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Abstract. Many processes in living organisms are subject to periodic oscillations at different hierarchical levels 
of  their organization: from molecular-genetic to population and ecological. Oscillatory processes are responsible 
for cell cycles in both prokaryotes and eukaryotes, for circadian rhythms, for synchronous coupling of respiration 
with cardiac contractions, etc. Fluctuations in the numbers of organisms in natural populations can be caused by 
the populations’ own properties, their age structure, and ecological relationships with other species. Along with 
experimental approaches, mathematical and computer modeling is widely used to study oscillating biological sys-
tems. This paper presents classical mathematical models that describe oscillatory behavior in biological systems. 
Methods for the search for oscillatory molecular-genetic systems are presented by the example of their special 
case – oscillatory enzymatic systems. Factors inf luencing the cyclic dynamics in living systems, typical not only 
of  the molecular-genetic level, but of  higher levels of organization as well, are considered. Application of diffe-
rent ways to describe gene networks for modeling oscillatory molecular-genetic systems is considered, where the 
most important factor for the emergence of cyclic beha vior is the presence of feedback. Techniques for f inding 
potentially oscillatory enzymatic systems are presented.  Using the method described in the article, we present and 
analyze, in a step-by-step manner, f irst the structural models (graphs) of gene networks and then the reconstruc-
tion of the mathematical models and computational experiments with them. Structural models are ideally suited 
for the tasks of an automatic search for potential oscillating contours (linked subgraphs), whose structure can 
correspond to the mathematical model of the molecular-genetic system that demonstrates oscillatory behavior in 
dynamics. At the same time, it is the numerical study of mathematical models for the selected contours that makes 
it possible to conf irm the presence of stable limit cycles in them. As an example of application of the techno-
logy, a network of 300 metabolic reactions of the bacterium Escherichia coli was analyzed using mathematical and 
computer modeling tools. In particular, oscillatory behavior was shown for a loop whose reactions are part of the 
tryptophan biosynthesis pathway.
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Аннотация. Многие процессы в живых организмах подвержены периодическим колебаниям на различ-
ных иерархических уровнях их организации: от молекулярного-генетического до популяционного и эко-
логического. Осциллирующие процессы отвечают за клеточные циклы как у прокариот, так и у эукариот, за 
циркадные ритмы, синхронную связь дыхания с сердечными сокращениями и др. Колебания численностей 
организмов в природных популяциях могут быть обусловлены собственными свойствами популяций, их 
возрастной структурой, а также экологическими взаимоотношениями с другими видами. Наряду с экспери-
ментальными подходами, для исследования осциллирующих биологических систем широко применяется 
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математическое и компьютерное моделирование. В данной статье представлены классические матема-
тические модели, которые описывают осциллирующее поведение в биологических системах. Приведены 
методы поиска осциллирующих молекулярно-генетических систем на примере их частного случая – осцил-
лирующих ферментативных систем. Рассмотрены факторы, влияющие на циклическую динамику в живых 
системах, характерные не только для молекулярно-генетического уровня, но и для более высоких уровней 
организации. Обсуждается применение различных способов описания генных сетей для моделирования 
осциллирующих молекулярно-генетических систем, где важнейшим фактором возникновения циклическо-
го поведения является наличие обратных связей. Представлены технологии поиска потенциально осцилли-
рующих ферментативных систем. С помощью метода, описанного в статье, проводится поэтапный процесс 
построения и анализа сначала структурных моделей (графов) генных сетей, а затем реконструкции матема-
тических моделей и вычислительных экспериментов с ними. Структурные модели идеально подходят для 
задач автоматического поиска потенциальных осциллирующих контуров (связных подграфов), структура 
которых может соответствовать математической модели молекулярно-генетической системы, демонстри-
рующей осциллирующее поведение в динамике. При этом именно численное исследование математиче-
ских моделей для отобранных контуров позволяет подтвердить наличие в них устойчивых предельных цик-
лов. В качестве примера применения технологии проанализирована сеть из 300 метаболических реакций 
бактерии Escherichia coli с использованием инструментов математического и компьютерного моделирова-
ния. В частности, показано осциллирующее поведение для контура, реакции которого входят в путь био-
синтеза триптофана.
Ключевые слова: осцилляции; обратная связь; циклические процессы; моделирование биологических  
систем.

Introduction
Many processes in living organisms are subject to periodic 
oscillations at different hierarchical levels of their organiza-
tion: from the molecular-genetic to the population and eco-
logical levels. For example, at the molecular-genetic level, 
there are oscillations in the concentrations of p53, a protein 
involved in apoptosis or cell cycle delay in DNA damage, and 
its inhibitor Mdm2 (Prives, 1998; Lahav et al., 2004). There 
are also fluctuations in concentrations of hormones in the 
cell, such as melatonin (Boccalandro et al., 2011), prolactin, 
total cholesterol (Garde et al., 2000), etc.; concentrations of 
low molecular weight compounds, such as intracellular and 
intercellular calcium ion concentrations, can also oscillate 
(Pasti et al., 1997; Allen et al., 2000).

One well-known example of organism-wide periodic pro-
cesses is circadian rhythms, for the work on which the 2017 
Nobel Prize in Physiology or Medicine was awarded (Young 
et al., 1984; Siwicki et al., 1988; Hardin et al., 1990; Price et 
al., 1998). Jeffrey C. Hall, Michael Rosbash, and Michael W. 
Young discovered the period gene in Drosophila melano
gaster, which is regulated through feedback by the PER pro-
tein underlying circadian rhythm.

In the article (Podkolodnyy et al., 2017), the authors con-
sidered genes located in liver and kidney cells that are over-
expressed with a certain periodicity during the 24-hour cycle. 
In a subsequent paper, the authors provided an overview of 
various mathematical models used to model the autonomous 
circadian clock in mammalian cells (Podkolodnaya et al., 
2017).

At the cellular level, cyclic processes can include cell 
cycles in both prokaryotes and eukaryotes (Cooper, 1991). 
Such important cyclic processes as heartbeat (Ashkenazy et 
al., 2001), respiration, as well as synchronous relationship 
between respiration and heartbeat (Yasuma, Hayano, 2004), 
photosynthesis (Holtum, Winter, 2003) and other similar pro-

cesses occur at the level of an individual organ or functional 
systems of an organism.

Population waves (Chetverikov, 2009) are a classic example 
of cyclic processes at the population level of organization. 
Fluctuations in the number of organisms in natural popula-
tions can be caused both by external environmental factors 
and by the population’s own properties, its age structure, 
and ecological relationships with other species. A natural 
factor such as seasonal periodicity plays an important role in 
the cyclic processes of the population level, influencing the 
migration of birds, falling into anabiosis, the appearance and 
fall of leaves, etc.

Thus, in the article (Erdakov, Moroldoev, 2017), the au-
thors considered the cyclicity in the population dynamics 
of the red vole, which varies depending on the geographical 
habitat and external conditions in the area. And in the paper 
(Pertsev, Loginov, 2011), using a stochastic model, the authors 
considered how the population size changes when harmful 
food resources are consumed. The investigation of population 
dynamics, often cyclical, is one of the most studied processes, 
both by empirical methods and with the help of mathematical 
methods, including modeling (Volterra, 1928; Bazykin, 2003; 
Riznichenko, 2017).

Finally, biogeochemical cycles, i. e., processes of dynamic 
exchange of chemicals between organisms from prokaryotes 
to higher animals and plants and elements of the biosphere 
(soil, water and air) can be classified as cyclic processes at 
the ecological level (Van Cappellen, 2003; Zavarzin, 2003, 
2011; Struyf et al., 2009).

Cyclical processes in biology are investigated using ex-
perimental and theoretical methods. Mathematical modeling 
is one of the main methods for their investigation, particularly 
in finding areas of stationary, oscillatory, and possibly chaotic 
behavior (Romanovsky et al., 1975; Schnol, 1996; Becks, 
Arndt, 2013).
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The first works devoted to oscillatory biochemical processes 
belong to Alfred Lotka (Lotka, 1910). Lotka described the dy-
namics of  biochemical processes using systems of  nonlinear 
ordinary differential equations. Around the same time, Vito 
Vol terra, independently of  Lotka, developed the same models, 
but in application to population-ecological problems. These 
models were later called the “Lotka–Volterra models”. Further 
study of oscillatory chemical processes led to the discovery 
of Belousov–Zhabotinsky type systems, in which oscillations 
occur not only in time but also in space, and, therefore, can 
be described not only by ordinary differential equations, but 
also by partial differential equations (Zhabotinsky, 1974; Field, 
Burger, 1988; Mushtakova, 1997; Shnol, 2009).

This article presents a review of classical mathematical 
models that describe oscillatory behavior in biological systems 
and gives illustrations of methods for finding such systems 
using enzymatic oscillatory systems as an example. The role 
of gene networks in modeling oscillatory molecular-genetic 
systems is discussed. The factors influencing the presence or 
absence of oscillatory behavior in various molecular-genetic 
systems are given.

Classical models and methods  
for modeling oscillatory processes
Among the first mathematical approaches describing oscilla-
tory processes are models that have already become classical 
in the field of mathematical biology (Riznichenko, 2002). In 
one of the papers devoted to the theory of periodic reactions, 
Lotka studied a chemical reaction of the form:
       A → X → Y → B,       (1)
where X → Y  is an autocatalytic process. Based on the law 
of mass action, Lotka described this reaction by the following 
differential equations (Lotka, 1910):

         
dx
dt  = k0 – k1xy,

dy
dt  = k1xy – k2 y,

       (2)

where k0, k1, k2 are the constant parameters and x, y are the 
concentrations of chemicals.

The following model, described by Lotka (Lotka, 1920) and 
then independently formulated by Volterra (Volterra, 1928), 
expresses two autocatalytic reactions (i. e. A → X and  X → Y ). 
The Lotka–Volterra model has the following form:

          
dx
dt  = ax – bxy,

dy
dt  = cxy – dy,

       (3)

where a, b, c, d are the rates of transformation of some sub-
stances into others, x, y are the concentrations of chemicals. 
This model is also known as the “predator–prey system”, 
which is used in population dynamics to explain periodic 
fluctuations in the abundance of individuals in populations.

In the same period a paper with the van der Pol and van 
der Mark oscillator model was published (van der Pol, van 
der Mark, 1928). They modeled the heart as three connected 
relaxation systems: sinus, atrium and ventricle. As such a sys-

tem, the authors chose a system consisting of a neon lamp, 
a condenser, a resistance, and a battery, which is capable of 
producing relaxation oscillations. However, this system si-
mulates only some modes of heart operation due to the com-
plexity of the object under study. The model is described by 
an equation of the form:

            d 
2v
dt 2  – α(1 – v2) dv

dt  + ω2v = 0,        (4)

where α is a positive value, which is an oscillator parameter 
(responsible for non-linearity and damping of oscillations), 
ω – oscillation frequency, v – the value corresponding to the 
heart rhythm signal.

This model is noteworthy because it has found an applica-
tion not only in biology problems, but also in physics and other 
sciences. For example, the review (Kuznetsov et al., 2014) 
presented a number of problems in which this oscillator was 
applied; in particular, the authors gave details on modeling hu-
man body processes, such as colonic myoelectric activity and 
processes of excitation and inhibition of neurons. In the paper 
(Rompala et al., 2007), the authors considered three van der 
Pol oscillators to study the in-phase mode, which corresponds 
to the synchronized periodic behavior of circadian rhythms. 
Moreover, two of them correspond to the eye models, and the 
third oscillator is a model of the brain (mainly represented by 
the pineal gland), through which the interconnection of the 
first two is performed. They considered the periodic change 
of melatonin concentration under the influence of circadian 
rhythms as a possible scheme of connection between the eyes 
and the pineal gland.

In 1965, an article by Brian Goodwin (Goodwin, 1965) 
was published, which raised the question of the oscillatory 
motion role in the organization of cellular processes over 
time. For the mathematical study of oscillatory behavior in 
model systems involving enzyme regulation processes, he 
introduced certain concepts of thermodynamic nature. In 
the article, the author cited a model of the process of genetic 
control of enzyme synthesis:

      d Xi
dt   = ai

Ai + kiYi
 – bi ,

           (5)
      d Yi

dt   = ai Xi – bi ,

where Xi is an mRNA concentration of the i th species, Yi is 
a protein (repressor) concentration of the i th species, ki – pa-
rameter, which describes the interactions between the DNA 
and the repressor.

Another classic example is the Higgins model (Higgins, 
1964) of oscillatory reactions in the glycolysis system, the 
scheme of which is shown below:

    

GLU → F6P,
F6P + E *    1  → E *    1  ∙ F6P,  
E *    1  ∙ F6P → E *    1  + FDP,
FDP + E +    1  ↔ E *    1 ,
FDP + E2 → E2 ∙ FDP,
E2 ∙ FDP → E2 + GAP.   

          (6)



Технологии поиска и исследования  
потенциально осциллирующих ферментативных систем

Т.Н. Лахова, Ф.В. Казанцев 
С.А. Лашин, Ю.Г. Матушкин

2021
25 • 3

321СИСТЕМНАЯ И КОМПЬЮТЕРНАЯ БИОЛОГИЯ / SYSTEMS AND COMPUTATIONAL BIOLOGY

Here GLU, F6P, FDP, GAP  are designations of biochemical 
substances that enter into reactions, E *    1  – the active form of 
the enzyme (phosphofructokinase), E +    1  – the inactive form of 
the enzyme, E2 – the enzyme that is a combination of aldolase 
and triose phosphate isomerase.

Higgins considered general pathway types of enzymatic 
reactions in glycolysis in which the chemical mechanism 
exhibits oscillatory behavior. Therefore, in his work, he takes 
into account the following conditions: (1) one of the chemicals 
must activate its own production (assuming the concentration 
of the second substance is constant); (2) the second substance 
must tend to inactivate its own net production; (3) there must 
be a cross-coupling of the interaction of substances. If an 
increase in the first substance activates the production of the 
second substance, then an increase in the second substance 
inhibits the production of the first, and vice versa.

Sel’kov in his classic article (Sel’kov, 1968), in accordance 
with the mass action law, gave a mathematical model of the 
glycolytic system based on the phosphofructokinase (PFK) 
transformations:

 
ds1
dt   = v1 – k+1s1x1 + k–1x2 ,

 
ds2
dt   = k+2 x2 – k+3 s

γ
  2 e + k–3 x1 – k2 s2 ,

 
dx1
dt   = –k+1s1x1 + (k–1 + k+2) x2 + k+3 s

γ
  2 e – k–3 x1 ,     (7)

 
dx2
dt   = k+1s1x1 – (k–1 + k+2) x2 ,

 de
dt   = –k+3 s

γ
  2 e – k–3 x1 ,       

where s1 – the substrate (ATP), v1 – the inf low rate of  the sub-
strate from some source, s2 – the product (ADP), v2 = k2s2 – the 
outflow rate of the product from the system, e – free enzyme 
(phosphofructokinase), which is inactive on its own, but 
becomes active when combined with product molecules as 
a complex – ES γ       2 , x1 – the molecule of the complex (ES γ       2),  
x2 – the molecule of enzyme-substrate complex (S1ES 

γ
       2 ),  

sγ
  2 – product molecules that enter into a complex with the free 
enzyme, γ > 1 – the parameter responsible for the number of 
the product molecules, k+1, k+2, k+3 – rates of direct reactions, 
k–1, k–3 – rates of reverse reactions, t – time.

Goldbeter and Lefever (Goldbeter, Lefever, 1972) presented 
a model of the glycolytic system, which is a generalization of 
the models presented by Higgins (Higgins, 1964, 1967) and 
Sel’kov (Sel’kov, 1968). The model is based on the mechanism 
of positive feedback, namely, the activation of the product by 
the enzyme PFK.

In the article (Boiteux et al., 1975), the authors not only 
analyzed the allosteric model of the oscillatory reaction of 
phosphofructokinase, but also made experimental verification 
of theoretical predictions. The data obtained for the model 
agreed well with the experimental data.

In 2000, a model of a yeast population consisting of a small 
ensemble of individual cells was presented to describe the 
phenomenon of synchronization of glycolytic oscillations. In 
this case, the communication between the cells was performed 

through the exchange of acetaldehyde (Bier et al., 2000). Gly-
colytic oscillations were also studied using stochastic methods 
and chaos theory in (Bashkirtseva, Ryashko, 2017); Selkov’s 
minimal model was taken as the basis, and in the article 
(Ryashko, 2018) a two-dimensional Higgins model was used.

In biochemistry, the processes of changing the concentration 
of ions in cells, which can increase or decrease the activity 
of enzymes, participate in the metabolism of carbohydrates, 
lipids and proteins, as well as play an important role in signal 
transduction through signaling pathways and are responsible 
for cell excitability, are actively studied. One of such processes 
is periodic changes in calcium ion concentrations. A number of 
mathematical models have been developed to study these peri-
odic processes. A model describing calcium ion concentration 
fluctuations was first proposed in (Dupont, Goldbeter, 1989):

             d Zdt   = v0 + v1β – v2 + v3 – kZ,
           (8)
             d Ydt   = v2 – v3,

where Z – the cytosolic calcium concentration, Y – the calcium 
concentration in IP3 (inositol-1,4,5-triphosphate) endoplasmic 
reticulum, vi (i = 0, …, 3) – reaction rates.

They analyzed the conditions for the emergence of stable 
fluctuations based on the mechanism of calcium-induced 
calcium release (CICR). In a number of studies (Goldbeter et 
al., 1990; Dupont et al., 1991; Dupont, Goldbeter, 1993), the 
authors continued their researches of calcium concentration 
fluctuations based on the same minimal model.

At the same time, papers (Meyer, Stryer, 1988; Meyer, 
1991) in which the authors investigated fluctuations in cal-
cium concentrations by considering the mechanism of inositol 
cross-coupling (ICC) IP3 with extracellular, cytosolic, and 
endoplasmic Ca2+ have been coming out. Lavrentovich and 
Hemkin (Lavrentovich, Hemkin, 2008) proposed a model 
for spontaneous Ca2+ oscillations in astrocytes that takes into 
account the mechanisms presented above as well as IP3 pro-
duction in a receptor-independent manner.

After Goldbeter and Dupont had published their results, the 
authors of the article (Kraus et al., 1996) tested the hypothesis 
that in unexcited cells the amplitudes of oscillatory processes 
can be cell type-specific and vary with Ca2+ diffusion. They 
performed their study using stochastic computer modeling on 
a two-dimensional Ca2+  oscillation model.

Analysis of oscillatory processes in living systems shows 
that the most important factor in the emergence of cyclic be-
havior is a feedback in the system (Kolchanov et al., 2000). 
A distinction is made between positive and negative feedbacks, 
which was once discussed by Goodwin, Walter, Cardon, Iberall 
and other researchers (Goodwin, 1965; Walter, 1969, 1970; 
Cardon, Iberall, 1970). Both types of these feedbacks can 
influence the emergence of cyclic dynamics in the system, as 
has been shown in works (Likhoshvai et al., 2001; Goldbeter, 
2002; Tyson et al., 2003).

At the molecular level, the principle of feedback regulates 
a huge number of enzymatic reactions simultaneously going 
on in a living cell, the rate of which can be affected by such 
compounds as inhibitors, activators, cofactors, allosteric ef-
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Table 1. Brief characteristics of a number of classical models with oscillatory behavior

Model name Modeled biological process Model class Type and number of feedbacks

Lotka model   
(Lotka, 1910)

Biochemical reaction Nonlinear inhomogeneous SODE 
with constant coeff icients

Positive (1) and Negative (2)

Lotka–Volterra model 
(“predator–prey”) 
(Lotka, 1920; Volterra, 1928)

Biochemical reaction; 
population dynamics

Nonlinear homogeneous SODE  
with constant coefficients

Positive (2) and Negative (2)

van der Pol oscillator   
(van der Pol, van der Mark, 
1928)

Heart function,  
colonic myoelectric activity, 
excitation and inhibition  
of neurons, etc.

Nonlinear homogeneous second-
order ODE – the Lienar equation, 
which can be reduced to a f irst-
order ODE

Positive (1) and Negative (2)

Goodwin oscillator   
(Goodwin, 1965)

Genetic control  
of enzyme synthesis

Nonlinear inhomogeneous SODE 
with constant coefficients

Positive (1) and Negative (1)

Sel’kov model  
(Sel’kov, 1968)

Enzyme reaction Linear inhomogeneous SODE  
with constant coeff icients

Negative (substrate inhibition), 
Positive (product activation).
Negative (9), Positive (7)

Dupont–Goldbeter model 
(Dupont, Goldbeter, 1989)

Calcium concentration 
oscillation 

Linear inhomogeneous SODE  
with constant coeff icients

Positive (4), and Negative (3)

Notе. ODE – ordinary differential equation, SODE – system of  ODEs.

fectors, etc. As early as 1913 an article (Michaelis, Menten, 
1913) by biochemists Michaelis and Menten was published, in 
which the scientists derived the equation for the dependence of 
the reaction rates catalyzed by the enzyme on the concentra-
tion of the substrate. Later, the researchers have showed that, 
 using computational methods, optimizing the parameters of the 
equation by approximating the model data to the experimental 
data corresponds to the results, which were obtained manually 
by Michaelis and Menten for their constant.

Not long ago, a review was conducted of how methods 
for quantitative analysis of enzyme kinetics have emerged, 
changed, and been modified over a century (Johnson, 2013). 
In the same year an article (Goldbeter, 2013) examined 
the influence of Michaelis–Menten kinetics on oscillatory 
behavior in enzymatic systems, namely, in glycolysis from 
phosphofructokinase activity and in the cell cycle from cyclin-
dependent kinases.

Novák and Tyson reviewed examples of oscillatory pro-
cesses and formulated the necessary conditions for oscilla-
tions in the system: negative feedback, time delay, sufficient 
‘nonlinearity’ of the reaction kinetics and proper balancing 
of the timescales of opposing chemical reactions (Novák, 
Tyson, 2008).

In a recent review (Tyson et al., 2019), the authors com-
piled various approaches to modeling the dynamics of the 
behavior of biochemical regulatory networks that have been 
developed over the past 50 years. Models such as Boolean 
(logical) ones, models consisting of piecewise-linear or fully 
nonlinear ordinary differential equations, and stochastic mo-
dels (including hybrid deterministic/stochastic approaches) are 
considered. The authors focused on two approaches: modeling 
genetic control systems as networks of Boolean switches and 
metabolic and signaling networks using systems of nonlinear 

ordinary differential equations. They considered only spatially 
homogeneous systems. The authors showed the advantages 
and disadvantages of each method depending on the type and 
amount of available experimental information.

The models, which we reviewed in this section, are sum-
marized in Table 1.

Application of gene networks  
in the modeling of oscillatory systems
Modeling of metabolism is often associated with modeling of 
genetic regulation (Smolen et al., 2000; Hecker et al., 2009). 
The concept of gene networks plays an integrative role in this 
case (Kolchanov et al., 2013; Ocone et al., 2013).

The main task of the theory of gene networks is to identify 
causal relationships between the structural and functional 
organization of gene networks and their dynamic properties 
(Chen et al., 2010; Kolchanov et al., 2013). The structural and 
functional organization of gene networks is understood as a 
set of molecular-genetic and biochemical processes, while the 
dynamic properties are understood as the kinetics of changes 
in the concentrations of end products over time.

Computer analysis and modeling of small gene networks, 
especially hypothetical gene networks, provides very valuable 
information for understanding the fundamental features of 
the dynamics of regulatory gene networks. Likhoshvai and 
his colleagues developed a theory linking the structural and 
functional organization of hypothetical gene networks with 
their dynamics (Likhoshvai et al., 2001, 2003, 2004; Fadeev, 
Likhoshvai, 2003; Demidenko et al., 2004). Namely, the 
concept of a hypothetical gene network was defined; rules 
for formalizing the description and assembling mathematical 
models from them are given. The (n, k)-criterion for predicting 
some properties of the models by the structure of the network 
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Fig. 1. Relationship between the structural model (graph) of the hypothetical gene network and its dynamics: A, structure of the hypothetical gene 
network of 4 genes and 8 negative feedbacks; B, dynamics of the hypothetical gene network A; C, structure of the modif ied gene network A – to which 
an additional negative regulatory link was added – inhibition of gene g4 expression by the product of gene g1 (marked by a blue arrow); D, dynamics 
of the modif ied gene network В.
Here, green rectangles (gi ) are genes, broken line is RNA corresponding to a certain gene, pink ellipse is polypeptide chain of protein, several pink ellipses are 
a complex of proteins performing gene regulation (regulation is shown by a red arrow). Modif ied according to (Kolchanov et al., 2008).

graph is formulated; 4 classes of the hypothetical gene network 
are introduced according to the types of regulatory links in the 
network; and analytical and numerical studies of the models 
for each class of the hypothetical gene network are given.

In particular, it was first theoretically and then numerically 
demonstrated how the appearance of a new regulatory link 
leads to a qualitative change in the dynamics of the gene net-
work (Fig. 1). Thus, the addition of another regulatory link 
in the gene network cardinally changes the possible modes 
of functioning of this network – if only one stationary state 
was possible in the initial network, then after adding another 
regulatory link, there are already two possible states – station-
ary (as in the previous case) and cyclic mode.

The connection between the structures of gene networks 
and the presence of dynamic cycles in them has been studied 

for many years. In particular, the connection between network 
structure and cyclic dynamics has been theoretically shown 
(Likhoshvai et al., 2003; Demidenko et al., 2004; Novák, Ty-
son, 2008). Elowitz and Leibler designed and studied a genetic 
network of a repressilator, in which the network under study 
is locked into a cycle of interactions based on the principle 
of negative feedbacks. The authors experimentally showed 
that this type of network has an oscillatory mode of behavior 
(Elowitz, Leibler, 2000).

In the Sobolev Institute of  Mathematics SB RAS is studied 
the qualitative theory of dynamical systems describing various 
gene networks that are regulated by feedbacks. Golubyat-
nikov and his colleagues have studied in their works (Gaidov, 
Golubyatnikov, 2007; Golubyatnikov et al., 2010; Akinshin, 
Golubyatnikov, 2012; Golubyatnikov, Kazantsev, 2016; Golu-

The steady stationary state
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Fig. 2. Scheme of the algorithm for searching oscillatory enzymatic systems.

byatnikov, Kirillova, 2018) the existence and uniqueness of pe-
riodic solutions, existence of closed trajectories, cycle sta bility, 
etc. in such systems. The interest in the analysis of the behavior 
of such trajectories is to correspond them to the modes of 
func tioning of gene networks. An article (Likhoshvai et al., 
2020) showed that oscillatory trajectories are present in mo-
dels of  the simplest circular gene networks and they are stable.

The method for f inding  
oscillating molecular-genetic systems
In this paragraph, we describe the algorithm for searching the 
oscillatory molecular-genetic systems (the algorithm scheme is 
shown in Fig. 2). It uses information resources both developed 
by the authors and widely known in systems biology. In par-
ticular, the MAMMOTh database is a source of structural and 
mathematical models of Escherichia coli metabolic reactions 
(Kazantsev et al., 2018). Cytoscape (cytoscape.org) is a tool 
for working with structural models and Copasi (Hoops et al., 
2006) is a tool for reconstructing and investigating mathemati-
cal models. Python (python.org) is both a data processing tool 
and a link between the steps.

The input of the algorithm takes a structural model – a gene 
network graph with typing of model elements and their rela-
tions. There are two types of nodes in the graph: biological 
substances (molecules and their groups) and processes (or 
reactions). The edges specify the following relations between 
the nodes: substance is a substrate in a reaction, substance is 
a product of a reaction, and substance is a regulator of a reac-
tion. This information can be obtained directly from models in 
SBML (Hucka et al., 2003), SBGN (Le Novère et al., 2009), 
from other tools for building structural models, or from Python 
scripts. To date, any database that has information on meta-
bolic pathways and molecular-genetic systems models can be 
used as a data source. The best-known databases are KEGG 
(Kanehisa, Goto, 2000), GeneNet (Ananko, 2002), MetaCyc 
(Caspi et al., 2016), EcoCyc (Keseler et al., 2017), BioModels 
(Le Novere et al., 2006; Malik-Sheriff et al., 2019), etc.

In this article, we considered a special case of molecular-
genetic systems – the oscillatory enzymatic systems. Analysis 
of the literature (Likhoshvai et al., 2001; Novák, Tyson, 2008; 

Tyson, Novák, 2010; Wong, Huck, 2017) allows us to identify 
the following key characteristics of potentially oscillating 
contours: (1) the closure of the contour (oriented path from 
node A to it, through N nodes, where N > 3); (2) the orienta-
tion of the contour in one direction, with the last node having 
an edge of regulatory inhibitory influence on the first node 
in the contour (as in the contour in Fig. 4, a, for example).

A graph of 300 subsystems (Fig. 3) representing models 
of E. coli metabolic reactions taken from the MAMMOTh 
database was taken as initial data.

The construction of a mathematical model of a potentially 
oscillating contour can be performed both in general-purpose 
engineering simulation environments (Matlab, Mathematica or 
Scilab) or in specialized environments designed for the simu-
lation of molecular-genetic systems (Copasi, CellDesigner 
(Funahashi et al., 2003), VCELL (Schaff et al., 1997; Cowan 
et al., 2012), etc.). The advantage of the latter is the ready 
library of tools for reconstruction, computational experiments 
and model analysis.

Six potentially oscillating contours were found in the ana-
lyzed graph, and during the numerical analysis of the recon-
structed mathematical model oscillatory behavior was shown 
for only one of them (Fig. 4). The mathematical model of the 
contour was constructed based on the reactions related to the 
metabolic pathway of tryptophan biosynthesis:

CHOR + GLN → PYR + GLU + AN; AnthS, Trp, Mg,
AN + PRPP → NPRAN + PPI; AnthSII,
NPRAN → CPAD5P; Phosphoribosyl 
        anthranilate isomerase,  

     (9)

CPAD5P → IGP + CO2; Indoleglycerol phosphate synthase,
IGP + SER → T3P1 + TRP; TryptS.

Here CHOR, GLN, PYR, GLU, AN, PRPP, NPRAN, PPI, 
CPAD5P, IGP, SER, T3P1, TRP – before the semicolon are 
the designations of the biochemical substances involved in the 
reaction, and after that are regulators of reactions. Full names 
of substances are given in Table 2.

The model was built in Copasi and consists of 5 differen-
tial equations.

Structural model from source A set of potential contours

Oscillating contour,  
mathematical model, parameters

Graph visualization and analysis Construction and analysis  
of the mathematical model of each contour
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Fig. 3. Structural model (graph G) constructed from 300 subsystems of E. coli metabolic pathways taken from the MAMMOTh database (Kazan tsev et 
al., 2018).
Here and in the Fig. 4 the following notation is used: Blue squares represent substances involved in metabolic reactions. Green hexagons indicate reactions, with 
arrows in/out specifying the relations of the interacting substances: green arrows specify the reaction substrates; black arrows specify the reaction products; red 
arrows specify the regulatory effects of the substances on the reactions.

Fig. 4. Potentially oscillating contour and its numeric analysis. 
а, studied contour that is a part of the metabolic pathway of tryptophan biosynthesis; b, the plot with the results of the simulation, the 
dependence of the concentration of the specif ied substances on time; c, phase trajectory plot based on simulation results, where the 
abscissa and ordinate axes are the concentrations of anthranilate (AN) and L-tryptophan (TRP), respectively.
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where kD_“substance name” are degradation constants of cor-
responding substances, parameters TRP_power and TRP_de-
nominator varied in the process of searching for oscillatory 
behavior of the system. The given numerical parameters were 
taken from the MAMMOTh database.

The mathematical model of only one of the six contours 
found exhibits with oscillatory behavior. As we considered, 
a network consisting of only 300 enzymatic reactions, which 
had mathematical models adapted to the experimental data, 
may explain such a small number of contours. In turn, there 
are currently not many such mathematical models for describ-
ing the enzymatic reactions of biological systems. Thousands 
of existing models presented in databases are often auto-

matically generated, as in the Path2Models project for the  
biomodels.net database, for example. Experimentally mea-
sured kinetic parameters of biochemical reactions are be-
coming increasingly scarce. Using graphs with higher dimen-
sionality (full-genome models) to study oscillatory behavior 
will increase the number of variants to be tested, but this will 
require additional consideration of the regulatory component 
of genetic synthesis. All of these things present additional 
challenges in the study of this problem.

Conclusion
The article gives an overview of a number of biological pro-
cesses of oscillatory nature, as well as mathematical models 
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Table 2. List of full names of  biochemical substances  
used in the model

Аbbreviation Full name

CHOR Сhorismate

GLN L-glutamine

PYR Pyruvate

GLU L-glutamate

AN Anthranilate

AnthS Anthranilate synthase

TRP L-tryptophan

PRPP 5-Phospho-α-D-ribose 1-diphosphate

NPRAN N-(5-phosphoribosyl)-anthranilate

PPI Diphosphate

AnthSCII Anthranilate synthase component II

CPAD5P 1-(o-carboxyphenylamino)-1’-deoxyribulose- 
5’-phosphate

PRAI Phosphoribosyl anthranilate isomerase

IGP Indole-3-glycerol-phosphate

SER L-serine

T3P1 D-glyceraldehyde 3-phosphate

TryptS Tryptophan synthase

of these processes. It is noted that the most important factor 
for the emergence of cyclic behavior is feedbacks in the sys-
tem. Based on the analysis of these factors, an algorithm for 
finding cyclic modes of functioning of molecular-biological 
systems is given.
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