7). We observe from the results
for this scenario (bottom panel of Fig. 1) that the epidemic peak is higher in patch
2 (dashed curves) compared to patch 1 (solid curves) due to higher transmission and
shedding rates in patch 2. In this scenario, we say that the residence of patch 2 is
having more activities than those in patch 1 since a larger fraction of them is mixing
with the individuals in patch 1 than those of patch 1 are mixing with them.

Comparing the results in the top (no mobility) and bottom (low mobility) panels
of Fig. 1, we notice that there is an increase in the epidemic peaks for patch 1 when
there is mobility compared to when there is no mobility (top panel). These differences
in the epidemic size between the two scenarios are due to the heterogeneous mixing
between the two populations. On the other hand, there is a slight decrease in the
epidemic peaks for patch 2 when there is mobility (bottom panel) compared to when
there is no mobility (top panel). For all the scenarios considered in Fig. 1, similar
results computed using the full PDE model (19) are presented in Fig. 2. Both results
agree well.

The results in Fig. 3 are used to study the effect of heterogeneous mixing on the
disease dynamics for a fixed diffusion rate of pathogens, D = 10 (corresponding
to D0 = 2.556). The initial conditions used are S1(0) = 299/300, I1(0) = 1/300,
R1(0) = 0, S2(0) = 249/250, I2(0) = 1/250, R2(0) = 0, and p(0) = 1, with other
parameters as given in Table 1. Similar to the results presented in Figs. 1 and 2, the
solid and dashed curves are for patch 1 and patch 2, respectively. The results in the
left panel were obtained using the reduced ODE system (20) and those in right panel
were obtained using the coupled PDE–ODE model (19). The black curves show the
results for when there is no movement between the two populations, the blue curves
are for symmetric proportionate mixing, where half of the two populations are mixing,
while the red curves are for non-symmetric proportionate mixing (low mobility). We
observe from these results that the no mixing scenario predicts the most difference
in the epidemics of the two populations. When there is a symmetric proportionate
mixing, an identical epidemic is predicted for the two populations, irrespective of
the difference in their transmission and shedding rates. Lastly, for the case of non-
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Effect of pathogendiffusion andhumanmobility ondisease dynamics (PDE–ODEmodel).Numerical
simulations of the full PDE–ODE model (19) for different diffusion rate of pathogens and human mobility.
Left panel: infection starts with no pathogen, with initial conditions S1(0) = 299/300, I1(0) = 1/300,
R1(0) = 0, S2(0) = 249/250, I2(0) = 1/250, R2(0) = 0, and p(0) = 0, and right panel: infection
starts with only pathogens with initial conditions S1(0) = 300/300, I1(0) = 0, R1(0) = 0, S2(0) =
250/250, I2(0) = 0, R2(0) = 0, and p(0) = 1. Top row: no human mobility (γ11 = 1, γ12 = 0, γ21 = 0,
and γ22 = 1), middle row: symmetric proportionate mixing (γ11 = γ12 = 0.5 and γ21 = γ22 = 0.5),
and bottom row: non-symmetric proportionate mixing (low mobility: γ11 = 0.8, γ12 = 0.2 and γ21 =
0.3, γ22 = 0.7). All other parameters are given in Table 1. Solid curves are for patch 1 while the dashed
curves are for patch 2. Note that the solid and dashed curves are overlapping for the results in the middle
row (Color figure online)
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(a) (b)

Fig. 3 Effect of populationmixing patterns on disease dynamics. Numerical simulations of the ODE system
(20) (left panel) and the coupled PDE–ODEmodel (19) (right panel) for two population patches and different
populationmixing patterns. The solid and dashed curves are for patch 1 and patch 2, respectively. The black,
blue, and red curves are, respectively, for the scenarios with no mobility (γ11 = 1, γ12 = 0, γ21 = 0, and
γ22 = 1), symmetric mixing (γ11 = γ12 = 0.5 and γ21 = γ22 = 0.5) and non-symmetric proportionate
mixing (low mobility: γ11 = 0.8, γ12 = 0.2 and γ21 = 0.3, γ22 = 0.7). The initial conditions used
are S1(0) = 299/300, I1(0) = 1/300, R1(0) = 0, S2(0) = 249/250, I2(0) = 1/250, R2(0) = 0, and
p(0) = 1. For the PDE–ODE model, we used D = 10 (right panel), corresponding to D0 = 2.556 for the
reduce ODE system (left panel). All other parameters are given in Table 1 (Color figure online)

symmetric mixing, there is a decrease in the epidemic for the population with higher
shedding and transmission rates (patch 1) and an increase in the epidemic for the
other population with lower transmission and shedding rates (patch 2). Comparing the
results in the left and right panel of Fig. 3, we notice that the results from the reduced
system of ODEs (20) agree well with those obtained using the full coupled PDE–ODE
model (19). This shows that the reduced ODE system provides a good approximation
for the coupled PDE–ODE system.

4 Discussion

We have extended the novel coupled PDE–ODE model developed in David et al.
(2020) for studying the transmission dynamics of airborne diseases to include human
mobility.Humanmobility between populationswas incorporated using theLagrangian
approach. This model is used to study the indirect transmission of airborne dis-
eases, where a susceptible individual becomes infected after coming in contact with
pathogens. Infected individuals shed pathogens into the environment at some rate, and
the pathogens diffuse and decay in the environment at constant rates. In the limit of fast
diffusing pathogens, matched asymptotic analysis was used to reduce the PDE–ODE
model to a nonlinear system of ODEs for the average density of pathogens in the envi-
ronment. The reduced ODEs system was then used to derive the basic reproduction
number and a final size relation for the epidemic. Numerical simulations of both the
coupled PDE–ODE model and the reduced system of ODEs were used to study the
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effect of the diffusion rate of pathogens and heterogeneous mixing on the dynamics
of airborne diseases.

To study the effect of heterogeneous mixing between populations, we considered
two non-identical population patches centered at (0.5, 0) and (−0.5, 0) for patches 1
and 2, respectively. The differences between the two patches were introduced through
the transmission and shedding rates, where patch 2 has higher transmission and shed-
ding rates relative to patch 1. In addition, we considered three mobility scenarios:
no mobility, symmetric proportionate mixing (half populations moving), and non-
symmetric proportionate mixing (low mobility). The results of our simulations show
that even though the two populations are non-identical, symmetric mixing pattern
leads to a well-mixed population with identical epidemics in the two populations, as
a result of 50% of members of patch 2 (with higher transmission and shedding rates)
mixing with individuals in patch 1 and vice versa. For non-symmetric proportionate
mixing, we assumed that 80% of the individuals in patch 1 have contact with only
those in patch 1, while the remaining 20% of the population have contacts with those
in patch 2. On the other hand, 70% of the population of patch 2 have contact with
only those in patch 2, while the remaining 30% have contact with only those in patch
1. For this mobility pattern, our numerical simulations show an increase in the epi-
demic in patch 1 (the patch with smaller shedding and transmission rates) compared
to when there is no movement. We believe that this increase in the epidemic is due
to the contacts made with individuals in patch 2 by 20% of those in patch 1, since
patch 2 has higher transmission and shedding rates. These contacts would not have
occurred if there was no movement. Similarly, the epidemic in patch 2 is noticed to
decrease for non-symmetric mixing compared to when there is no movement, as a
result of 30% of individuals in patch 2 mixing with only those in patch 1. Overall, our
results show that movement between human populations may lead to an increase or
decrease in the epidemic size depending on the outbreak situation and infection rate in
the home or destination patch. In addition, they show that movement may be allowed
from the population with high transmission and shedding rate to the other populations
with lower rates, but not vice versa.

To study the impact of the diffusing pathogens on the epidemic, we consider two
scenarios: when an outbreak starts with infected individuals only and when the out-
break starts with only diffusing pathogens. The latter scenario can be seen as a scenario
where pathogens diffuse to completely susceptible populations from infectious pop-
ulations. Our numerical simulations show that the epidemic takes off faster when the
outbreak begins with diffusing pathogens compared to when it begins with infected
individuals. Epidemic take-off seems delayed when the outbreak begins with infected
individuals because of the time needed to shed enough pathogens that will further
infect others. We also explore how the diffusion rate of pathogens impacts the disease
dynamics. We solved the reduced system of ODEs and the coupled PDE–ODE model
with small, moderate, and high diffusion rates of pathogens. Our results show that
an increase in the diffusion rate of pathogens leads to a lower epidemic peak, and an
increase in the epidemic time. Having a high diffusion rate, which may be interpreted
as having a windy situation that blows the pathogens around in the air randomly, may
lead to the pathogens being blown away from the settlements by the wind, there by
leading to a decrease in cases. Although the analysis used to obtain our reduced system
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of ODEs is only valid in the limit of fast diffusing pathogens, we observe from our
numerical simulations that the results obtained using the ODE model agree well with
those of the full coupled PDE–ODEmodel, even for small diffusion rates of pathogens.
This suggests that the reduced ODE system can be used to study the disease dynamics
instead of the more complicated PDE–ODE model. An important and unique feature
of the ODE system is that it includes a diffusion parameter, which can be used to study
the effect of diffusion of pathogen on the disease dynamics.

Summarily, the numerical simulations for both the coupled model and the reduced
system of ODEs predict a change in the epidemic peak size and time with human
mobility and diffusion. Our results show a decrease in the epidemic peak and an
increase in the epidemic time as the diffusion rate of pathogens increases in both
the coupled PDE–ODE model and the reduced system of ODEs. In the absence of
movement, the epidemic is higher in the patch with higher transmission and shedding
rates. In addition, when infections start with no pathogens in the air, the model predicts
a delay in the epidemic take-off time relative to when infections start with pathogens,
and this delay increases as the diffusion rate of pathogens increases. Our primary
results show that accounting for human mobility in a heterogeneous environment is a
great way to account for diseases spread in this heterogeneous world, and it is indeed
worth considering. We have a similar result with David et al. (2020) when there is no
human mobility between patches, and Bichara et al. (2015), where they considered
only direct transmission pathway.

There are several future directions to the modeling framework presented in this
paper. In this study, we assume that infections can only take place when individuals
are in the patches and not outside the population patches (in the bulk region). An
interesting extension of this work is to allow for infections to take place in the bulk
region, which will change the model to a reaction-diffusion system. It would also be
worthwhile to extend the model to include direct transmission of infections from host–
host. We have considered only the leading-order terms for the reduced ODE system in
this study. It would be interesting to include the O(ν) terms that incorporate the effect
of the location of patches into theODE systems. In this instance, the basic reproduction
number andfinal size relation derived from theODEsystemwill depend on the location
of the patches. It is straightforward to extend our current model to an n-patch model
to study the impact of human mobility on disease prevalence among multiple regions.
Another interesting future direction is to include interventions such as vaccination and
treatment, especially in an extreme mobility scenario. Furthermore, considering the
unpredictable and stochastic effect from the wind over time, a limitation of our study
includes the inability to explicitly model the diffusion of pathogens in the population
patches. We know that in real-world scenarios, pathogens would need to diffuse into
the population before infections can take place and this diffusion process may be
non-constant. We accounted for this limitation by giving scenarios of changes in
the diffusion rate of pathogens and measure their effect on the disease dynamics. A
possible future work in this direction will be to adapt a time-dependent diffusion term
using some stochastic processes. Despite these limitations, our modeling framework
provides insights into the potential impact of human mobility on the dynamics of
airborne diseases. Our results give insights on boarder control (closing and opening
of boarders) between two regions during a pandemic, such as COVID-19 (Yuan et al.
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2022). Our study serves as a foundation for other studies and its framework can be
applied to modeling other infectious diseases.
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