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Abstract

Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-
mer patterns. The motivation behind such (enumerative) approaches is to minimize the potential for overlooking important
features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature
generation to patterns of length ƒk, such that potentially important, longer (wk) predictors are not considered. Second,
features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules.
Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and
interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we
develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif
finding. In addition to the traditional training and validation partitions, our framework entails a third level of data
partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the
discovery partition to yield a (small) set of features. These features are then used as inputs to a classifier in the training
partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its
modularity (any discriminatory motif finder and any classifier can be deployed) and its universality (all data, including
sequences that are unaligned and/or of unequal length, can be accommodated). We illustrate our approach on two
nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation.
Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python
pipeline implementing the approach is available at http://www.epibiostat.ucsf.edu/biostat/sen/dmfs/.
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Introduction

The abundance of genome-wide sequence data made possible

by high-throughput technologies has sparked widespread interest

in linking sequence information to biological phenotypes. For

binary phenotypes, this amounts to sequence-based classification.

For some such problems, the set of sequence features to be used as

classifier inputs is evident from the problem context (e.g. genome-

wide association studies [1], where the features are SNPs or

haplotypes). In many other settings, however, this is not the case

and the direct analysis of sequence data may not be possible. For

example, when the phenotype of interest is the presence or

absence of a molecular marker (such as a nucleosome), it may be

necessary to first extract features (e.g., GC-content, k-mer

frequencies) from the underlying or nearby sequence prior to

subsequent analysis. This process of coupling sequence-based

feature extraction with downstream classification has been applied

to several molecular genomic phenotypes, such as: CpG island

methylation [2], escape from X inactivation [3], and nucleosome

occupancy [4]. This approach has also been used in the in silico

prediction of protein function (e.g., solubility [5]) from amino acid

sequence [6].

Typically, such studies use enumerative feature generation,

employing frequencies of all possible k-mers, thereby resulting in

large numbers of candidate features. These features may be

supplemented with additional features that, for example, capture

information about local structure (e.g., DNA twist, DNA shear).

The numbers of features generated for the studies mentioned

above are sizeable: 1184 [2], 16788 [3], 2772 [4], and 16980 [5].

The logic behind enumerative feature generation is that having a

wide-ranging suite of predictors ensures that nothing will be

overlooked in downstream classification.

Support vector machines (SVMs) using specialized kernels,

notably the spectrum kernel [7], and enumerative generation have

been successfully deployed in several settings: classifying proteins

[8,9], splice sites [10], siRNA [11], and microRNAs [12,13]. More

sophisticated kernels, largely extending spectrum kernels, have

advanced the scope and performance of such approaches [10,14–

16]. However, interpretation of feature importance is challenging

for SVMs and, due to intrinsic dependencies, these difficulties are

compounded for SVMs with enumeratively generated features

[17]. Nonetheless, by using convex combinations of prescribed

kernels, post-processing, and/or restriction to specific problems

[17–20], important advances have been realized.
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Besides interpretability, other concerns surround the use of

enumerative feature generation. First, despite the seeming

comprehensiveness of the approach, it may fail to generate key

predictors because of feature length constraints. For example,

when considering all k-mers, the number of patterns grows as 4k

or 20k – depending on whether a nucleotide or amino acid

alphabet is being utilized. Thus, k is restricted for computational

reasons. For the four examples mentioned above [2–5], the

respective limits are k~4,5,6, and 3. The implications of not

being able to capture longer patterns are context dependent.

Second, and perhaps more importantly, enumerative feature

generation invariably creates a large number of irrelevant

predictors or noise. As is well known [5], the presence of a large

number of irrelevant features can degrade prediction and increase

computation time.

We approach the sequence-based feature generation problem

from a different tack. Rather than generating multitudes of largely

irrelevant features only to discard the majority, we target

elicitation of a priori informative features using a discriminatory

motif finder. While loosely related work has appeared recently

[21–24], these approaches are problem-specific. Here, we propose

and implement a general-purpose framework for sequence-based

classification. Of course, there is no free lunch: our approach

requires another level of data partitioning (see Methods), since we

use the phenotypes for feature selection.

Once discriminatory features are extracted, they are used as

inputs for downstream classification. This is important for two

reasons. First, classification enables a multivariate analysis.

Though discriminatory motif finding algorithms yield ranked

lists of candidate motifs, they are inherently univariate and

do not evaluate potential interactions between motifs, an

issue we return to in the Discussion. Further, other covariates,

such as characterizations of genomic position (e.g., measures of

evolutionary conservation, gene annotations), may be included

as classifier inputs. Second, classification places motif signi-

ficance assessment in a rigorous, well-developed inferential

framework.

The paper is organized as follows. The next section

outlines our proposed methodology, discriminatory motif-based

feature selection (DMFS), and the attendant software imple-

mentation. The following section describes evaluation datasets

and results comparing DMFS performance with enumera-

tive approaches. The final section provides some concluding

comments.

Methods

We develop two-class classification rules where the predictors

are sequences that need not be aligned or be of equal length.

Additional covariates, if available, can be integrated, although we

do not detail this aspect. We refer to data belonging to one class as

positive (e.g. nucleosome occupied, or soluble proteins) and the

other as negative (e.g. nucleosome unoccupied, or insoluble

proteins).

The DMFS approach to classification proceeds as follows (see

Figure 1 for a data flow diagram).

N Partition step: First, we partition the sequences and associated

class labels into discovery and classification sets. This is an

additional partitioning step required by DMFS.

N Motif discovery step: We use a discriminatory motif finder on the

discovery set to find promising features (motifs). The motifs can

be discrete or continuous, as represented by position weight

matrices (PWMs).

N Scoring step: The selected features are used to score the

classification set sequences (e.g., motif presence/absence or

(weighted) motif counts).

N Classification step: Finally, the scores are used as inputs to

perform conventional classification on the classification set.

Traditional partitioning of data into training and testing sets is

performed at this step.

Note that feature selection is performed using the discovery set

only; discovery set data is withheld from classifier training and

validation to avoid over-fitting and over-optimism due to data

reuse.

DMFS can be customized to diverse data configurations by

varying (a) the fraction of data used for feature discovery versus

classification, (b) the discriminatory motif-finding algorithm and its

attendant tuning parameters, (c) the scoring scheme for the classi-

fication set input sequences, and (d) the classification algorithm

and its tuning parameters. Below, we elaborate on each step of our

method, and the choices we made in our implementation.

Partition step
The entire data set is randomly partitioned into discovery and

classification sets, stratifying by class. Stratification preserves class

proportions in the discovery and classification sets. The discovery

fraction, f , (proportion of the data used for motif discovery) should

be large enough to yield meaningful motifs but not so large so as to

degrade downstream classification. The optimal f depends on the

sample and class sizes, motif signal, motif complexity, and classifier

learning rates, which are generally unknown. Thus prescribing an

optimal f is difficult, but we found that f ~0:20 serves as a good

starting point for reasonably large data sets. However, since f is a

key tuning parameter of DMFS, sensitivity to different values

should be explored.

Figure 1. Illustrative diagram of data flow through the
pipeline. Data is initially partitioned into discovery and classification
sets. The classification set is further partitioned into training and
validation sets. After WordSpy elicits motifs using the discovery set,
fuzznuc or fuzzpro counts corresponding motif occurrences in the
remaining data. The training data counts are used to train a classifier,
while the validation data counts are used to determine performance
(e.g. AUC) of the learned classifier.
doi:10.1371/journal.pone.0027382.g001
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Motif discovery step
A discriminatory motif finder is applied on the discovery set to

yield a set of promising sequence motifs. A wide variety of motif-

finding methods are available including model-based [25–28],

enumerative [29,30], and dictionary-based [31,32] approaches.

Within each of these classes there are generative and discrimina-

tive methods, as well as hybrids thereof. Given our classification

objectives we focus on discriminatory finders, as broadly

advocated by Segal et al. [33] and Wang et al. [34].

We chose WordSpy [35] as the discriminatory motif finder for

our pipeline implementation. We selected it because it has a

readily-available, well developed, and robust implementation, and

it exhibited superior performance in comparative studies: Wang

and Zhang [35] compared 14 different motif-detection models on

benchmark data composed of 56 curated datasets of sequences and

motifs in 4 species [36], with WordSpy emerging as best. However,

we emphasize that our pipeline is modular, and replacing

WordSpy with alternate discriminatory motif finders is feasible.

WordSpy has a number of interrelated tuning parameters. For us,

the most important is the maximum motif length, l. If long motifs

drive the discrimination between positive and negative sequences,

there is a premium on their elicitation. As explained in the

Introduction, the exponential growth of k-mers limits the extraction

of long motifs via enumerative feature generation. However, even for

WordSpy, finding long motifs is computationally demanding. For

input nucleotide sequences of length ^ 50, we have used maximal

motif lengths in the range of 7–12. For protein sequences, the larger

alphabet necessitates shorter lengths; for sequence lengths ranging

from 15–1963 in the protein solubility dataset, we have used l^3–4.

Scoring step
The motifs discovered from the discovery partition of sequences

(above) are here used to create numerical vectors on the

classification partition of sequences; these scores will later be used

for training and validation. Our initial focus was on discrete motifs

(as opposed to PWMs), these being the primary output of

WordSpy. We use Fuzznuc or Fuzzpro (for DNA and protein

sequences, respectively) from the EMBOSS suite of bioinformatics

tools [37]. Fuzznuc/Fuzzpro efficiently count the number of motif

occurrences in the input sequences, allowing for complementarity

(strand) and a prescribed number of mismatches, m. The latter is

the sole tuning parameter of this step. As with the other

parameters, universal prescriptions are misplaced, with m being

dependent on l. The default values we have employed are m~2
for nucleotide sequences (l^12) and m~1 for protein sequences

(l^4). For scoring PWM motifs, we use MOODS [38]. Since

motif degeneracies are embodied in the PWM formulation, there

is no need for a mismatch parameter. Accordingly, the sole tuning

parameter for MOODS is the pvalue, p, for determining if the

total log odds score of a PWM at a sequence position is considered

a match. MOODS slides the PWM (or a submatrix, using a

lookahead algorithm) along both strands of the sequence and

identifies scores corresponding to a pvalue v~p. Whenever such

a match is encountered, its score is added to a running sum, which

then becomes a classification feature for that sequence.

Classification step
After feature selection and scoring as described above, we

obtain a dataset with numeric predictors corresponding to

classification set sequences which, when used in conjunction with

associated class labels, can be used for conventional classification

analysis. Although there is a wealth of candidate classifiers, we

chose to focus on two popular, flexible and complementary options

for our pipeline: random forests (RF) [39] and support vector

machines (SVM) [40]. For details, including classifier tuning, see

Hastie et al. [41].

In brief, random forests construct an ensemble of classification

trees and effect class assignments (for a given case) by a majority

vote over the ensemble. Each tree in the forest is grown on a

bootstrap sample of the data, and each split in an individual tree

uses the best predictor/cut-point from a random subsample of the

predictors. The purpose behind this deliberate injection of

randomness is to de-correlate the trees in the ensemble, thereby

yielding (prediction) variance gains when synthesizing over the

ensemble. This strategy will be most successful when individual

members of the ensemble result from an unstable classification

technique; classification trees fit this criterion. Due to the bootstrap

sampling (with replacement), approximately one third of the cases

will be omitted from the construction of each tree. These samples

are termed out-of-bag (OOB) and they can be used to obtain an

unbiased estimate of classification accuracy, akin to cross-

validation or sample splitting approaches.

There are numerous, inter-related measures of classification

performance. We used the AUC (area under the receiver operator

characteristic (ROC) curve) and classification accuracy, since these

summaries were employed in the source enumerative analyses of

the data considered subsequently. For random forests, the AUC is

calculated using out-of-bag observations, while 10-fold cross-

validation is used for SVMs. For random forests, the default

parameters are: the number of candidate split variables set to one

third of the total number of predictors, and growing a forest of 500

trees. For SVM, as implemented via LIBSVM [42], we used a

Gaussian kernel with scale parameter (width) equal to 1/(number

of features), and soft margin (which controls the error tolerance of

the margin function) set to 1, the default set by LIBSVM.

Software pipeline
We implemented our method in Python as a chain of executable

programs that are naturally linked, the output of one stage being

parsed by the next stage. The pipeline design is modular allowing

different approaches and/or algorithms to be interchanged and

tested. For example, the scoring stage can accommodate discrete

or continuous motifs. The pipeline components can be run via a

Python wrapper that, in addition to housekeeping, can parallelize

different runs of the pipeline on machines with multicore/multi-

processors. Further details are in the online documentation.

The principal tuning parameters available to the users are: the

proportion of sample used for motif finding (f ), the maximum

word length for motifs for WordSpy (l), the number of mismatches

tolerated for a motif to match a sequence (m), and the classification

algorithm (RF or SVM).

The pipeline depends on WordSpy, the motif finding program;

fuzznuc/fuzzpro, sequence analysis routines included in the

EMBOSS package; MOODS, a suite of algorithms for PWM

matching implemented in C++ with a Python interface; Biopy-

thon, a Python package providing biology-oriented computational

tools; NumPy, a Python package for large multidimensional

arrays; R/randomForest, an R library implementation of the

random forest classifiers; and PyML a Python interface to SVM

implementations. Our implementation supports a limited amount

of parallelization; it can run with multiple threads on the same

machine. Further details are in the software documentation. To

our knowledge, all dependencies are met on Linux systems.

Results

We applied DMFS to two distinct sequence-based classification

problems in bioinformatics: (a) predicting nucleosome occupancy

Feature Selection via Discriminatory Motif Finding
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using nucleotide sequence, and (b) predicting protein solubility

using amino acid sequence. For both problems, the goal was to

classify sequences into one of two classes (nucleosome occupied or

unoccupied, protein soluble or insoluble) based on the sequences

alone.

Note that the two datasets represent very different problems

with respect to experimental context, sequence number, sequence

length, and sequence type. The nucleosome occupancy data was

obtained from a single experiment or a set of related experiments,

yielding DNA sequence of fixed length. The protein solubility data

was curated from existing databases resulting in amino acid

sequences of varying length. The sample size for the nucleosome

occupancy data is 2000 while that for the protein solubility data is

17408.

For both the nucleosome occupancy and protein solubility data,

we ran the pipeline on multiple random partitions of the data into

discovery sets (see Methods). The reason for so doing is to avoid

possible artifacts associated with ordering within data files and to

provide robust performance assessments. Within each run, the

data complementary to the randomly created discovery set serves

as the classification set which, in turn, is partitioned into learning

(training) and validation (testing) sets, either through use of cross-

validation or, in the context of random forests, bootstrap

resampling.

Previous analyses of these datasets employed enumerative

feature generation, and are quoted below. We also undertook

new analyses with the same enumeratively generated features, but

using our SVM and random forest code and parameters. For both

DMFS and enumerative feature generation approaches, we also

utilized grid-search parameter tuning, although predictive perfor-

mance at the default presets was not substantially different from

that at optimal parameter settings.

Nucleosome occupancy
The nucleosome, which consists of approximately 147-bp of

DNA wrapped around an octamer of histones, is the basic unit of

chromatin. The positioning (or phasing) of nucleosomes – via

intrinsic DNA sequence preference and ATP-dependent chroma-

tin remodelling complexes – can regulate gene expression by

presenting or obscuring DNA regulatory elements [43]. Therefore,

knowledge of nucleosome positioning is an important component

to improved understanding of transcriptional control [44,45].

While nucleosome positioning refers to the distribution of nucleo-

somes around a genomic position in a sample of cells [43,46],

nucleosome occupancy is a metric that indicates the coverage of a

genomic position by nucleosomes in a sample of cells, regardless of

the exact nucleosome start sites [46].

Human nucleosome occupancy data was obtained from Gupta

et al. [4], who used primary data from two separate studies [44,47].

The two datasets (labeled ‘‘Ozsolak’’ and ‘‘Dennis’’ after the

respective lead authors) differ slightly in array design and in the

methods used for ranking sequences. Both studies hybridized

mononucleosomal DNA, as cleaved by MNase, onto tiling

microarrays. For the Dennis dataset, DNA was extracted from

an MDA-kb2 cell line. Log-ratio intensity measurements from

custom microarrays, with probes spanning {20 kb to z5 kb

around transcription start sites of genes related to ATP-dependent

chromatin remodeler response, were obtained. Gupta et al. [4]

then procured positive and negative sequence sets by a ranking

process applied to these intensities. In brief, this involved summing

ranks for each locus (50-mer sequence) and each strand, and

sorting following elimination of probes overlapping repetitive

elements. Thresholding was then used to extract positive and

negative sets, each containing 1000 50-mers. The Ozsolak dataset

used DNA from seven cell lines and looked at {1250 to z1250
bases around the transcription start sites of human cancer-related

and random genes. For this dataset, Gupta et al. ’s ranking

proceeded by first summarizing probe (50-mer sequence) intensi-

ties with a single value (mean, median or individual value

depending on number of replicates), and then sorting the

combined list. This list was traversed from top to bottom, and a

probe was selected in the positive set when 5 of 7 cell types have

been observed in the sorted list, as long as no probe within 50

basepairs had already been accepted into the positive set. Selection

terminated following selection of 1000 sequences. The negative

set, also comprising 1000 sequences, was similarly obtained by

traversing from the bottom of the sorted list.

Ozsolak. For each of 40 randomly selected discovery sets,

chosen with discovery fraction f ~0:20 (see Methods), we applied

our pipeline with maximum motif length l~7, number of

mismatches m~2 and both SVM and RF classifiers. Without

tuning classifier parameters, the mean AUC for RF was 0.764 with

a standard deviation (SD) of 0.0078. The mean AUC for SVM

was 0.766 with SD 0.0084. Gupta et al. [4] reported a mean AUC

of 0.737 on the entire Ozsolak dataset, which is slightly worse than

the AUC we obtain. With classifier parameter tuning, the (optimal)

AUCs increased to 0.768 for RF and 0.78 for SVM. We re-

evaluated enumerative feature generation using our pipeline

classifiers and the same grid-search for tuning parameter

optimization. The AUC was 0.79 for RF and 0.8 for SVM. In

general, the pipeline and the enumerative methods generate

similar performances. The results are presented in Table 1.

From the 40 runs of our pipeline at default parameter values, we

picked one at random and plotted the ROC curve of the random

forest classifier, and superimposed the plot onto the average ROC

curve for the same dataset from Gupta et al. [4] (Figure 2) The blue

curve plots the ROC for DMFS which is at least comparable to

Gupta et al. ’s result shown in green.

In addition, we compared the filtered motifs generated in our

pipeline with significant features of nucleosome occupancy

identified in Tillo and Hughes [48] and Lee et al. [49]. Among

features of length four, AAAA/TTTT is the most significant, and

we found it occurring as part of motifs in 36 runs out of a total of

40 runs. Among other significant features, GAAA/TTTC is in 40

runs, and AGAA in 34. The full list is in Table 2.

Dennis. The same configuration and parameters employed in

analyzing the Ozsolak data were again used. The mean AUC for

RF was 0.902 with SD 0.0036. The mean AUC for SVM was

0.908 with SD 0.0055. This matches the results of Gupta et al. [4]

who also reported an AUC of 0.908. Tuning classifier parameters

again produced only incremental improvements, with AUCs

increasing to 0.905 for RF and 0.91 for SVM. As above, we re-

applied enumerative methods using pipeline classifiers and grid

search tuning. This yields AUCs of 0.918 and 0.92 for RF and

SVM respectively, as shown in Table 1.

As with the Ozsolak example, we superposed ROC curves; see

Figure 2. The DMFS curve (black) is once again at least

comparable to the Gupta et al. [4] curve (red). Finally, we also

compared the filtered motifs generated with features in Tillo and

Hughes [48] as well as Lee et al. [49]. AAAA/TTTT was in 37 out

of 40 runs, while GAAA/TTTC is in 40, and AGAA in 37. The

full list is in Table 2.

Protein solubility
The protein solubility data used derive from a carefully curated

compilation that yielded a large, non-redundant, and balanced

dataset [5]. Dataset creation proceeded by initially pooling E.coli

protein sequences from the Protein Data Bank [50], SwissProt

Feature Selection via Discriminatory Motif Finding
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database [51], TargetDB [52], and Idicula-Thomas and Balaji

[53]. Redundant sequences were then eliminated using BLAS-

TCLUST [54], and the resulting set further reduced to achieve

class balance finally yielding 8704 ‘‘soluble’’ and 8704 ‘‘insoluble’’

sequences. The soluble proteins, whose lengths range from 12 to

1901 basepairs, have a mean sequence length of 231.85 , a median

length of 166; and the insoluble portion has a range of 21 to 1963

basepairs with a mean length 277.4 and a median of 229.

For each of 20 randomly selected discovery sets, chosen with

discovery fraction f ~0:20, we applied our pipeline with

maximum motif length l~4, number of mismatches m~1 and

both SVM and RF classifiers. The restriction to tetramers as

maximum motif length reflects the increased complexity of the

amino acid (versus nucleotide) alphabet and contrasts with the

specification of heptamers (l~7) for the nucleosome occupancy

problems.

With default classifier parameter values the RF mean accuracy

was 0.61 with SD 0.0048 and the SVM mean accuracy was 0.62

with SD 0.0060. Magnan et al. [5] reported an accuracy of 0.548

using SVM and all trimer frequencies, use of tetramers being

precluded since 204~160,000 features proved too computation-

ally demanding for effective parameter-tuning. Tuning of classifier

parameters via grid search yielded accuracies of 0.645 and 0.63 for

RF and SVM respectively. We also re-fitted the enumerative

approach, generating all possible amino acids sequences of lengths

ƒ3. With SVM parameter tuning we obtained an accuracy of

0.63. Full results are presented in Table 3.

Discussion

We have presented and implemented a new method for

sequence-based classification. We evaluated its performance on

two nucleosome occupancy datasets and a protein solubility

dataset. DMFS achieved performance comparable to previously

published results on the same data using enumerative feature

Table 1. Nucleosome occupancy data.

Dataset DMFS Default DMFS Tuned Reported Enumerative

SVM RF SVM RF SVM SVM RF

Dennis 0.908 0.902 0.91 0.905 0.908 0.92 0.918

Ozsolak 0.766 0.764 0.78 0.768 0.737 0.8 0.79

Mean AUCs for the nucleosome occupancy datasets and approaches as described in the text. Reported values are from Gupta et al. [4]. The DMFS pipeline results are
stable with small standard deviations as determined by 40 runs with random data partitioning: Dennis data with (a) default parameter settings: 0.0055 (SVM) and 0.0036
(RF), and (b) tuned parameter settings: 0.0048 (SVM) and 0.0041 (RF); Ozsolak data with (a) default parameter settings: 0.0084 (SVM) and 0.0078 (RF), and (b) tuned
parameter settings: 0.011 (SVM) and 0.0086 (RF).
doi:10.1371/journal.pone.0027382.t001

Figure 2. ROC curves from DMFS and enumerative methods for
the nucleosome occupancy datasets. The red and green curves are
from Gupta et al. [4] for the Dennis and Ozsolak data respectively. The
black and blue curves are from the DMFS method for the Dennis and
Ozsolak data respectively. For both datasets, the DMFS ROC curve is
approximately equal to the ROC curve using enumerative feature
generation. This figure was created by manipulating Figure 1 of Gupta
et al. [4] in GIMP. The DMFS ROC curves are relative stable. As the false
positive rate ranges from 10% to 90% the true positive rate standard
deviations have range 0:13% to 0:48% for the Dennis data and 0:08% to
1:9% for the Ozsolak data.
doi:10.1371/journal.pone.0027382.g002

Table 2. DMFS pipeline recovery of previously identified
motifs.

Reported motif Dennis Ozsolak

AAAA/TTTT 37 36

AAAT 26 28

AATA 7 6

ATAA 5 4

GAAA 37 38

ATTA 2 8

TATA 1 1

AATT 6 19

ATAT 2 6

AGAA 37 34

AAGT 28 22

CGCG 4 0

TGGA 32 39

GCGC 9 1

CCCG/CGGG 13 4

CGGC/GCCG 4 8

GAAA/TTTC 40 40

CCGC/GCGG 10 4

Here we list motifs identified by Tillo and Hughes [48] and Lee et al. [49] and the
number of times these motifs were identified by the DMFS pipeline. Structure
related features are omitted, as are transcription binding start sites and features
with zero weights. We ran the DMFS pipeline 40 times, with random data
partitioning, and counted the number of times each previously identified motif
occurred. According to Tillo and Hughes the most discriminative motif is the 4-
mer AAAA/TTTT, which emerged in almost every run.
doi:10.1371/journal.pone.0027382.t002

Feature Selection via Discriminatory Motif Finding
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generation. This conclusion did not change on re-evaluating

enumerative methods by refitting using our pipeline classifiers,

both with and without classifier parameter tuning. These findings

demonstrate the potential of DMFS as a general purpose method

for sequence-based classification.

In this paper, we emphasized the prediction performance of

DMFS. Additionally, we demonstrated that DMFS is effective at

identifying important sequence features, as illustrated by its

precursor [55]. We note that the interpretability of analyses using

enumeratively generated features may be improved. For example,

techniques that provide feature ranking, such as random forests

and gradient boosting [56], could be utilized. However, current

efforts toward feature interpretation for enumerative methods (e.g.

POIMs [17]) have focussed on SVMs and, arguably, have thus

required restrictions on kernels and input sequences.

It is important to recognize that we do not claim that DMFS

constitutes a superior approach to enumerative feature generation.

The performance results presented herein show comparable

performance. While we have identified some putative advantages

of DMFS (ability to accommodate longer features, elimination of

noise features), there are complementary strengths of enumerative

methods. These assets include: (i) the ability to recover important

feature interactions in the absence of main effects, and (ii) the sample

size benefit of requiring only two (as opposed to three) levels of

data partitioning. With regard to (i), the extent to which there are

features that operate exclusively interactively is a subject of long

standing debate.

Our current implementation of DMFS uses particular choices of

motif finder (WordSpy), motif scorers (fuzznuc, fuzzproo,

MOODS), and classifiers (RF, and SVM). It is important to

distinguish the method from its realization in our Python implemen-

tation. DMFS can use other motif finders, scorers, or classifiers.

For example, in some applications it may be more fruitful to use a

different classifier (such as gradient boosting) or a different motif

finder (such as DEME [57]). The data flow would be exactly as in

Figure 1, but with different plugins.

In developing our computational pipeline, we opted to

emphasize modularity, and this results in some limitations.

Allowing easy swapping of differing motif-finders and classifiers

mandated certain design choices. For one, we did not reserve a

validation set at the beginning of the pipeline, because resampling

based methods such as bagging and random forests do not require

such a set.

The modularity of our pipeline can be seen in the different tools

we used in the scoring step. It uses Fuzznuc/Fuzzpro for discrete

motifs, and MOODS [38] for continuous motifs as represented via

position weight matrices, all of which are speed and memory

efficient. As MOODS is already integrated with BioPython,

incorporation into our Python pipeline was straightforward. While

the more recently released standalone PWM scoring tool FIMO

[58], which is also fast, possesses many desirable add-on features

(e.g., multiple testing corrections, a variety of output formats),

these are not needed for our purposes. More importantly, the

absence of a Python interface would make for a much more

involved integration, with likely run-time penalties.

We opted not to formally integrate grid-search based tuning of

hyperparameters into the pipeline for practical reasons. Meaning-

ful ranges for many such parameters (e.g. maximal motif lengths

and number of mismatches) are both problem-specific and inter-

related. Similarly, discovery set proportion is influenced by sample

size and class proportions. Proliferation in the number of

parameter combinations required for context-free grid-search

makes such optimization highly computationally intensive. Our

pipeline design readily supports such exploration and tuning via

wrappers.

Future work on DMFS will proceed in several directions. We

will pursue a systematic study of tuning parameter specification,

hoping to refine the proffered guidelines. More ambitious is

extension of the framework to phenotypes beyond the two class

categorical outcomes examined here. While multi-category

outcomes could be addressed by adopting the one-against-all

stratagem, both synthesis and implementation issues will require

further development. Finally, direct handling of multi-categories,

as well as continuous outcomes, will mandate an entirely new

approach to discriminatory motif finding.
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