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Abstract

Tuberculosis  (TB),  is  an  infectious  disease  caused  by Mycobacterium  tuberculosis (M.  tuberculosis),  and
presents  with  high  morbidity  and  mortality.  Alveolar  macrophages  play  an  important  role  in  TB  pathogenesis
although there is heterogeneity and functional plasticity. This study aimed to show the characteristics of alveolar
macrophages  from  bronchioalveolar  lavage  fluid  (BALF)  in  active  TB  patients.  Single-cell  RNA  sequencing
(scRNA-seq)  was performed on BALF cells  from three  patients  with  active  TB and additional  scRNA-seq data
from three healthy adults  were established as  controls.  Transcriptional  profiles  were analyzed and compared by
differential  gene expression and functional enrichment analysis.  We applied pseudo-temporal trajectory analysis
to investigate correlations and heterogeneity within alveolar macrophage subclusters. Alveolar macrophages from
active  TB  patients  at  the  single-cell  resolution  are  described.  We  found  that  TB  patients  have  higher  cellular
percentages  in  five  macrophage  subclusters.  Alveolar  macrophage  subclusters  with  increased  percentages  were
involved  in  inflammatory  signaling  pathways  as  well  as  the  basic  macrophage  functions.  The  TB-increased
alveolar macrophage subclusters might be derived from M1-like polarization state, before switching to an M2-like
polarization  state  with  the  development  of M.  tuberculosis infection.  Cell-cell  communications  of  alveolar
macrophages  also  increased  and  enhanced  in  active  TB  patients.  Overall,  our  study  demonstrated  the
characteristics of alveolar macrophages from BALF in active TB patients by using scRNA-seq.
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Introduction

Tuberculosis  (TB)  is  an  infectious  disease  caused

by Mycobacterium tuberculosis (M. tuberculosis) with
a  long  history  dating  from  at  least  5000  years[1–2].
According  to  the  newest  Global  WHO  TB  report
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released  in  2021[3],  approximately  9.9  million  people
developed  TB  in  2020,  including  1.2  million  people
who died from the disease. This makes TB one of the
leading  causes  of  death  worldwide[4].  However,  the
mechanisms  involved  in M.  tuberculosis interactions
with  our  immune  systems  or  TB-typically-affected
organs like the lungs remain unclear[5].  This is one of
the  obstacles  we  face  in  finding  new  biomarkers  for
diagnosis  and  new  targets  to  develop  effective
interventions  or  innovative  vaccines  to  prevent  the
spread of severe TB symptoms[6].

As  the  primary  immune  cells  that  respond  first  to
M. tuberculosis infections in the lung alveolar spaces,
alveolar  macrophages  are  known  to  contribute  to  the
formation  or  maintenance  of  TB-granuloma  and  are
believed  to  regulate  adaptive  immune  responses  by
producing  various  chemokines  and  cytokines  during
infection[7–8].  With  evidence  of  alveolar  macrophage
heterogeneity  and  functional  plasticity  emerging  in
recent  years,  the  prognosis  of  TB  has  proven  to  be
associated with different  macrophage phenotypes and
different  activations  and  polarization  statuses[8].
Traditionally,  the  macrophage  polarization  status  has
been  divided  into  two  clusters  including  M1
macrophages  (i.e.,  classically  activated  macrophages)
and  M2  macrophages  which  are  alternately  activated
macrophages[9].  Given  the  different  gene  markers
expressed  and  distinct  chemokines  or  cytokines
secreted,  M1  macrophages  are  usually  considered  as
pro-inflammatory  macrophages  associated  with
antimicrobial  immunity,  while  M2  macrophages  are
considered anti-inflammatory macrophages associated
with  immunosuppression[10].  However,  recent in  vivo
studies  have  suggested  that  alveolar  macrophages
from TB modeled mice and human monocyte-derived
macrophages  with  TB  infections,  express  increased
M1-polarized  markers[11–12].  During  TB  infection,
different  phenotypes  or  polarization  states  of
macrophages  might  affect  the  growth  of  bacilli  in  a
restrictive  or  permissive  manner[8].  Therefore,  it  is
reasonable to suppose that TB infections influence the
progress of macrophage polarization. In fact,  alveolar
macrophages could be divided into several subclusters
according  to  their  transcriptional  profiles  in  healthy
individuals  and  there  was  a  small  population  of  pro-
inflammatory  or  M1-like  alveolar  macrophages  in
bronchioalveolar lavage fluid (BALF) cells of healthy
adults[13].

However,  the proportion or function of the various
alveolar  macrophages  subclusters  from  TB  patients
are  different  from  healthy  controls  remains  unclear,
which  need  to  be  studied  thoroughly.  To  date,  many
studies  have  been  based  on  tissue  or  blood  RNA
sequencing from patients  with TB and have provided
new insights  into  the  pathogenesis  of  TB[14–15].  While

only specific cell  types of interest  can be detected by
flow  cytometry,  heterogenicity  can  be  concealed
within  average  measures  observed  using  bulk  RNA
sequencing.  Presently,  cell-to-cell  variation  and  their
interactions  can  be  identified  with  an  unprecedented
single-cell  resolution,  and  with  the  development  of
single-cell  RNA  sequencing  (scRNA-seq)[16].
Currently,  several  studies  which  applied  scRNA-seq
to  peripheral  blood  mononuclear  cells  of  TB patients
or  granuloma  tissues  from M.  tuberculosis-infected
animal  models[17–19].  Given  that  respiratory  pathways
are  the  main  portals  of  entry  for M.  tuberculosis,  we
need  more  pulmonary  specific  studies  focusing  on
alveolar  macrophages  from  BALF  cells  than  we  do
studies  of  peripheral  blood  or  studies  using  animal
modeling[20],  especially  at  single-cell  resolution.  To
date,  no  studies  have  been  published  around  the
single-cell  landscape  of  the  alveolar  macrophages
from active  TB patients.  In  this  study,  we  performed
scRNA-seq  analysis  to  characterize  alveolar
macrophages  from BALF in  TB patients  and  made  a
comparison  of  BALF  samples  with  healthy  controls.
We believe this will  help uncover the mechanisms of
host  defense  against M.  tuberculosis and  in  the
discovery  of  novel  vaccines  or  therapeutic  targets  as
there  are  an  increasing  number  of  host-directed
interventions which target macrophages[21–22]. 

Materials and methods

We  collected  BALF  samples  from  three  patients
with active TB hospitalized in the Second Hospital of
Nanjing  in  January  and  February  of  2021.  Our  study
was  approved  by  the  Ethics  Committee  of  the  First
Affiliated  Hospital  of  Nanjing  Medical  University
(No.  2020-SRFA-339).  We  conducted  this  study  in
accordance  with  ethical  standards  established  in  the
Helsinki Declaration.

Demographics  and  clinical  characteristics  of  the
participants  have  been  provided  in Supplementary
Table  1 (available  online).  All  participants  were
newly-diagnosed,  bacteriologically  confirmed
pulmonary  TB  patients  according  to  positive  smear
microscopy,  positive M.  tuberculosis cultures  and
positive  GeneXpert  MTB/RIF  in  their  sputum  or
BALF  according  to  the  WHO  revised  definitions  for
active  TB[23].  The  bacterial  strains  of M.  tuberculosis
isolated  from  the  patients  were  sensitive  to  isoniazid
and  rifampicin.  The  three  TB patients  had  no  history
of  other  chronic  diseases  such  as  cancer,  human
immunodeficiency  virus  infection  and  autoimmune
diseases.  The  patients  in  this  sample  underwent
fiberoptic  bronchoscopy  before  receiving  anti-TB
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treatment.  A  total  of  10  mL  BALF  were  collected
from each patient and kept on ice immediately after a
fiberoptic  bronchoscopy  was  performed  within  2
hours. All BALF samples were processed in a BSL-3
laboratory. 

Isolation  of  single  cell  and  single-cell  RNA
sequencing

The  BALF  was  filtered  by  a  100-μm  cell  strainer
(Biosharp,  China)  before  being  centrifuged  at  800 g
for 5 minutes. Then, we used 3 mL red blood cell lysis
buffer  (Beyotime,  China)  to  resuspend  cell  pellets
after  removing  the  supernatant  and  incubating  these
cells  for  3  minutes.  After  being  centrifuged  at  800 g
for  5  minutes,  the  supernatant  was  removed  and  the
precipitate  was  resuspended  at  1×106 cells/mL  in  a
cooled  Dulbecco's  phosphate  saline  buffer
(Servicebio,  China)  containing  0.05% bovine  serum
albumin  (Beyotime).  We  stained  BALF  cells  with
trypan blue (Invitrogen, USA) and determined cellular
viability  with  an  automated  cell  counter  (Invitrogen)
to ensure cell viability was over 90% in each sample.
We used the Chromium Next GEM Single Cell 3ʹ Gel
Bead  Kit  V3.1  (10×  Genomics,  USA)  to  perform
single-cell  capture  and  library  construction  in
accordance  with  the  manufacturer's  instructions.
Constructed sequencing libraries were sequenced with
the Illumina sequencer (Illumina, USA). 

Pre-processing  of  scRNA-seq  data  and  quality
control

We  conducted  data  de-multiplexing,  gene
expression  quantification  of  unique  molecular
identifier counts and alignment to the GRCh38 human
genome  using  Cell  Ranger  Software  (version  3.1.0,
10×  Genomics).  All  raw  data  of  sequencing  were
uploaded  and  available  in  the  GSA  for  Human  data
repository  of  the  China  National  Center  for
Bioinformation  (HRA001418).  Cells  expressing  less
than  200  genes  or  more  than  10% of  mitochondrial
gene reads, were ruled out of further analysis. We also
removed cells with less than 1% of ribosomal genes or
over  5% of  hemoglobin  genes  from  this  study.  To
attenuate  batch  effects  on  the  scRNA-seq  data,  we
performed  canonical  correlation  analysis  from  the
Seurat R package (version 4.0.3)[24]. All codes used in
this  study  have  been  presented  in  the supplementary
file named  "code_for_use.pdf"  (available  online).
BALF  scRNA-seq  data  of  healthy  controls  (i.e.,
GSM4475048,  GSM4475049,  and  GSM4475050)
were  obtained  from  the  Gene  Expression  Omnibus
(GEO) database (GSE145926)[25]. 

Data  integration,  dimensionality  reduction  and
clustering

scRNA-seq  data  were  integrated  from  all  samples
including  TB  patients  and  healthy  controls  after
controlling for the batch-effect, based on the top 2000
most  informative  genes  defined  by  Seurat's
FindVariableFeatures  function  with  the  Seurat  R
package  (version  4.0.3)[26].  Dimensionality  reduction
of  the  integrated  data  was  conducted  using  Uniform
Manifold  Approximation  and  Projection  (UMAP)[27].
We  clustered  and  visualized  integrated  scRNA-seq
data  in  this  study  with  the  top  30  principal
components  by  using  the  Seurat  R  package  (version
4.0.3)  at  the  resolution  of  0.8.  The  same
aforementioned protocols were followed when we re-
integrated  and  re-clustered  alveolar  macrophages  at
the  resolution  of  0.1.  We performed differential  gene
expression  (DGE)  analysis  by  the  method  called
Model-based  Analysis  of  Singlecell  Transcriptomics
(Seurat's  FindAllMarkers  function)[28].  We  identified
the  cluster  markers  for  each  alveolar  macrophage
subcluster  with  DGE  analysis  by  comparing  one
alveolar macrophage subcluster with other subclusters.
Cluster  markers  were  defined  as  differentially
expressed genes (DEGs) with log2(fold changes)>0.25
or <−0.25 and adjusted P-values<0.05. We considered
DEGs  with  log2(fold  changes)>0  as  upregulated
DEGs,  while  DEGs  with  log2(fold  changes)<0  were
considered, downregulated DEGs. 

Functional  enrichment  analysis  and  pseudo-
temporal trajectory analysis

We performed functional enrichment analysis based
on  the  Kyoto  Encyclopedia  of  Genes  and  Genomes
(KEGG)  database[29] using  web-accessible,  functional
annotation  tools,  and  the  Database  for  Annotation,
Visualization  and  Integrated  Discovery  tools[30].
Detailed  results  from  all  KEGG  analyses  have  been
provided  in  the  supplementary  materials.  Pseudo-
temporal  trajectory  analysis  was  conducted  using
Monocle  3  software[31] with  pseudo-temporal
trajectories  visualized  using  the  SimplePPT
algorithm[32] within  Monocle  3  software  after  a
dimensionality  reduction  process.  Pseudo-times  for
every  single  cell  were  defined  according  to  geodesic
distances  to  the  trajectory  branch  root.  This  was
established according to specific biological functions. 

Cell-cell communication analysis

Intercellular  communication  analysis  was
conducted  using  different  BALF  cell  types,  which
were  visualized  by  applying  the  CellChat  tool[33].
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Multilayer  signal  networks  for  different  macrophage
subclusters  were  constructed  using  a  method  first
presented  by  Zhang et  al[34] and  Cheng et  al[35].  This
method  requires  ligands,  receptors,  transcriptional
factors  (TF)  and  their  target  genes.  Information
regarding  ligand-receptor  pairs,  receptor-TF
connections  and  TF-target-gene  pairs  were  extracted
from Transcriptional Regulatory Element Database[36],
the  KEGG database[29],  Search  Tool  for  the  Retrieval
of  Interacting  Genes/Proteins  database[37],  OmniPath
database[38] and  other  previously  published
studies[34–35].  The  multilayer  signal  network  was
visualized and characterized using Cytoscape[39]. 

Statistical analysis

The  percentages  related  to  different  macrophage
subclusters between those with active TB and healthy
controls  were  analyzed  using  an  unpaired  version  of
Student's t-test  (two-tailed,)  with  GraphPad  Prism
software  (version  8.4.0).  The  non-parametric
Wilcoxon rank sum test was used for DGE analysis in
Seurat R package (version 4.0.3). P-values of less than
0.05 were considered statistically significant. 

Results
 

Landscape  of  BALF  cells  from  TB  patients  and
healthy controls

We  performed  10×  Genomics  Chromium  droplet
scRNA-seq to characterize a total of the 16 655 BALF
cell  collected  from  three  active  TB  patients  (one
female  and  two  males)  after  applying  quality  control
protocols  mentioned in the methods section.  We then
compared  BALF  cells  from  active  TB  with  healthy
controls  by  analyzing  scRNA-seq  BALF  cell  data
from  three  healthy  adults  in  the  GEO  database
(GSE145926),  simultaneously.  A  total  of  25  clusters
in  BALF  cells  were  identified  using  cluster  analysis.
Please  see Fig.  1A for  further  details.  We  also
provided  a  demonstration  of  single  BALF  cell
transcriptional  profiling,  from  both  our  TB  patients
and healthy controls (Supplementary Fig. 1, available
online).  Eight  cell  types  were  annotated  with
transcriptional  cell  markers  (Table  1),  used  in
previously  published  research[13,25,40].  This  included  B
cells  (cluster  23),  cycling  cells  (cluster  14),  dendritic
cells  (cluster  17),  epithelial  cells  (clusters  20,  22),
macrophages (clusters 0–2, 4–5, 7, 9–12, 15–16, 21),
mastocytic cells (cluster 24),  natural killer (NK) cells
(cluster  18),  T  cells  (clusters  3,  6,  8,  13,  19).  Please
see Fig.  1B and C for  further  information.  We found
that  the  percentage  of  macrophages  decreased
significantly  (P=0.006)  in  active  TB  patients

compared to healthy controls (Fig. 2). 

Various  alveolar  macrophage  subclusters
identified by DGE analysis

Since macrophage populations comprise the largest
proportion  of  BALF  cells  which  significantly
decreases  in  active  TB  patients,  we  re-clustered
macrophages  to  further  analyze  the  potential
heterogeneity  which  may  have  been  concealed  by
general  cell  types.  We  identified  9  subclusters  of
alveolar  macrophage  in  BALF  cells  (Fig.  3A)  with
each  subcluster  comprised  of  cells  from  both  active
TB  patients  and  healthy  controls  (Fig.  3B).  We  also
found  that  these  alveolar  macrophages  from  BALF
cells were distributed differently across our TB patient
sample and healthy controls, after removing the batch
effect of each sample.

Active  TB  patients  had  higher  percentages  of
alveolar  macrophages  in  subclusters  1 –3,  6,  and  7
compared  to  healthy  controls  (Fig.  3B).  Although,
they  had  lower  percentages  of  alveolar  macrophages
in  subclusters  0,  4,  and  5.  No  differences  existed  in
subcluster  8 between the two groups (Fig.  3B).  DGE
analysis  was  conducted  to  understand  gene  markers
(Table  2)  for  all  9  alveolar  macrophage  subclusters
and their  unique functions can be seen in Fig.  4.  We
found  that  several  alveolar  macrophage  subclusters,
including  subclusters  4,  5,  and  8,  expressed  slightly
different  marker  genes  across  all  macrophage
subclusters, which might be a result of transcriptional
spectrum from macrophages.

There  were  two  alveolar  macrophage  subclusters
(subclusters 6 and 7) with discrete marker genes from
other  subclusters,  which  might  imply  distinct
functions from other subclusters. Then, we performed
a  functional  enrichment  analysis  to  explore  the
potential  biological  functions  of  these  different
alveolar macrophage subgroups. 

Functional  enrichment  analysis  of  all  alveolar
macrophage subclusters

Functional  enrichment  analysis  of  all  alveolar
macrophage  subclusters  (subclusters  1 –3,  6,  and  7)
that significantly increased in active TB patients with
the upregulated DEGs are provided in Fig.  5.  KEGG
analysis demonstrated that the macrophage subclusters
(subclusters 1–3, 6, and 7), which increased in active
TB patients, were involved in inflammatory signaling
pathways  such  as  the  PPAR signaling  pathway,  TNF
pathway, NF-kappa B pathway, chemokine signaling,
and  the  Toll-like  receptor  signaling  pathway.  These
are  in  addition  to  the  basic  functions  of  macrophage
which  include  antigen  processing  and  presentation,
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Table 1   Cell type annotations and the gene marker(s) of each type used in Fig. 1

Cell type annotations Cluster number Gene markers

B cells 23 IGHM, JCHAIN, MS4A1

Cycling cells 14 MKI67, TOP2A

Dendritic cells 17 CD1C, CLEC9A, FSCN1

Epithelial cells 20, 22 EPCAM, KRT18, MUC16

Macrophages 0–2, 4–5, 7, 9–12, 15–16, 21 CD68, MRC1, MSR1

Mast cells 24 TPSB2

Natural killer cells 18 KLRF1, KLRD1, XCL1

T cells 3, 6, 8, 13, 19 CD3D
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Fig. 1   Single cell transcriptional profiling of BALF cells. A: UMAP plot of 25 identified clusters in BALF cells. Different colors specify
assignment of 25 clusters by nearest neighbor clustering. B: UMAP plot of the 8 cell types annotated by the transcriptional cell markers. C:
Dot  plot  describing  expression  levels  of  the  marker  genes  of  each  cell  type  where  the  X-axis  represents  gene  markers  and  the  Y-axis
represents the clusters in panel A. The dot size refers to the percentage of cells expressing the gene of each cluster.  The color intensity is
related  to  the  average  log-normalized  gene  expression  of  each  cluster.  UMAP:  Uniform Manifold  Approximation  and  Projection;  BALF:
bronchioalveolar lavage fluid.
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phagocytosis,  cell  adhesion  and  endocytosis.  At  the
same time, upregulated DEGs in TB-related pathways
were  significantly  enriched  in  subcluster  2  (adjusted
P=0.017),  subcluster  3  (adjusted P<0.001)  and
subcluster  6  (adjusted P<0.001).  See Table  3 for
further details.

From  the  result  of  the  KEGG  analysis,  we  found
that  subclusters  6  and  7  were  indeed  more  likely  to
have special biological functions with specific DEGs,
distinct  from  other  alveolar  macrophage  subclusters.
The two most enriched pathways in subcluster 6 were
cytokine-cytokine  receptor  interactions  and  the
chemokine  signaling  pathway.  It  is  reasonable  to
assume  that  subcluster  6  is  likely  to  produce  or
interact with cytokines and chemokines. We noted that

Table  2   Gene  markers  of  the  9  alveolar  macrophage
subclusters  used  in Fig.  4 revealed  by  differential  gene
expression analysis

Alveolar macrophage subclusters Gene markers

Subcluster 0 HCAR3, IFITM2, SOD2

Subcluster 1 MCEMP1, FBP1, IGFBP2

Subcluster 2 APOE, LIPA, LGMN

Subcluster 3 VCAN, CYBB, FCGR2B

Subcluster 4 MALAT1, MT-ND2, MT-ND3

Subcluster 5 RETN, RPL17, RPS17

Subcluster 6 CCL4, CCL4L2, CXCL10

Subcluster 7 CCL5, IL32, CD2

Subcluster 8 CCL18, FABP4, APOC1
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Fig. 2   Comparisons of the proportions of the 8 different BALF cell types between healthy controls and tuberculosis patients. A: B
cells. B: Cycling cells. C: Dendritic cells. D: Epithelial cells. E: Macrophages. F: Mast cells. G: NK cells. H: T cells. The data were shown as
mean±SEM.  Comparisons  between  two  groups  were  performed  by  Student's t-test.  n.s.:  no  significance; *P-value<0.05; **P-value<0.01.
BALF: bronchioalveolar lavage fluid; HC: healthy controls; TB: tuberculosis patients.
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Fig.  3   Different  subclusters  of  alveolar  macrophages
identified  in  BALF  cells. A:  UMAP  plot  of  9  identified
macrophage subclusters based on scRNA-seq by Seurat R package.
Different  colors  specify  assignment  of  9  subclusters  by  nearest
neighbor  clustering.  B:  Comparisons  of  the  proportions  of  cells
from different alveolar macrophage subclusters in healthy controls
and tuberculosis patients by Student's t-test.  The data were shown
as  mean±SEM.  n.s.:  no  significance; *P-value<0.05.  UMAP:
Uniform  Manifold  Approximation  and  Projection;  BALF:
bronchioalveolar  lavage  fluid;  HC:  healthy  controls;  TB:
tuberculosis patients.
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the  subcluster  7  was  also  associated  with  the  T  cell
receptor  signaling  pathway  and  NK  cell  mediated
cytotoxicity  signaling  as  well  as  those  signaling
pathways  mentioned  previously.  These  indicate  the
potential interactions within this subcluster in terms of
cell-mediated immunity, including T and NK cells. 

Polarization  states  of  all  alveolar  macrophage
subclusters

We  next  identified  polarization  states  for  each
alveolar  macrophage  subcluster  by  analyzing
transcriptional  profiles.  This  was  done  because
functional  enrichment  analysis  revealed  that  all
increased  alveolar  macrophage  subclusters  in  active
TB  patients  were  related  to  inflammation-related
signaling.  We  compared  DEGs  of  all  9  subclusters
with  gene  marker  panels  related  to  M1  and  M2
macrophages,  which  were  referred  to  by  other
researchers[9–10,41].  The  results  of  the  DGE  analysis
indicated  that  the  alveolar  macrophage  subclusters  6
exhibited  enhanced  expression  of  both  M1-like  and
M2-like macrophage gene markers (Fig. 6). Although,
we also found that alveolar macrophage subclusters 0,
4,  and  5  had  lower  expression  of  M2  macrophage
gene  markers.  However,  this  was  without  any
significant  expression  of  M1-like  macrophage  gene
markers  compared  to  other  alveolar  macrophage
subclusters.  It  is  therefore  reasonable  to  assume  that
alveolar macrophage subclusters 0, 4, and 5 might be
M0  macrophages,  without  M1  or  M2  activation.
Moreover,  alveolar  macrophage  subclusters  0,  4,  and

5  formed  the  main  alveolar  macrophage  populations
which  decreased  in  active  TB  patients  compared  to
healthy controls.

In addition, the result of the DGE analysis indicated
that all  of the five TB-increased alveolar macrophage
subclusters,  including  subclusters  1 –3,  6,  and  7,
exhibited  higher  expression  of  M2-like  macrophage
gene  markers.  Therefore,  we  assumed  that  alveolar
macrophage  subclusters  1 –3  and  7  were  M2-like
macrophages  and  that  subcluster  6  might  be
considered as a special population with coexistence of
both  M1-like  and  M2-like  polarization  states.  These
results concerned with macrophage polarization states
described  supports  the  notion  that  there  were  no
independent  M1-like  macrophages  with  only
enhanced  M1-like  gene  markers.  Although,  these  are
likely  to  be  without  any  enhanced  M2-like  gene
markers  in  any  macrophage  subclusters  in  active  TB
patients.  This  is  consistent  with  other  scRNA-seq
studies  focusing  on  resident  macrophages  located  in
human lung cancer tissues[42]. 

Relationship  between  alveolar  macrophage
subclusters

Trajectory  analysis  of  alveolar  macrophage
subclusters  was  conducted  to  explore  possible
associations between subclusters. In accordance with a
previous  study[13],  we  applied  three  gene  markers
including FCN1, VCAN,  and CCL2 to  identify  the
monocyte-like  macrophages  within  the  airspace.  In
Fig.  7,  you  can  see  that  alveolar  macrophage
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Fig.  4   Dot  plot  showing  the  expression  of  the  top  3  marker  genes  in  each  macrophage  subcluster  across  all  9  macrophage
subclusters. The X-axis represents gene markers and the Y-axis represents the subclusters in Fig. 3A. The dot size refers to the percentage of
cells expressing the gene of each subcluster. The color intensity is related to the average log-normalized gene expression of each subcluster.
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Fig. 5   Functional enrichment analysis of macrophage subclusters that increased in active tuberculosis patients (subclusters 1–3, 6,
and 7) with the upregulated differentially expressed genes. The X-axis of the dot plot represents gene ratio and the Y-axis represents the
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subcluster 3 was the FCN1, VCAN, and CCL2 positive
cell subcluster which can be considered the monocyte-

like  macrophages  within  the  airspace.  Since  alveolar
macrophages are thought to originate from monocyte-
like  macrophages[13],  we  considered  the  alveolar
macrophage  subcluster  3  with  high  expressions  of
FCN1, VCAN,  and CCL2 as  the  root  of  the  pseudo-
temporal  trajectory  branch.  This  comprised  of  all
alveolar  macrophage  subclusters  and  can  be  seen  in
Fig.  8A.  From the  pseudo-temporal  trajectory  branch
(Fig. 8B), we found that the position of macrophages
from  the  subclusters  2  and  3  was  followed  by
subcluster  6  among  the  five  increased  macrophage
subclusters  (1–3,  6,  and 7)  in  TB patients.  Although,
subcluster  1  followed  subcluster  6  along  the  pseudo-
temporal  trajectory  branch.  The  alveolar  macrophage
subclusters  1 –3  were  considered  M2-like  alveolar
macrophages  and  alveolar  macrophage  subcluster  6

Table 3   Enriched TB-related pathways of macrophage subclusters by KEGG analysis

Subclusters 2 3 6

Enriched genes of TB-related
pathways

HLA-DMA, HLA-DMB, LAMP1,
STAT1, ITGB2, CALM3, CD14,
CTSD, ATP6V0D2, CTSS, HLA-
DQA1

CIITA, CEBPB, TGFB1, ITGAM,
STAT1, IFNGR2, ITGB2, CORO1A,
HSPD1, FCGR3A, FCGR2A, MRC1,
CD14, CALM1, FCGR2B, JAK1

FCER1G, STAT1, RIPK2, IFNGR2,
IL18, TNF, CTSS, NFKB1, IL1A,
IL1B, CD14, FCGR1A, CLEC4E,
BID, HLA-DQA1, TLR2

Count 11 16 16

Gene ratio 0.063 0.052 0.072

False discovery rate 0.016 <0.001 <0.001

Adjusted P-value 0.017 <0.001 <0.001

TB: tuberculosis; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Fig.  6   Dot  plot  of  M1-like  and  M2-like  macrophage  gene  markers  expression  across  the  9  macrophage  subclusters. The  X-axis
represents gene markers and the Y-axis represents the subclusters in Fig. 3A.  The dot size refers to the percentage of cells expressing the
gene of each subcluster. The color intensity is related to the average log-normalized gene expression of each subcluster.
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Fig.  7   Expression  of  the  monocyte-like  macrophage  gene
markers  across  the  9  macrophage  subclusters. The  color
intensity  of  the  heat  map  represents  the  average  log-normalized
gene expression of FCN1, VCAN, and CCL2 in each subcluster.
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expressed higher M1-like marker genes as well as M2-
like  marker  genes.  Therefore,  it  was  reasonable  to
assume  that  pseudo-temporal  trajectory  analysis
represented  changes  of  polarization  states  from  M1-
like polarization state  to  M2-like polarization state  in
the  alveolar  macrophages  which  increased  in  active
TB patients. 

Intercellular communication and multilayer signal
networks

We  analyzed  ligand-receptor  communications
between  macrophages  and  other  cell  types  by
CellChat  (Fig.  9)  including  TB  patients  and  healthy
controls.  We found that  there were more intercellular
communications  between macrophages  and other  cell
types  in  TB  patients  in Fig.  9A.  New  macrophage
interactions  emerged  in  our  sample  of  TB  patients
including  connections  to  epithelial  cells  and
connections to B cells. This suggests there is an effect
of  epithelia  and  B  cells  on  macrophages  in  TB
patients.  Additionally,  communications  between
macrophages  and  T  cells  or  NK cells  were  enhanced
in  TB  patients  (Fig.  9B).  As  well  as  an  increased
number  of  intercellular  communications,  the  number
of  interactions  between  different  macrophage
subclusters  and  their  interaction  weights  were  also
increased  in  TB  patients  (Fig.  9).  Therefore,  we
conducted multilayer signal network analysis between
macrophage subclusters.

Based  on  the  results  of  functional  enrichment
analysis described above, the macrophage subcluster 6
was  related  to  cytokine-cytokine  receptor  interaction
pathway and chemokine signaling pathway. Then, we

constructed  a  multilayer  signal  networks  of  the  TB-
increased  macrophage  subcluster  1,  2,  3,  and  7  in
response to the cytokines or chemokines of subcluster
6 (Fig. 10). We found that there were some receptors
related  to  TB-associated  protective  immunity[43–44] or
macrophage recruitment[45] such as CD44, CCR1,  and
IL2RG in  the  multilayer  signal  networks.  The
appearance of a series of genes which encode integrin
or syndecan including ITGAM, ITGA4, ITGB8, SDC2,
and SDC4 indicated  that  integrin  or  syndecan
modulate  the  TB-induced  immune  response[46–47].
Additionally, HIF1A and ATF1, one of the TFs shown
in Fig.  10 were  linked  to  immunometabolism[48].
Finally,  some  pro-inflammatory  genes  like IL1B and
TNF were  seen  as  target  genes  within  the  multilayer
signal networks. 

Discussion

In  this  study,  we  characterized  alveolar
macrophages  from  BALF  cells  of  active  TB  patients
by  using  scRNA-seq  and  then  grouped  these  into  9
subclusters,  according  to  transcriptional  profiles.  We
found that the proportions of five alveolar macrophage
subclusters  significantly  increased  in  active  TB
patients  compared  with  healthy  controls.  We  also
analyzed  their  presumptive  biological  functions  as
well  as  polarization  states.  Two  novel  alveolar
macrophage  subclusters  were  identified  with  distinct
functions related to chemokines and adaptive immune
response.  Alveolar  macrophages,  as  the  largest
population  of  the  BALF  cells,  were  considered  a
homogeneous  population  in  a  previous  study[49].
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Fig. 8   UMAP plot of different macrophage subclusters colored by pseudo-temporal trajectory analysis. The red star represented the
start of the root of the pseudo-temporal trajectory branch. Black lines refer to trajectories of principal graph. A: UMAP plot of the pseudo-
temporal  trajectory branch from 9 identified macrophages  subclusters.  Different  colors  specify  assignment  of  the  9  subclusters  by nearest
neighbor  clustering  in Fig.  3A.  The  numbers  represent  different  macrophage  subclusters.  B:  UMAP  plot  showing  the  pseudo-temporal
trajectory analysis of different macrophage subclusters. The color intensity represents the pseudo time in the UMAP plot. UMAP: Uniform
Manifold Approximation and Projection.
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However,  a  recent  study  demonstrated  that  the
heterogeneity  of  alveolar  macrophages  existed  in
healthy adults by scRNA-seq[13].

We also found that there were several subclusters of
alveolar  macrophages  in  active  TB  patients  and
healthy  controls.  The  percentages  of  some  specific
alveolar  macrophage  subclusters  also  increased  in
active TB patients when compared to healthy controls.
This  suggests  that  these  alveolar  macrophage
subclusters  might  play  an  important  role  in  host
defenses  against M.  tuberculosis.  The  result  of
functional  enrichment  analysis  of  these  subclusters
suggested  that  these  TB-activated  subclusters  were
related  to  inflammation  and  TB-associated  signaling
pathway.  This  finding was according to past  research
to  be  expected.  Macrophage-mediated  host  defenses
including  antimicrobial  immune  response  are
mediated by macrophage polarization or activation[9].

In  this  study,  we  identified  a  total  of  four
macrophage  subclusters  as  M2-like  macrophages  and

a  special  subcluster  as  M1-like  and  M2-like
macrophages  that  increased  in  TB patients.  Although
the  result  of  this  study  seems  to  contradict  the
canonical  dichotomous  model  of  macrophage
polarization  with  either  M1-like  (pro-inflammatory)
macrophages  or  M2-like  (anti-inflammatory)
macrophages[10].  This  can  be  explained  by  new
evidence  which  suggests  there  are  no  independent
M1-like  macrophage  subclusters  but  rather
macrophage  subclusters  with  M1-like  and  M2-like
marker  co-existence.  This  has  been  found  in  several
human  lung  tissue  and  mice  BALF  cells[42,50].  For
example,  Mould et  al concluded  that  alveolar
macrophages,  collected  from  BALF  samples  of
healthy  individuals,  are  matured  from  bone  marrow-
derived  monocytes.  Given  that  the  monocytes  of  TB
patient  have  a  tendency  to  differentiate  into  M2-like
macrophages[51],  our  study  re-inforces  that  all  the
alveolar  macrophage  subclusters  with  increased
percentages  in  TB  patients  expressed  enhanced  M2-
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Fig.  9   Intercellular  communications  between  macrophages  and  other  cell  types  in  tuberculosis  patients  and  healthy  controls. A:
Number of interactions between macrophages and other cell types in TB patients and healthy controls. The edge width represents the number
of  interactions.  B:  Interaction  weights  between  macrophages  and  other  cell  types  in  TB  patients  and  healthy  controls.  The  edge  width
represents the strength of interactions. Circle size represents the number of cells in each cell type. TB: tuberculosis.
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like  gene  markers,  which  supports  the  hypothesis
proposed by Mould et al.

According  to  pseudo-temporal  trajectory  analysis
conducted  here,  TB-increased  alveolar  macrophage
subcluster  with  the  coexistence  of  M1-like  and  M2-
like macrophages which might be located between the
root of pseudo-temporal trajectory branch and M2-like
macrophage  subclusters.  This  suggests  that  the
development  of M.  tuberculosis infection  results  in
alveolar  macrophage  polarization  state  alterations.  In
other in  vivo and in  vitro studies  of  TB,  the  alveolar
macrophages  collected  from  mice  BALF  exposed  to
M.  tuberculosis or  human  monocyte-derived
macrophages stimulated by TB-specific virulent factor
shifted their  polarization states from M1 to M2 when
TB-induced  inflammation  increased[11,41].  The
directions  where  the  alveolar  macrophages  of  our
study shifted are consistent with the previous studies.

Through  cell-cell  communication  analysis,  we
found  that  macrophage  communications  from  BALF
samples increased in TB patients. There may be some
existing  evidence  which  provides  an  explanation  for
this  phenomenon.  On  one  hand,  the  secretion  of
cytokines  and  chemokines  of  macrophages  increases
after inflammation induced by bacterial infection[52–53].
Yet  from  another,  as  signal  transport  vectors  of  cell
communications,  the  exosomes  produced  by M.
tuberculosis or  macrophages  may  modulate  the  host-
immune  response  in  TB  patients[54–55].  Overall,  for  a
better understanding of TB pathogenesis in the human

body,  it  is  necessary  to  conduct  further  research
including BALF samples of TB patients with different
disease severity in the future.

We  admit  that  there  were  a  few  limitations  in  our
study. Even though transcriptional profiles of airspace
macrophages  were  isolated  from  BALF  cells  and
conserved  across  healthy  adults  of  different  ages  or
genders[13], potential selection bias might exist because
of  the  relatively  small  sample  size  of  this  study.
Therefore,  we  made  batch-effect  corrections  before
performing  further  analysis  of  all  scRNA-seq  data  in
our  study.  Also,  as  all  participants  in  this  study were
patients with pulmonary active TB, the characteristics
of  alveolar  macrophages  in  latent  TB  or  other  TB
subtypes  were  not  investigated.  This  provides  a
number  of  new  areas  of  research  which  must  be
conducted to enhance our understanding in this field.

In  conclusion,  we  identified  eight  cell  types  in
BALF  cells  at  single-cell  resolution.  We  also
characterized alveolar macrophages from BALF in TB
patients  through  DGE  analysis  and  functional
enrichment  analysis.  A  total  of  four  alveolar
macrophage  subclusters  were  identified  as  M2-like
macrophages and a  special  subcluster  as  M1-like and
M2-like  macrophages  among  the  alveolar
macrophages  that  increased  in  TB  patients.  The
alveolar  macrophage subclusters that  increased in TB
patients  might  be  derived  through  the  M1-like
polarization  state.  These  then  switch  to  an  M2-like
polarization  state  with  the  development  of M.
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Fig. 10   Multilayer intercellular and intracellular signal networks among different macrophage subclusters. The nodes with different
colors demonstrate different layers including ligand layers (green), receptor layers (red), transcriptional factor layers (yellow) and target gene
layers (blue). Grey lines refer to signal pathways between two nodes from the left node to the right node.

178 Chen Q et al. J Biomed Res, 2022, 36(3)



tuberculosis infection. Cell-cell communications from
alveolar  macrophages also increased and enhanced in
active  TB patients.  To the  best  of  our  knowledge,  no
scRNA-seq  data  of  BALF  cells  in  TB  patients  have
been published or analyzed previously. Our study may
further  the  understanding  of  the  role  of  alveolar
macrophages in TB pathogenesis and will be of great
value  for  exploring  novel  therapeutic  targets  against
TB in the future. 
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