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Most agriculturally significant crop traits are quantitatively inherited which limits the ease and efficiency of trait
dissection. Multi-parent populations overcome the limitations of traditional trait mapping and offer new poten-
tial to accurately define the genetic basis of complex crop traits. The increasing popularity and use of nested as-
sociation mapping (NAM) and multi-parent advanced generation intercross (MAGIC) populations raises
questions about the optimal design and allocation of resources in their creation. In this paper we review strate-
gies for the creation ofmulti-parent populations and describe two complementary in silico studies addressing the
design and construction of NAM andMAGIC populations. The first simulates the selection of diverse founder par-
ents and the second the influence ofmulti-parent crossing schemes (and number of founders) on haplotype cre-
ation and diversity. We present and apply two open software resources to simulate alternate strategies for the
development of multi-parent populations.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Expanded genetic diversity is required to address the perpetual chal-
lenges of quantitative trait dissection. In crops,mappingpopulationsde-
veloped from two contrasting parents have been popular for creating
).

. This is an open access article under
novel recombinants and haplotypes for key crop traits (e.g. the UK
wheat reference population Avalon × Cadenza; see www.wgin.org.uk;
Ma et al., 2015). Bi-parentalmapping populations are simple to develop
and possess high power for QTL detection (Semagn et al., 2006; Xu et al.,
2016). However, combining the genomes of only two parents results in
a relatively narrowgenetic base and inadequately representswider alle-
lic diversity (Jannink, 2007). Despite this, linkage based quantitative
trait locus (QTL) mapping using bi-parental populations is the most
widely used method of identifying regions of genome controlling phe-
notypic variation (Bernardo, 2008).
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Genome-wide association (GWA) or linkage disequilibriummap-
ping is a complementary method exploiting linkage disequilibrium
(LD) as a function of historical recombination for QTL mapping.
GWA studies however are prone to detection of false positive QTLs
due to unknown population structure and genetic relatedness
among the lines (Lewis, 2002; Zhao et al., 2007) and statistical
approaches may also over-compensate for population structure
(Segura et al., 2012), thereby lowering the accuracy of QTL detection.
In addition, low frequency rare variant QTLs may be undetected
despite having large effects (Breseghello and Sorrells, 2006;
Mackay and Powell, 2007).

Multi-parent populations (MPPs) have emerged as next-generation
mapping resources combining diverse genetic founder contributions
with high levels of recombination (Mackay and Powell, 2007;
Cavanagh et al., 2008), overcoming some of the limitations of bi-paren-
tal and GWA populations (Huang et al., 2011). The twomost commonly
developed forms of MPPs in crop genetics are nested association map-
ping (NAM) and multi-founder advanced generation inter-cross
(MAGIC) populations. Derivation from greater than two parents and
structured inter-mating maximizes allelic diversity and facilitates the
inclusion of novel recombinants. Creating controlled populations from
crosses betweenmultiple well-characterized parents allows the deriva-
tion of individuals which feature diverse levels and patterns of recombi-
nation and new genotype and haplotype combinations. These features
are exploited for trait mapping with the contribution of multiple foun-
ders increasing the potential genetic diversity in advanced lines (Yu et
al., 2008).

NAM populations were designed to increase the power and pre-
cision of QTL mapping by combining the advantages of association
mapping and bi-parental populations. NAM populations can effec-
tively capture rare alleles allowing new loci to be seen (McMullen
et al., 2009). Populations are derived by crossing a single inbred
parent to a successive collection of diverse inbred lines. The first
NAM population was created in maize, derived from crosses be-
tween the maize reference line B73 and 25 diverse inbred lines to
produce 5000 recombinant inbred lines (RILs) (Yu et al., 2008).
These capture thousands of recombination events but recombina-
tion and segregation distortion varies among different families
which can limit the precision of genetic dissection of quantitative
traits (McMullen et al., 2009). The maize NAM has been used to
study the genetic architecture of a number of morphological and
disease resistance traits (Buckler et al., 2009; Tian et al., 2011;
Cook et al., 2012; Bajgain et al., 2016). A NAM derived advanced
backcross population has been recently developed for barley
which combines wild barley landraces into the exotic background
Rasmusson (Nice et al., 2016).

MAGIC populations are developed by inter-crossing multiple (typi-
cally four, eight or sixteen) parental lines in a balanced funnel crossing
scheme. The resulting RILs are highly recombined mosaics of the foun-
der genomes. Multi-cross populations were first proposed for mouse
known as heterogeneous stock and collaborative cross populations
(Mott et al., 2000; Valdar et al., 2006b; Threadgill and Churchill, 2012)
and for plants by Mackay and Powell (2007). They are also similar to
theArabidopsismulti-parent recombinant inbred line (AMPRIL) popula-
tion described by Huang et al. (2011) whichwas developed from diallel
crossing of eight Arabidopsis accessions from diverse geographical ori-
gins. In MAGIC, high levels of recombination result in low LD and give
highmapping resolution. A high densityMAGIC linkagemap has recent-
ly been developed in wheat (Gardner et al., 2016). MAGIC populations
have being developed in many plant species including Arabidopsis
(Kover et al., 2009), tomato (Pascual et al., 2015), barley (Sannemann
et al., 2015), maize (Dell'Acqua et al., 2015), sorghum (Higgins et al.,
2014), wheat (Huang et al., 2012; Mackay et al., 2014) and rice
(Bandillo et al., 2013).

Trait mapping in structured MPPs involves the use of statistical
models developed based on their theoretical properties. Many
models for genetic data analysis have been generated by computer
simulation to determine the properties and outcomes of an experi-
mental design. For example, simulation studies in MPPs can be ap-
plied to determine the optimal number of founder lines, crosses
and the size of the population needed to effectively track the genetic
architecture of quantitative traits (Myles et al., 2009). Kover et al.
(2009) simulated the effects of MPP size on mapping resolution
and power for QTL detection determining that QTL detection error
rates decreased when population size increased and QTL could be
mapped to smaller intervals. Simulation studies typically generate
in silico data describing population specific genetic polymorphism
which are then used to describe, solve or predict. Because in silico
data sets are not subject to the same inconsistencies as real datasets,
they predict outcomes for specified scenarios (Yu et al., 2006, 2008;
Hoban et al., 2011). Verbyla et al. (2014) simulated the effect of a
joint analyses of multiple environmental and multiple trait datasets
on QTL detection accuracy and to infer QTL-by-environment interac-
tions in MAGIC.

MPPs are increasingly used in crop genetics and schemes for their
creation vary in design. In this paper we present simulations using
two open source software applications that analyse the selection of
founders and the properties of both NAM and MAGIC population
types. We compare schemes in which the number of crosses and the
number of parents vary. The function of MPPs can be viewed as the cre-
ation of haplotype diversity for fine mapping and selection and the dif-
ferent schemes were therefore quantified as the number of haplotypes
created for a range of MPP configurations.
2. Materials and methods

2.1. Selecting founders

Two methods of selecting subsets of individuals from popula-
tions to maximize genetic diversity have previously been imple-
mented using PowerMarker analysis software (Liu and Muse,
2005) and can be used to select founding individuals for MPPs.
These methods are (i) selection using total number of segregating
alleles and (ii) selection using average gene diversity (Nei, 1973).
The PowerMarker analysis software used a simulated annealing al-
gorithm that allowed for efficient selection of individuals from
within a large set of germplasm for which performing an exhaustive
search would be infeasible. However, PowerMarker is no longer
actively supported and a functional version of the software is no
longer publicly available. To fill this void, we implemented a com-
plementary method using genetic algorithms. These genetic algo-
rithms were developed using the R package ‘GA’ (Scrucca, 2013)
which provides a flexible, general-purpose package for this pur-
pose. This flexibility was used to define custom objective functions
and genetic operators for implementing each method. The scripts
used to implement these methods are available (http://www.niab.
com/pages/id/326/Resources) and are also available as Supplemen-
tary information.

The performance of these methods was examined using the 376
wheat varieties in the TriticeaeGenome association mapping panel
(Bentley et al., 2014; dataset available as above). Each line was
genotyped with 2535 polymorphic DArT markers (Jaccoud et al.,
2001). Each method was used to select two, four, eight, sixteen
and twenty six line subsets that could be used to generate MPPs.
Average performance of each method was measured across ten
replicates and compared to selection of random individuals on
the basis of percentage of polymorphic loci and average gene diver-
sity. Selection of the two line subset was compared against the best
possible subset for percentage of polymorphic loci and average
gene diversity using an exhaustive search of all possible
combinations.

http://www.niab.com/pages/id/326/Resources
http://www.niab.com/pages/id/326/Resources
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In addition, we compared different MPPs for the diversity they cap-
tured and for the probability that they were segregating. We compared
a bi-parental cross, MAGIC populations with four, eight, sixteen and 26
Fig. 1. Pedigree representation of all simulatedMAGIC populations. (a) Four-parentMAGIC. (b)
single funnel crossing scheme. (d) Sixteen-parent, multiple funnel crossing scheme. (e) Sixtee
founders, and a NAM population with 25 nested families, sampling
founders from source populations segregating for a bi-allelic locus
with minor allele frequencies of 0.01, 0.1, 0.2, 0.4 and 0.5. We also
Eight-parentMAGIC population,multiple funnelMAGIC crossing scheme. (c) Eight-parent,
n-parent, single funnel crossing scheme.



Table 1
Average values over ten replications for percentage of polymorphic loci and average gene
diversity for subsets chosen from 376 lines of the TriticeaeGenome association mapping
panel. The subsets were chosen using random selection, a genetic algorithm for maximiz-
ing total segregating alleles, or a genetic algorithm formaximizing average gene diversity.
The maximum obtainable values for subsets of size two were calculated using an exhaus-
tive search.

Summary statistic Selection method

Subset size

2 4 8 16 26

Polymorphic loci (%) Random 26.7 51.6 73.7 85.1 91.9
Alleles 45.7 75.8 91.6 98.4 99.9
Diversity 45.9 75.5 89.7 96.6 98.7
Maximum 46.4 – – – –

Average gene diversity Random 0.134 0.215 0.267 0.280 0.286
Alleles 0.299 0.317 0.331 0.330 0.324
Diversity 0.230 0.316 0.351 0.364 0.365
Maximum 0.232 – – – –
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considered a bi-allelic locus with an infinite number of alleles (i.e. all
sampled individuals carrying different alleles). Diversity was measured
as:

1−Σpi
2

where pi is the frequency of the ith allele (Weir, 1996). We calculated
the probability that a mapping population was segregating from the al-
lele frequency in the source population and the binomial distribution.

2.2. Simulating multi-parent populations

2.2.1. Pedigrees
The creation of MAGIC populations is based around simple funnel

crossing schemes (Huang et al., 2015) of the form, for example for an
eight parent population, {[(A × B) × (C × D)] × [(E × F) × (G × H)]}
where the matched brackets ( ), [ ] , { } delineate the four two-way,
two four-way and one eight-way crosses respectively and the letters de-
note the eight parents. To sample diversity among the parents and to re-
duce LD within the population (for greater precision in mapping),
multiple funnel crosses should be used in creating the population. For
example, in the case above, there is greater scope for recombination be-
tween chromosome segments from lines A and B than there is from
lines A and H. For this reason, we searched for crossing schemes
which provide balance among the parental origins and contributions
at each cycle of crossing. As described in Mackay et al. (2014), for an
eight founder population, there are 28 possible F1 combinations, 210
4-way combinations among unrelated F1s and 315 eight-way crosses
(as the four-way cross ABCD can be paired with EFGH, EGFH and
EHFG). For the sixteen-way MAGIC, creating all possible crosses at
each generation is very labour intensive, even in a large crossing pro-
gram. We therefore reduced the number of crosses, while maintaining
the equality of the contribution to the next generation and opportuni-
ties for recombination among chromosome tracts originating from dif-
ferent founders.

Following the crossing stage, inbred lines are produced. In these sim-
ulations, all individuals at the final stage of crossingwere inbred for four
generations by single seed descent (SSD). The final population size was
maintained as close to 1000 recombinant inbred lines (RILs) as possible.
All founders used in all simulations were assumed to be completely in-
bred. All schemes were balanced so that the expected contribution of
any founder to any derived RIL was equal. MAGIC pedigrees from four,
eight and sixteen parents were simulated.

The four-parent MAGIC pedigree was designed as follows: four ge-
netically distinct founders, assumed to be completely inbred were
inter-crossed in a half diallel pattern to produce six F1s, each F1 was
then crossed to a complementary F1 to create three four-way hybrids
which aremosaics of the four parents. Each four-way crosswas replicat-
ed 111 times and from each cross, three individuals were sampled to
make a population of 999 plants whichwere inbred by SSD for four gen-
erations (Fig. 1a).

For the eight-parent MAGIC, two pedigree schemes were simulated.
In the first scheme, all eight parents were inter-crossed in a half diallel
to create 28 F1s. Each F1 was then systematically crossed to 15 comple-
mentary F1s to avoid inbreeding producing 210 four-way hybrids. Each
four-way hybrid was subsequently crossed to three complementary
four-way hybrids to produce 315 eight-way individuals (Fig. 1b). Each
eight-way cross was made in three replicates, explicitly using separate
parents sampled from the segregating four-way crosses, tomake a pop-
ulation of 945 lines which were inbred for four generations by SSD. In
the second scheme, inter-crossing between pairs of parents was made
in a single funnel (Fig. 1c). Founders were paired to create four F1s
followed by two four-way crosses and one eight-way cross. The eight-
way crosses were made in 315 replicates (630 different parents) to
make the two schemes comparable and to maximize recombination
and to avoid the effect of genetic drift. From each of these eight-way
crosses, three individuals were sampled to produce a population of
945 individuals which were inbred for four generations by SSD.

Two crossing schemes were also used to develop the sixteen-foun-
der MAGIC population. The first scheme was a multiple funnel
(Fig. 1d) and parents were inter-crossed in a half diallel to create 120
F1s. Every F1 was next paired to one unrelated F1 to make 60 four-way
crosses. Each four-way was in turn paired with an unrelated four-way
to make 30 eight-way crosses and using the same method, fifteen six-
teen-way crosses were made, making sure to avoid inbreeding and re-
ciprocal crossing in the resulting sixteen-founder individuals. The
number of lines in the final generation of sixteen-way lines was made
up to 300 lines by replicating each eight-way cross 20 times to create
600 eight-way individuals. In the second scheme, the parents were
mixed in a single funnel by creating eight F1s, four four-way hybrids,
two eight-way hybrids and finally one sixteen-way hybrid, with each
parent paired only once (Fig. 1e). To make the two schemes for six-
teen-way populations comparable, each four-way cross was replicated
15 times to create sixty four-way hybrids. Thiswasnext used to produce
600 eight-way hybrids by making 20 replicates of each cross. This gave
300 lines in the final sixteen-way population. Both populationswere in-
creased to 1005 lines by sampling three to four individuals from each
sixteen-way hybrid.

The NAM population was made up of 25 standard mapping popula-
tions, each producing 200 RILs, giving 5000 lines in total. Each of the 25
populations had one common parent and one unique parent.

2.2.2. Simulations
Initial simulations were based on two chromosomes and four loci

with all founders carrying unique alleles at all loci so all combinations
of founder contributions and recombinations were tagged. The first
chromosome (denoted A) had two loci 5 cM apart while the second
chromosome (denoted B) had two loci 10 cM apart. A second round of
simulations were made to examine expanded diversity based on the
376 wheat varieties in the TriticeaeGenome association mapping
panel (Bentley et al., 2014) as above. Using the above founder selection
program, four, eight and sixteen founderswere selected tomaximize al-
lele number. MAGIC pedigreeswere simulated as described above using
sixteen polymorphic DArT markers evenly distributed along chromo-
somes to assess the number of realized haplotypes from these crosses.

Gene droppingwas introduced byMacCluer et al. (1986) as ameans
of stochastic simulation of the distribution of alleles at a locus among
members of a pedigree. Genotypes are assigned to founder individuals,
either by sampling from a distribution of genotypes or by assigning
known genotypes. Alleles are sampled at random from the founders
and transmitted to progeny. Alleles from the simulated genotypes of
the progeny are then sampled in turn and transmitted to the next gen-
eration. This process continues until genotypes for all members of the
pedigree are simulated. Repetition of the simulations generates a



Table 2
Comparison of diversity created from different MPP types from simulations inwhich each
cross is segregating and every parent has a different allele.

MPP type No. alleles p(segregating) Diversity

2-way bi-parental 2 1 0.500
4-way MAGIC 4 1 0.750
8-way MAGIC 8 1 0.875
16-way MAGIC 16 1 0.938
26-way MAGIC 26 1 0.962
NAMa 26 1 0.740
Source Infinite 1 1.000

a 25 parents with frequency 1/50 and one with frequency 0.5.
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probability distribution of genotype and allele frequencies in the pedi-
gree, conditional on the founder genotypes. Gene dropping is the stan-
dard method for simulation of genotypes in pedigrees and the
extension to multiple loci simply involves sampling gametes, or haplo-
types from multi-locus genotypes for transmission to the next genera-
tion while allowing for recombination in generating the transmitted
haplotypes.

We created the programGeneDrop specifically to simulate the prop-
erties of MAGIC and other MPPs and it was used for all the simulations
presented here. GeneDrop conducts gene dropping (MacCluer et al.,
1986) simulations using csv files containing a known pedigree, genetic
map and founder genotypes as input. It has been developed to over-
come the limitations of alternative gene dropping software which are
often incompatiblewith plant pedigrees involving hermaphroditic indi-
viduals and selfing. The program is written in C++ and is available to
download from http://www.niab.com/pages/id/326/Resources.

All six population/pedigree designs were simulated 1000 times for
both single and multiple funnel schemes. Simulated data were proc-
essed in R (R Core Team, 2011) to compute the average number of
two-locus recombinant haplotypes and haplotype diversity for all
MAGIC and NAM populations per simulation. For the different popula-
tion schemes, recombinant haplotypes between loci on the same chro-
mosome and from different chromosomes were assessed. For the
second round of MAGIC population simulations, the number of unique
haplotypes createdwas assessed by counting the total number of haplo-
types created in incremental steps of four DArTmarkers. All simulations
were performed on aWindows 7.0 laptop with 1000 simulations taking
approximately fifteen minutes.

3. Results

3.1. Selecting founders

Two methods for using genetic algorithms to identify founder indi-
viduals of MPPs, maximizing segregating alleles or maximizing average
gene diversity, were compared against random sampling (Table 1). Both
methods selected subsets with higher percentages of polymorphic
markers and greater average gene diversity than random sampling. Rel-
ative to each other, the genetic algorithm for segregating alleles found
solutions capturing slightly higher percentages of polymorphic loci
Table 3
Simulated segregation probabilities and diversity for founders selected from a source populatio
and 0.5). The simulated lines are sampled from a population in Hardy-Weinberg equilibrium.

p(segregating)

MPP type 0.01 0.1 0.25 0.4 0.5

2-way 0.020 0.180 0.375 0.480 0.5
4-way 0.039 0.344 0.680 0.845 0.8
8-way 0.077 0.570 0.900 0.983 0.9
16-way 0.149 0.815 0.990 1.000 1.0
26-way 0.230 0.935 0.999 1.000 1.0
NAM 0.230 0.935 0.999 1.000 1.0
Source 1.000 1.000 1.000 1.000 1.0
and the genetic algorithm for average gene diversity found solutions
with slightly higher average gene diversity. The average gene diversity
in genetic algorithm selected subsets of four or more lines exceeded
the average gene diversity for the entire set of 376 lines.

For the subsets containing two lines, neither method succeeded in
finding the best subset in all replications. The segregating allele method
identified the best subset for polymorphic loci in three out of the ten
replications and the gene diversity method identified the best subset
for gene diversity twice. However, on average the chosen subsets
were nearly equivalent to the best subsets for both percentage of poly-
morphic loci and average gene diversity.

With infinite alleles, all mapping populationswill be segregating. Di-
versity increases asymptotically toward one with increase in founder
number for MAGIC populations. However, for NAM, the founder
used as common parent contributes half the alleles to the population
which reduces diversity to below that for a four-way MAGIC design
(Table 2). Table 3 shows segregation probabilities and diversities for
founders selected from a source populationwith varying allele frequen-
cies. Higher minor allele frequencies and larger numbers of founders
both increase diversity and the probability that themapping population
is segregating at the locus. As before, the unequal contribution of foun-
ders to the NAM population reduces its diversity. In this respect, the 26
founder MAGIC population would be best. In practice, however, a 32
founder MAGIC population would take no longer to establish and the
sixteen founder population compares favourably with the NAM for all
metrics assessed via simulation in this study.

3.2. Simulating multi-parent populations

We assessed the capability of eachMPP type to generate new haplo-
types as ameasure of its potential to increase diversity for traitmapping.
For theMAGIC populations, for n founders, themaximumnumber of re-
combinant haplotypes possible from two loci is n2 − n. To drive recom-
bination, and to avoid genetic drift, we found it preferable to replicate
crosses starting from the second generation of the mixing stage to the
last generation. This enhanced full recovery of all possible haplotypes
(parental haplotypes and recombinant haplotypes) per simulation for
the MAGIC populations. For NAM, the maximum number is 50 (two
from each of the 25 bi-parental crosses).

Simulations were used to evaluate the creation of recombinant hap-
lotypes between two loci on the same chromosome and on different
chromosomes. For theNAMpopulation, all 50 possible two-locus haplo-
types were observed in every simulation at all recombination frequen-
cies. For the four-parent MAGIC population all sixteen possible two-
locus haplotypes were observed at all recombination frequencies. The
average number of recombinant haplotypes at 5 cM was 253.5 and at
10 cM was 452.1, giving an average ratio of 3.5 to 1 non-recombinant
to recombinant haplotypes and 1.71 to 1 non-recombinant to recombi-
nant haplotypes at 5 and 10 cM, respectively. The average number of re-
combinant haplotypes between different chromosomes was 1499.6 to
498.4 non-recombinants over the 1000 simulations (a three to one
ratio of recombined to non-recombined haplotypes, as expected for un-
linked loci at equilibrium). The proportion of recombinant haplotypes
n segregating for a bi-allelic locus with varying minor allele frequencies (0.01, 0.1, 0.2, 0.4

Diversity

0.01 0.1 0.25 0.4 0.5

00 0.010 0.090 0.188 0.240 0.250
75 0.015 0.135 0.281 0.360 0.375
92 0.017 0.158 0.328 0.420 0.438
00 0.019 0.169 0.352 0.450 0.469
00 0.019 0.173 0.361 0.462 0.481
00 0.015 0.135 0.281 0.360 0.375
00 0.020 0.180 0.375 0.480 0.500

http://www.niab.com/pages/id/326/Resources


14 O. Ladejobi et al. / Applied & Translational Genomics 11 (2016) 9–17
observed for three two-locus haplotypes for the four-parent MAGIC
population is summarized in Fig. 2a. Across all simulations, none of
the expected haplotypes were missing.
a.

c.

e.
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Fig. 2. Level of recombination between pairs of loci in the MAGIC populations. Numbers 1 and
recombination between unlinked loci for (a) four-parent, (b) eight-parent, multiple funne
multiple funnel crossing scheme and (e) sixteen-parent, single funnel crossing scheme.
For the eight-parent MAGIC, two crossing schemes were simulated
to compare levels of recombination using haplotype number. Observed
haplotype number was compared to expected haplotype number for
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Table 5
Number of haplotypes over all simulations for both schemes of the sixteen-parent MAGIC
population (maximum possible = 256).

Multiple funnel Single funnel scheme

Chromosome Min Max Mean Min Max Mean

5 cM 99 147 124.0 44 61 52.5
10 cM 144 186 166.9 46 63 58.5
Unlinked 208 245 230.6 58 64 63.7
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each scheme. For an eight-parent MAGIC population, we expect a
maximum of 64 haplotypes per pair of loci. For the first scheme (multi-
ple funnel; requiring more crosses than the second), with a distance of
5 cM between loci, we observed all possible haplotypes in only 31 of
1000 simulations; at least one haplotype was missing from 969 simula-
tions. At 10 cM between loci, all haplotypes were observed in 634
simulations. For unlinked loci, all haplotypes were observed at an
average ratio of seven to one recombinant to non-recombinant
haplotype, in agreement with the expectation at linkage equilibrium
(Table 4). In the second scheme, eight-parent individuals were created
by mixing founders in a single funnel. At 5 cM, all haplotypes were
observed in only five simulations; at least one haplotype was missing
for 995 simulations. At 10 cM all haplotypes were observed in 317
simulations, about one-third of the times. Similar to themultiple funnel
schemes, all simulated haplotypeswere observed for all unlinked loci at
an average ratio of seven to one recombinant to non-recombinant
haplotypes (Table 4).

The proportion of recombinant haplotypes observed per two locus
pair for the multiple funnel scheme was less varied (Fig. 2b) over all
simulations compared to the single funnel scheme where recombinant
haplotypes were observed to be fewer in number and highly variable
across simulations (Fig. 2c).

For the sixteen-parent MAGIC populations comparisons were made
between the two schemes in the number of two-locus haplotypes found
in the RILs. In the first scheme in which founders were mixed in fifteen
funnels, all sixteen parental haplotypeswere recovered in every simula-
tion for all recombination frequencies; for the single funnel scheme
however, only eight parental haplotypes were recovered in any simula-
tion. For a sixteen-parent MAGIC population, we expect a maximum of
256 haplotypes including recombinant and parental haplotypes. The
number of haplotypes observed per recombinant haplotype class in
the multiple and single funnel crossing schemes are shown in Table 5.
Fewer haplotypes were observed for the single compared to the multi-
ple funnel scheme. It was also observed that in the single funnel scheme
recombination levels were highly variable within the different simulat-
ed populations (Fig. 2d) when compared to the multiple funnel MAGIC
scheme (Fig. 2e).

In the simulations based on DArT marker data, we examined the
number of unique haplotypes that would potentially be created when
founders are selected to maximize allele number. This was achieved
by counting unique haplotypes incrementally in steps of four markers.
Results from these simulations were consistent with previous findings.
Across all simulations in the multiple and single funnel crosses, the
number of haplotypes increased with increasing number of founders
(Table 6).
Table 4
Observed number of missing haplotypes from simulations of the two crossing schemes of
the eight-parent MAGIC population. (Maximum number = 64).

Number of missing haplotypes

Multiple funnel
scheme Single funnel

5 cM 10 cM 5 cM 10 cM

0 31 634 5 317
1 102 286 20 377
2 196 67 47 198
3 216 11 136 79
4 204 2 174 22
5 122 0 173 6
6 72 0 161 1
7 35 0 143 0
8 10 0 86 0
9 10 0 32 0
10 2 0 13 0
11 0 0 8 0
12 0 0 2 0
4. Discussion

Wehave used simulation to consider selection of parents to establish
MPPs, and to assess the value of two forms: MAGIC and NAM. NAM is a
flexible approach as it involves fewer crosses (compared to MAGIC)
with potential to add crosses over time. However, althoughmultiple pa-
rental lines (typically 26), are involved the creation of haplotype diver-
sity is limited: atmost 50 recombinant haplotypes are created. Although
even with modest population sizes all 50 are virtually guaranteed to be
produced unless linkage is very tight. A greater limitation may be that
these 50 will always involve the common parent and therefore no
novel haplotypes are generated between the 25 unique parents.

In order to assist in the selection of MPP founders we present a sim-
ple script using a genetic algorithm, although we have not directly ad-
dressed the process of selection of founders for the simulated crossing
schemes presented. Founders can also be selected on breeding utility,
or on diversity with the merits dependent on the biological questions
to be addressed. For example, in using association mapping it is often
difficult to pull together sufficient lines if there is a constraint on the
agro-ecological adaptability of the parents. In this case MAGIC is proba-
bly the only option as it generates a large number of lines for genetical
studies. Results in rice and wheat have shown that doing this also cre-
ates novel recombinants of direct interest to breeders (Bandillo et al.,
2013;Mackay et al., 2014). In contrast toMAGIC, NAM ismore highly in-
fluenced by the choice of the recurrent (common)parent. This has led to
the suggestion that NAM should be extended to include more than one
recurrent parent (Guo et al., 2010). To some extent, the two approaches
can be viewed as having different objectives: MAGIC was intended to
map QTL in breeders' germplasm to intervals of a few cM, suitable for
marker assisted selection,whereasNAM is focused onpositional cloning
of QTL (Paux et al., 2012). Clearly, there is a complementary role for both
in modern crop genetics.

NIAB have created twowheatMAGIC populations of relevance to UK
and European winter wheat breeding. The first, termed MAGIC Elite
(Mackay et al., 2014), was created from eight parental lines, all of
which were commercially grown at the time the project started. The
second, termed MAGIC Diverse, was created from sixteen parental
lines to capture maximum genetic diversity without reference to trait
values but conditional on each founder being adapted to the UK winter
sown environment. NIAB are also developing four wheat NAM popula-
tions to incorporate diversity from wheat's ancestors as part of the UK
Wheat Improvement Strategic Programme (WISP; www.wheatisp.org;
Moore, 2015).

The use of multiple NAM founders would create more haplotype di-
versity, but simulations here show the potential for haplotype diversity
is not as great as with MAGIC populations. The maize NAM consists of
200 lines from each of the 25 constituting bi-parental mapping popula-
tions giving 5000 lines in total, compared to 1000 for the MAGIC popu-
lations. At 5 and 10 cM the simulated multi-funnel eight-parent MAGIC
population recovers on average 60.5 (minimum 54) and 63.5 (mini-
mum 60) novel haplotypes respectively, but 64 for the unlinked loci
(data not shown). In contrast, the NAM has more lines but only creates
50 haplotypes. This means that the eight-founder MAGIC population
does better than the NAM for loose linkage as simulated here. The six-
teen-parent MAGIC population, with the potential to create 240 recom-
binant two-locus haplotypes, is always better than the NAM as even at

http://www.wheatisp.org


Table 6
Unique haplotypes generated from simulation of four, eight and sixteen-parent MAGIC populations using multiple and single funnel schemes with sixteen DArT markers.

Multiple funnel Single funnel

4-parent 8-parent 16-parent 8-parent 16-parent

Markers Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean

4 3 3 3 6 6 6 7 14 10.3 1 6 3.9 4 14 7.4
8 10 18 13.8 26 41 33.6 42 71 56.5 2 43 15.6 14 67 37.3
12 50 76 60.8 85 136 105.4 137 215 176.1 10 110 45.4 34 193 106.6
16 74 104 86.8 151 222 183.3 266 401 342.7 18 190 81.0 78 354 209.1
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5 cM 124 (minimum 99) haplotypes are created. Simulations based on
DArTmarkers showed similar trends in the generation of haplotypes al-
though there was a higher variance in haplotype number and lower
probability of achieving certain recombinant types where frequencies
were lower.

There are additional opportunities to further advance MAGIC. Fol-
lowing creation of individual RIL populations, it is advantageous to ad-
vance through additional generations of crossing thereby creating a
second resource for mapping. These yet more advanced intercrosses
can be used to replicate QTL detected in the initial population. It is
also possible to optimise the use of the two populations for power and
precision of QTL detection under constrained genotyping and pheno-
typing resources, though this has not been covered in the simulations
presented here. However, there is no point in crossing indefinitely as
the generation of novel haplotypes through recombination is balanced
by the loss of haplotypes through drift. Although schemes exist to re-
duce the rate of inbreeding (Crow and Kimura (1970) in Fraser, 1972),
these only reduce the rate of inbreeding, but do not eliminate it
(Valdar et al., 2006a).

Creation of MPPs represents a greater investment of time and effort
compared to traditional bi-parental populations. Despite this, numerous
crop research groups throughout the world have developed, or are de-
veloping, MPPs. This paper broadly demonstrates that more founders
and large populations are best. MAGIC outperforms NAM, even with
smaller population sizes, provided that at least eight founders and
multi-funnel MAGIC crossing schemes are used. Although only a few
possible MAGIC schemes have been studied, GeneDrop simulations
and counts of haplotype numbers are a simple way of quantifying the
merits of different schemes and we have provided easy-to-use, open
source, open access software to enable this.
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