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The vitreous humor (VH) is a clear and transparent 
liquid/gel mixture in the posterior cavity of the eye. It directly 
contacts the retina; therefore, the components of VH reflect 
the physiologic or pathogenic conditions of the retina in 
some respects. Previous studies have shown that VH RNA 
or protein profiles are associated with different spectrums 
of retinal diseases. For example, several microRNAs are 
enriched in VH and are correlated with specific ocular 
pathologies [1]. Proteins involved in angiogenesis, immune 
response, and oxygen-induced vessel loss have been detected 
in the VH of proliferative diabetic retinopathy patients [2,3]. 
The extracellular chaperone clusterin, pigment epithelium-
derived factor opticin, and transport proteins for lipophilic 
substances prostaglandin-H2 D-isomerase in VH have been 

proposed as biomarkers for neovascular age-related macular 
degeneration [4].

Retinitis pigmentosa (RP) is a highly heterogeneous 
retinal dystrophy characterized by primary degeneration of 
photoreceptors, followed by death of inner retinal neurons 
[5,6]. Photoreceptor loss accompanied by chronic retinal 
inflammation has been detected in various human patients 
and RP animal models [7-9], and the inflammatory status 
can persist even after photoreceptor loss [10]. Inflammatory 
cells in the anterior vitreous cavity were observed in patients 
with RP, and elevated pro-inflammatory cytokines, such as 
IL1β and IL6, were detected in the VH of patients with RP 
[9,11]. The sustained inflammatory environment is proposed 
to exacerbate photoreceptor loss and retinal degeneration in 
RP, as aberrant active immune cells, that is, reactive retinal 
microglia, are found in phagocyte live photoreceptors [12,13].

Although VH has been well studied in animal models 
of diabetic retinopathy and neovascular age-related macular 
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Purpose: Increased inflammatory factor levels have been reported in the vitreous humor (VH) of diabetic retinopathy 
and neovascular age-related macular degeneration, ocular diseases generally associated with the formation of new retinal 
blood vessels and leakage. However, the levels of inflammatory mediators are less known in retinal degeneration without 
neovascularization. Human retinitis pigmentosa (RP) and animal models of light-induced retinal degeneration (LIRD) 
share several features, such as photoreceptor death and retinal inflammation. Here, we aimed to determine the levels of 
inflammatory factors in the VH of the LIRD mouse model.
Methods: LIRD was induced by exposing BALB/c mice to white light (15,000 lx, 2 h), and the mice were recovered for 2 
days before analysis (n = 50 mice). We assessed retinal morphology using optical coherence tomography and hematoxylin 
and eosin staining; retinal cell viability was determined using terminal deoxynucleotidyl transferase dUTP nick-end 
labeling, and retinal responses were measured based on electroretinogram signals. Total retinal RNAs were extracted 
and subjected to RNA sequencing analysis. VH samples from control (n = 4) and LIRD mice (n = 9) were assayed in 
triplicate for a panel of four inflammatory mediators using the Simple Plex Cartridge on an Ella System.
Results: Retinal degeneration, photoreceptor death, infiltration of microglia/macrophages into the photoreceptor layer, 
and loss of a- and b-waves were obviously detected after LIRD. RNA sequencing revealed that light damage (LD) led to 
the significant upregulation of inflammatory factors in mouse retinas. In the VH, LD increased the total protein concen-
tration. Dramatic induction of CCL2 (~3000 fold) and IL6 (~10 fold) was detected in VH in response to LD. Increased 
but not significant levels of TNFα and IL1β were also detected in light-exposed VH.
Conclusions: Given that the LIRD model mimics RP pathogenesis in some aspects, these results suggest a causative 
link between retinal degeneration and VH inflammation in RP progression, and the increased CCL2 level in VH may 
reflect similar elevated CCL2 expression in the degenerative retina.
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degeneration (nAMD), in which neovascularization usually 
occurs, the components of VH are less known in RP mouse 
models. Identifying the inflammatory mediators in VH under 
RP pathogenic conditions is important because they could 
highlight a causal link between retinal inflammation and 
inflammatory factors secreted into VH, as well as provide 
potential biomarkers that represent changes in proteins during 
retinal degeneration. Here, we used a light-induced retinal 
degeneration (LIRD) mouse model to mimic RP and found 
global upregulated protein concentrations in VH after light 
damage (LD). Concomitant with LD-induced inflammatory 
factor expression in the retina, significantly increased chemo-
kine (C-C motif) ligand 2 (CCL2) levels were detected in the 
VH after LD.

METHODS

Experimental animals, reagents, and antibodies: BALB/c 
mice (5–8 weeks) purchased from Sun Yat-Sen University 
Laboratory Animal Center were used for all experiments. 
Mice were housed under a 12:12 light:dark cycle with ad 
libitum access to standard mouse chow. The study included 
50 mice, with an equal distribution of males and females. All 
procedures conformed according to the ARVO Statement for 
the Use of Animals in Ophthalmic and Vision Research and 
were approved by the Animal Use and Care Committee of 
Zhongshan Ophthalmic Center at the Sun Yat-Sen University, 
Guangzhou, China (Approval form #2022031). The reagents, 
antibodies, and other resources used in this study are listed.

Light exposure: The mice were placed in constant darkness 12 
h before exposure to light. Non-anesthetized mice were then 
exposed to typical laboratory lighting (50 lx) or white light 
(15,000 lx) for 2 h using light-emitting diode (LED) lights 
placed at the top of a standard mouse cage. To maintain orien-
tation during light exposure, each mouse was placed inside an 
end-cut 50 ml conical tube, which was secured inside a box 
used for light exposure. During light exposure, the mouse's 
front and hind paws were fixed with tape to ensure that the 
mouse's body did not flip over. The level of illumination was 
measured using a digital light meter (TASI, T8121, Jiangsu, 
China).

RNA-seq analysis: Mice were exposed with or without bright 
light (15,000 lx, 2 h), and retinas were collected 48 h after 
exposure. Total RNAs were extracted using TRIzol. The 
purified RNAs were then sent to Chi Biotech for sequencing. 
Bulk RNA-seq data were accessed from the NCBI Sequence 
Read Archive (SRA) database under accession number 
PRJNA916821. Adapters were removed using Trim Galore 
v1.18. Raw sequencing data were mapped to the GRCm39 
genome assembly using HISAT2 v2.2.1 [14]. We calculated 

fragments per kilobase of exon per million (FPKM) using 
featureCounts v2.0.1 [15]. Using DESeq2 [16], we identified 
differentially expressed genes (DEGs) between control and 
light damage groups (fold change ≥2 and false discovery rate 
[FDR] ≤0.05). All upregulated genes (fold change ≥2 and FDR 
≤0.05; n = 1384) were used for gene set enrichment analysis 
(GSEA) by R package clusterProfiler [17].

Immunofluorescence (IF) staining and in situ terminal deoxy-
nucleotidyl transferase dUTP nick-end labeling (TUNEL) 
assay: After euthanasia, the eyeballs were enucleated into 
PBS to remove excess connective tissue and fixed in 4% 
PFA for 10 min. A small cut was made in the cornea of each 
mouse eye after fixation for 10 min and further fixation for 
50 min. The eye was then dehydrated using 10% and 20% 
sucrose in 0.1 M phosphate-buffered saline for 1 h and 
dehydrated in 30% sucrose overnight. The dehydrated eyes 
were placed in a 1:1 mixture of 30% sucrose and optimal 
cutting temperature for 1 h before being embedded in the 
optimal cutting temperature medium. Retinal cryosections 
along the superior and inferior retinal meridians were cut at 
8-μm thickness, and the sections were subjected to standard 
immunofluorescence protocols, as previously described [18]. 
The antibodies and dilution conditions are as follows: rabbit 
monoclonal (EPR16588) to IBA1 (Abcam, # ab178846), 1:100; 
Anti-rabbit IgG (H+L), F (ab') 2 Fragment (Alexa Fluor ® 
594 Conjugate; Cell Signaling Technology, #8889), 1:500. 
TUNEL assay was performed using a TUNEL BrightRed 
Apoptosis Detection Kit (Vazyme, #A113) according to the 
manufacturer's procedure. The stained retinal sections were 
imaged with TissueFAXS microscopy.

Coomassie blue assay: The VH was diluted with radioim-
munoprecipitation (RIPA) assay buffer (VH: RIPA = 1:1) 
containing a proteinase inhibitor cocktail and a protein phos-
phatase inhibitor. An equal volume of VH was used for elec-
trophoresis. After electrophoresis, the gel was fixed/stained 
with 0.05% Coomassie brilliant blue R-250 prepared in 50% 
methanol and 10% acetic acid. Staining was performed for 4 
h at room temperature with gentle shaking. The gel was then 
washed in a washing buffer (50% methanol, 10% acetic acid) 
for 24 h, and images were taken using a Bio-Rad imaging 
system.

Optical coherence tomography (OCT): Before imaging, 
the mice were anesthetized with 1% pentobarbital sodium 
(70 μl/10 g, prepared in normal saline solution). Their pupils 
were dilated with 1–2 drops of tropicamide phenylephrine 
eye drops, and the corneas were lubricated with normal saline 
solution. OCT was performed on both eyes with a Heidelberg 
Spectralis OCT device (Heidelberg Engineering) to inves-
tigate structural changes. Thickness measurements were 
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performed with a circular ring scan (circle diameter 1, 3, and 
6 ETDRS) centered on the optic nerve head, which represents 
the average retinal thickness in a certain field. Central retinal 
thickness was calculated from four fields around the optic 
nerve head using Heidelberg Eye Explorer software.

Electroretinography (ERG): Briefly, the mice were dark-
adapted overnight and anesthetized with 1% pentobarbital 
sodium. Their pupils were dilated with 1–2 drops of tropi-
camide phenylephrine eye drops, and the corneas were lubri-
cated with hypromellose gel. The ERG was recorded using a 
Diagnosys Celeris rodent ERG device. Electrodes were placed 
on top of each cornea. Mice were stimulated with flashlight 
of various intensities, ranging from 0.003 to 10 cd sec/m2.

Hematoxylin and eosin (HE) staining of the retina: After 
euthanasia, the eyeballs were enucleated and fixed in FAS 
eye fixation solution (Servicebio #G1109) for 24 h. After fixa-
tion, the eyes were dehydrated in 60%, 70%, 80%, 90%, and 
100% ethanol and processed for paraffin embedding. Paraffin 

sections of 8-μm thickness were subjected to hematoxylin and 
eosin (HE) staining, as previously described [18]. The stained 
retinal sections were imaged with TissueFAXS microscopy.

ELLA analysis: The VH was obtained using a Hamilton 
needle, with a volume of 3–5 μl obtained from each eye. 
VH from the control (n = 4 mice) and LIRD mice (n = 9 
mice) were diluted 2–10 times and loaded in a total of 50 μl 
volume, assayed in triplicate for a panel of four inflammatory 
mediators using the Simple Plex Cartridge (ProteinSimple, 
SPCKC-MP-004230) on an EllaTM System (ProteinSimple). 
Data were acquired on Simple Plex Explorer with an instru-
ment default setting.

Statistics: The results are expressed as the mean ± SD. 
GraphPad Prism 9 software (GraphPad software, Inc., La 
Jolla, CA) was used for statistical analysis, as described in 
the Results section. All tests are two-tailed, unpaired t-tests 
unless otherwise indicated.

Figure 1. LD leads to retinal degeneration and photoreceptor death. The mice were exposed to typical laboratory lighting (50 lx) or white 
light (15,000 lx) for 2 h, and analyses were performed two days after LD. A: In vivo OCT shows retina structure in control (CTRL) and 
light-exposed (LD) mice. LD induces an altered reflectance in the outer nuclear layer (ONL); n = 5 mice per group. B: HE staining shows 
retina structure in CTRL and LD mice. Scale bar: upper panel: 200 μm, lower panel: 50 μm. GCL: ganglion cell layer; IPL: inner plexiform 
layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; IS: inner segment; OS: outer segment; n = 3 mice per 
group. C: TUNEL assay shows cell viability in CTRL and LD mouse retinas. Note that LD causes massive cell death in photoreceptors (red 
signals), but no detectable cell death occurs in other retinal layers. Scale bar: upper panel: 200 μm, lower panel: 50 μm. The right panel shows 
the quantification results of TUNEL. The TUNEL signal was quantified by dividing the fluorescence intensity by the area of INL+OPL+ONL 
(region indicated by dashed lines) using ImageJ. Six regions from four retinas were randomly selected for quantification. Unpaired t-test, n 
= 4 eyes per group. D: ERG response of mouse retina with the indicated treatment; n = 4–6 mice per group.
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Ethics approval and consent to participate: All procedures 
conformed according to the ARVO Statement for the Use 
of Animals in Ophthalmic and Vision Research and were 
approved by the Animal Use and Care Committee of Zhong-
shan Ophthalmic Center with the IACUC at the Sun Yat-Sen 
University, Guangzhou (#2022031), China.

RESULTS

Light damage induces photoreceptor death, retinal degen-
eration, and function impairment: We determined the LIRD 
mouse model using retinal morphological and functional 
analyses. The BALB/c mice were exposed to bright light, 
and the effects of LD were first investigated by in vivo OCT 
imaging. Thinning of the outer nuclear layer (ONL) was 
evident in the mouse retina after LD (Figure 1A). Histo-
logical analysis by HE staining confirmed that LD led to 
disruption of the retinal structure and loss of photoreceptors 

(Figure 1B). Further, TUNEL assays demonstrated prominent 
photoreceptor death after LD (Figure 1C). Concomitant with 
retinal degeneration and photoreceptor death, ERG analysis 
showed that the a- and b-wave amplitudes were significantly 
decreased, indicating LD-induced retinal response impair-
ment (Figure 1D). Together, these results demonstrate the 
successful establishment of the LIRD mouse model.

LD induces inf lammatory responses in the retina: We 
explored retinal transcriptome alteration in response to LD by 
RNA sequencing analysis (RNA-seq, n = 4 mice per group). 
Robust upregulation of inflammatory genes was detected 
in the mouse retina after LD (Figure 2A). The chemokines 
Ccl2, Ccl4, and Ccl3 ranked top in the profile of upregulated 
genes (Figure 2A). Our recent study revealed that interferon 
signaling was increased in sodium iodate-induced retinal 
degeneration [18]. Interestingly, the interferon-inducible gene 
Ifi204, and Casp1, an effector of interferon signaling, were 

Figure 2. Light damage (LD) induces retinal inflammation and infiltration of microglia/macrophages into the outer nuclear layer (ONL). A: 
A heatmap shows genes for positive regulation of inflammatory response in control (CTRL) and LD mouse retinas. n = 4 mice per group. B: 
Gene set enrichment analysis (GSEA) analysis of the positive regulation of the inflammatory response in response to LD (p. adjust = 4.222e-
09). C: Immunofluorescence analysis shows IBA1-positive microglia/macrophages. Note that LD induces the migration of IBA1-positive 
cells to the ONL layer. Right panel: quantification of IBA1-positive cells in ONL. The IBA1-positive cell number was divided by the ONL 
area (region indicated by dashed lines) using ImageJ. Six regions from four retinas were randomly selected for quantification. Scale bar: 
upper panel: 50 μm; lower panel: 10 μm. Unpaired t-test, n = 4 eyes per group.
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induced by LD (Figure 2A), suggesting that activation of the 
interferon pathway may be a shared mechanism in retinal 
degeneration. Further, metalloproteases (Mmp8, Adam8), 
interleukins (Il1b), complement components (C3), and toll-
like receptors (Tlr6, Tlr2) were also significantly increased 
by light exposure (Figure 2A). GSEA further demonstrated a 
significant enrichment of genes in the positive regulation of 
the inflammatory response (Figure 2B).

Because activation of macrophage/microglia is a 
hallmark of retinal inflammation, we performed immu-
nohistochemistry staining and labeled the macrophages/
microglia with an anti-IBA1 antibody. In the control retina, 
macrophages/microglia were mainly detected in the inner and 
outer plexiform, with typical thin and branched processes 
representing the resting phenotype (Figure 2C). After LD, a 
substantial increase in IBA1-positive cells was found in the 
ONL, exhibiting a swollen, amoeboid-like reactive pheno-
type (Figure 2C). These findings suggest that LD induces 
an inflammatory response and infiltration of macrophages/
microglia in mouse retinas.

Light damage increases VH protein concentration: We then 
determined the overall VH proteins using Coomassie blue 
staining. The VH samples were loaded at the same volume, 
revealing an overall increased protein concentration based 
on the degree of Coomassie blue staining (Figure 3A), as 
evidenced by increased band intensity.

Light damage increases inflammatory factor expression in 
VH: We then measured the VH inflammatory factor using 
Ella, a highly sensitive automated immunoassay system. 
We chose a cartridge coated with four inflammatory media-
tors that were previously reported to be involved in retinitis 
pigmentosa [9]. In the control group, the mean concentrations 
of CCL2, IL6, IL1β and TNFα in VH were 118.4 ± 104.8, 1.7 ± 
1.2, 9.6 ± 6.8, and 3.1 ± 2.1 pg/ml, respectively (Figure 4A-D). 
After LIRD, the concentrations of CLL2 (3000.9 ± 1077.0 
pg/ml; Figure 4A) and IL6 (9.5 ± 4.1 pg/ml) were increased 
~3000- and 10-fold, respectively (Figure 4B). Notably, this 
dramatic upregulation of CCL2 in the VH of LRID mice 
is consistent with the results of the RNA-seq analysis that 
showed CLL2 ranking top among upregulated inflammatory 
factors in the LD retina (Figure 2A). Increased levels of TNFα 
(12.6 ± 11.0 pg/ml; Figure 4C) and IL1β (42.3 ± 60.5 pg/ml; 
Figure 4D) were also detected in the VH after LIRD, although 
not significant.

DISCUSSION

Our results revealed dramatic upregulation of the inflamma-
tory chemokine CLL2 and cytokine IL6 in VH in response to 
LD. The source of such inflammatory factors may be derived 
from the adjacent retina or from infiltrated immune cells, 
which were reported in the VH of patients with RP [9,11].

Figure 3. Coomassie blue staining of VH from CTRL and LD mice. (A) The VH samples were collected from CTRL and LD mouse eyes. 
For each line, an equal volume of VH (2.5 μl) was loaded. (B) The heatmap shows the protein band intensity within the indicated molecular 
weight ranges. n = 2 eyes per sample. The band intensity was measured using ImageJ.
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CCL2 is a chemokine ligand that acts as a molecular 
cue for leukocyte homing during retinal inflammation and is 
increased in retinal degenerations, including AMD and RP 
[19]. Our results demonstrating a robust upregulation of CCL2 
in LD mouse VH are in concert with these clinical observa-
tions. However, the type of retinal cells secreting CCL2 into 
VH is currently unknown. One possibility is the Müller cells, 
because increased CCL2 mRNA was detected in the Müller 
cells after light damage [20,21]. Pharmacological suppres-
sion of chemokine signaling has been shown to ameliorate 
subretinal macrophage accumulation and photoreceptor death 
during retinal degeneration [22]. Our results suggest that the 

concentration of CCL2 in VH may reflect the concentra-
tion in the retina; therefore, CCL2 levels may be useful for 
predicting the therapeutic effects of anti-inflammatory drugs 
in treating RP.

Enhanced IL6 has been detected in many ocular diseases 
[23,24], and as a proinflammatory cytokine, IL6 is thought to 
manifest an inflammatory response in retinal diseases [23]. 
However, the role of IL6 in retinal pathogenesis remains 
controversial. For example, elevated IL6 in optic nerve head 
injury enhances nerve damage [25], and IL6 derived from 
human microglia can inhibit neurosphere generation in vitro 
[26]. By contrast, IL6 also stimulates retinal ganglion cell 

Figure 4. Quantification of inflammatory factors in VH by the Ella system. The VH samples from the CTRL and LD mouse eyes were 
collected. For the CTRL group, n = 4 mice; for the LD group, n = 9 mice. The p value was calculated by an unpaired t-test.
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regeneration after optic nerve injury and promotes neurito-
genesis in cultured retinal ganglion cells [25,27]. Further-
more, IL6 reportedly protected photoreceptors in an experi-
mental model of retinal detachment [28]. We speculate that 
the concentration of IL6 may account for its diverse functions 
in eye pathogenesis. IL6 levels in the VH of patients with RP 
have been found to be 257.8 ± 488.0 pg/ml [9]. In our study, 
we found that the VH IL6 level was 9.5 ± 4.1 pg/ml after 
LD, which was much lower than that in patients with RP. 
Currently, we do not know whether LD-induced IL6 in VH is 
neuroprotective or neurodestructive. Future studies using the 
IL6 neutralization antibody or IL6 knockout mice may help 
elucidate its function in LIRD.
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