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A B S T R A C T   

Background: Differentiating adrenal adenomas from metastases poses a significant challenge, 
particularly in patients with a history of extra-adrenal malignancy. This study investigates the 
performance of three-phase computed tomography (CT) based robust federal learning algorithm 
and traditional deep learning for distinguishing metastases from benign adrenal lesions. 
Material and methods: This retrospective analysis includes 1187 instances who underwent three- 
phase CT scans between January 2008 and March 2021, comprising 720 benign lesions and 
467 metastases. Utilizing the three-phase CT images, both a Robust Federal Learning Signature 
(RFLS) and a traditional Deep Learning Signature (DLS) were constructed using the Least Absolute 
Shrinkage and Selection Operator (LASSO) logistic regression. Their diagnostic capabilities were 
subsequently validated and compared using metrics such as the Areas Under the Receiver 
Operating Curve (AUCs), Net Reclassification Improvement (NRI), and Decision Curve Analysis 
(DCA). 
Results: Compared with DLS, the RFLS showed better capability in distinguishing metastases from 
benign adrenal lesions (average AUC: 0.816 vs.0.798, NRI = 0.126, P < 0.072; 0.889 vs.0.838, 
NRI = 0.209, P < 0.001; 0.903 vs.0.825, NRI = 0.643, p < 0.001) in the four-testing cohort, 
respectively. DCA showed that the RFLS added more net benefit than DLS for clinical utility. 
Moreover, Comparison with state-of-the-art federal learning methods, the results once again 
confirmed that the RFLS significantly improved the diagnostic performance based on three-phase 
CT (AUC: AP, 0.727 vs. 0.757 vs. 0.739 vs. 0.796; PCP, 0.781 vs. 0.851 vs. 0.790 vs. 0.882; VP, 
0.789 vs. 0.814 vs. 0.779 vs. 0.886). 
Conclusion: RFLS was superior to DLS for preoperative distinguishing metastases from benign 
adrenal lesions with multi-phase CT Images.   
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Fig. 1. The schematic illustration of the study design. (a) Lesion segmentation for the AP/PCP/VP CT images. (b)Feature extraction. (c) Feature 
selection and model building. (d) Model validation. AP, arterial phase; PCP, pre-contrast phase; VP, venous phase. LASSO, least absolute shrinkage 
and selection operator. ROC, receiver operating characteristic. DCA, decision curve analysis. 
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1. Introduction 

The adrenal glands rank as the fourth most common site of metastases, with frequent occurrences in numerous primary tumors such 
as the lungs (35%), stomach (14%), and liver/bile ducts (10%) [1,2]. Differentiating adrenal adenomas from metastases poses a 
significant challenge, particularly in patients with a history of malignancy. Although fine-needle aspiration biopsy (FNAB) is regarded 
as the gold standard, it is seldom employed in clinical practice. Computed tomography (CT), a widely used diagnostic imaging tool, 
could potentially assist in diagnosing adrenal lesions [3]. However, due to atypical presentations stemming from minimal fat content 
and the fact that up to 30% of adrenal masses do not meet established criteria for benign lesions, clinical differentiation of these from 
metastases is problematic [4,5]. Thus, there exists a pressing need to explore non-invasive, precise techniques for the identification of 
adrenal lesions. 

Deep learning (DL), a method that utilizes hierarchical convolution operations to extract features from raw medical images without 
requiring precise tumor delineation, has gained significant traction in tumor assessment [6–8]. For example, Kusunoki [9] developed 
and validated a deep convolutional neural network models (DCNN) for the diagnosis of adrenal adenoma using CT, and DCNN models 
may be a useful tool for the diagnosis of adrenal adenoma using CT. Literature [10] investigated the ability of deep learning to 
distinguish adrenocortical carcinoma and lipid poor adrenal adenoma on single time-point CT images, and the results demonstrate 
promising results distinguishing between adrenocortical carcinoma and large lipid poor adrenal adenoma using single time-point CT 
images. While deep learning has been successfully applied to the diagnosis of numerous diseases, including adrenal diseases [11,12], 
its real-world medical application encounters two principal challenges. Firstly, deep learning methods necessitate large datasets for 
model training. However, medical data collection is constrained by privacy regulations and ethical approvals, causing a data silo 
problem wherein a single research organization struggles to amass sufficient patient data [13]. Secondly, multi-center institutional 
data, often characterized by differences in acquisition equipment, geographical variations, and image quality, can present 
non-independent and non-identically distributed (non-IID) characteristics [14]. This heterogeneity may negatively impact the 
generalization performance of the resultant deep learning model, further compounding the challenges in deploying traditional deep 
learning techniques in real-world medical scenarios. 

Federated Learning (FL) [15], a distributed machine learning framework, enables the integration of data from various centers 
without breaching patient privacy. It ensures data privacy by maintaining the confidentiality of multi-center data while assimilating 
information from other data centers during the personalization process [16]. Literature [17] proposed a federated learning model 
based on a regularization constraint strategy that eliminates the parameter differences between the local and global models and solves 
the parameter drift problem. Literature [18] proposes propose a new personalized federated learning method named MpFedcon, which 
addresses the data heterogeneity problem and privacy leakage problem from global and local perspectives. Literature [19] proposes 
the use of image low-frequency features and magnitude normalization to reduce model interference from heterogeneous data. 
Meanwhile, the introduction of perturbation terms is used to improve the generalization performance of the model and reduce the drift 
of model parameters. This approach has shown promise in several medical imaging studies [20–22], and these studies further validated 
the effectiveness of FL through a pilot study that investigated collaborative model training for multisite tumor analysis without sharing 
patient data, yielding positive experimental results. 

Despite the advantages and technological advancements presented by these methods, the efficiency of the FL algorithm, partic
ularly when based on CT for distinguishing metastases from benign adrenal lesions, remains unclear. Therefore, this study mainly 

Fig. 2. Flow-chart of inclusion, exclusion and the overall study case collection. AP, arterial phase; PCP, pre-contrast phase; VP, venous phase.  
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developed a RFL algorithm to differentiate adrenal nodules and compare it with that of traditional DL methodologies in distinguishing 
metastases from benign adrenal lesions. 

2. Materials and methods 

2.1. Study participants 

This retrospective study was approved by the Jiangmen Central Hospital Ethics Review Committee (No. [2023]149), and the 
requirement for informed consent was waived. In this study, a schematic illustration of the study design is presented in Fig. 1a,b,1c, 
and 1d. 

This retrospective study includes 1187 instances with 720 benign lesions and 467 metastases who underwent three-phase CT scans 
(arterial phase (AP), pre-contrast phase (PCP), and venous phase (VP)) between January 2008 and March 2021. The study cohort 
comprises 896 instances from our institution and an additional 291 instances from an independent external institution. Final diag
nostic identification of all lesions was achieved either pathologically or through rigorous follow-up protocols [23,24]. The specific 
inclusion exclusion criteria are shown below (Fig. 2): (1) patients who had found adrenal lesions (>1 cm); (2) underwent three-phase 
CT procedures (pre-contrast phase, PCP; arterial phase, AP; venous phase, VP); (3) attenuation value of pre-contrast CT > 10 HU; (4) 
the diagnoses were confirmed by pathological, and/or follow-up on imaging examinations. 

Exclusion criteria were as follow: (1) para-adrenal lymph metastases directly invades the adrenal gland; (2) with a previous tumor 
treatment (chemotherapy); (3) images with significant noise or artifacts (motion, ring, or metal artifacts); (4) images uncovered the 
whole tumor; (5) the CT equipment does not meet the requirements of the experimental design; (6) with conflicting situations in the 
determination of the final diagnosis. 

2.2. CT acquisition and post-processing 

CT examinations were performed using five different CT scanners, with the automated tube current modulation variably set be
tween 200 and 350 mAs, based on patient size. These examinations covered either the chest and/or the upper abdomen. After the PCP 
CT scan, AP and VP were conducted with a delay of 30 s and 90 s, respectively, post-initiation of contrast administration. Either 
Iopamidol 300 mg/mL (Iopamidol® 300; Bracco Imaging, Milano, Italy), Iomeprol 350 mg/mL (Iomeprol® 350; Bracco Imaging, 
Milano, Italy), or iopromide 370 mg/mL (Iopromide® 370; Bayer Vital Gmbh, Berlin, Germany) was intravenously injected in standard 
doses ranging from 70 to 100 mL, with an injection rate of 2–3 mL/s. This was then followed by a 20 mL saline flush. Detailed in
formation about CT acquisition and post-processing can be found in Supplementary A1. 

The compiled datasets were divided into four separate cohorts based on the scanning instruments used at Jiangmen Central 
Hospital: 88 instances were scanned with General Electric equipment (Client1), 314 instances with Siemens (Client2), and 494 in
stances with Canon (Client3). An additional cohort of 291 instances from Shenzhen Second People’s Hospital constituted dataset 4 
(Client4). The distribution of datasets is detailed in Table 1. 

Each client’s dataset is divided into three parts: training cohort, validation cohort, and testing cohort. The training cohort is used to 
train the model, the validation cohort is used to find the optimal model parameters, and the testing cohort is used to test the per
formance of the model. For deep learning, the models are trained independently on the training set of each of the four clients and then 
tested on their respective test sets. For federated learning, joint training is performed based on the training sets of the 4 clients, sharing 
only model parameters not raw data, and then tested on their respective test sets. 

2.3. Development of a deep learning signature (DLS) 

The development of a Deep Learning Signature (DLS) in this study encompassed two primary stages: the extraction of deep learning 
features and the training of a classification layer. 

The first stage involved the training of a feature extraction network. To this end, we proposed a Convolutional Multi-Layer Per
ceptron (ConMLP) network designed to extract robust features from the CT images. The network’s architecture includes a convolution 
tokenizer, two convolution blocks, and two convolution MLP mixers. While the convolution layer is engineered to capture the image’s 
local features, the MLP mixer layer aids in fusing information across both spatial and channel domains. The outputs of the convolu
tional layer generally were the deep learning features. The specific extraction process was performed is shown in Fig. 3. Utilizing this 
model, the network extracted a total of 3968 deep learning features. Differences of the deep learning signature (DLS) between the 

Table 1 
Data distribution information.  

dataset Source of data Training cohort Validation cohort  Testing cohort 

benign lesions metastases benign lesions metastases benign lesions metastases 

Client1 General Electric 32 16 13 3 16 8 
Client2 Siemens 107 95 17 13 42 40 
Client3 Canon 204 92 33 33 90 42 
Client4 External Hospital 93 78 15 21 43 41  
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benign adrenal lesions and metastases were assessed by the Mann–Whitney U test. The features that satisfy the U test are then selected 
to construct the DLS. 

The second stage concentrated on the training of the classification layer. Given the redundancy inherent to the adrenal image 
features extracted by the neural network, direct outputs using this model are prone to overfitting. This overfitting issue impedes the 
model’s ability to accurately represent the real relationship between sample input and output. To overcome this limitation, we 
employed a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression approach to construct a DLS, predicated on a 
linear combination of selected features. Features with non-zero coefficients were identified as valuable predictors for distinguishing 
metastases from benign adrenal lesions. The tuning parameter for the method was determined via a 10-fold cross-validation process. 
The final DLS output was then labeled as the model. 

2.4. Development of a robust federated learning signature (RFLS) 

To create a Robust Federal Learning Signature (RFLS), a two-step process was employed. First, a federated learning feature 
extraction network was trained. This involved the implementation of a federated framework which uses a convolutional multi-layer 
perceptron network (ConMLP) as a base model. It introduced a personalized parameter learning strategy for meta-learning, which 
helped build a multi-center oriented network model. The construction training of the federated training network in this study consists 
of two main parts: (1) Local model parameter updating upload and (2) global model parameter update and download. This process can 
be visualized in Fig. 4. More information on the network training process can be found in Supplementary A2. 

The second step in creating an RFLS involved the training of the classification layer. To enhance the predictive performance of the 
model and control its complexity, it was crucial to identify features with high relevance for the classification task. Using the previously 
mentioned network, the outputs of the convolutional layer typically served as the federated learning features. The differences between 
benign adrenal lesions and metastases in the robust federal learning signature (RFLS) were evaluated using the Mann–Whitney U test. 
Features that passed this test were used to construct the RFLS. The RFLS was then refined via LASSO logistic regression, similar to the 
process used in DLS development. 

2.5. Comparison of the DLS and RFLS 

In order to provide a thorough evaluation, we compared the performance of RFLS and DLS, using several key assessment metrics 
including sensitivity (SEN), specificity (SPE), negative predictive value (NPV), positive predictive value (PPV), accuracy (ACC), and 
area under the curve (AUC) analysis [25]. Additionally, the net reclassification index (NRI) analysis and Delong test were utilized to 
compare the AUC of the two models. Furthermore, to measure the clinical utility of RFLS and DLS, decision curve analysis (DCA) was 
employed. 

All statistical analyses were performed using Python 3.7 (https://www.python.org/), MATLAB R2016b (https://www.mathworks. 
com/products/matlab.html), and R 4.3.1 (http://www.r-project.org). The Mann-Whitney U test was calculated and analyzed using 
MATLAB2016b. Receiver operating characteristic (ROC) curves were drawn using the “pROC" package in RStudio. NRI analysis, 
performed with the “glm" package in R, was employed to compare the diagnostic performance of the new model with the old model. 
Decision curve analysis (DCA) was conducted using the “dca.r" package in RStudio. A P-value less than 0.05 was considered statis
tically significant. 

3. Results 

3.1. Performance of the DLS 

To differentiate between metastases and benign adrenal lesions in the training cohort, several features (AP: 426, 2015, 1929, and 
2584. PCP: 1258, 3554, 3689, and 2998. VP: 557, 2662, 3208, and 3152) were selected based on the Mann-Whitney U test with P <
0.05. Utilizing LASSO logistic regression, features with nonzero coefficients were recognized as valuable predictors and were used to 

Fig. 3. The structure of deep feature extraction.  
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build the model for distinguishing metastases from benign adrenal lesions. The specific formula to calculate the deep learning score 
(DL-score) is provided in Supplementary A3. 

The predictive performance of deep learning models based on three-phase images (AP, PCP, and VP) across four testing cohorts is 
illustrated in Fig. 5a–. b, Fig. 5c and Table 2. Across the three phases, the DLS achieved an average AUC of 0.771, 0.780, and 0.835 in 
the testing cohorts, respectively. 

3.2. Performance of the RFLS 

To differentiate between metastases and benign adrenal lesions in the training cohort, certain features (AP: 619, 1404, 648, and 
1491. PCP: 1893, 2747, 3545, and 3390. VP: 2100, 3330, 3391, and 3476) were selected based on the Mann–Whitney U test with a 
significance level of P < 0.05. Using LASSO logistic regression, task-related features with nonzero coefficients were identified as 
valuable predictors and utilized to build the model for distinguishing metastases from benign adrenal lesions. The specific formula for 
calculating the robust federated learning score (RFL-score) is provided in Supplementary A3. 

The predictive performance of the deep learning models based on the three-phase images (AP, PCP, and VP) in the four client 
testing cohorts is summarized in Fig. 6a–. b, Fig. 6c and Table 3. For the three phases, the RFLS achieved an average AUC of 0.796, 
0.882, and 0.886 in the testing cohorts, respectively. This suggests that the robust federated learning model outperforms the deep 
learning model in terms of predictive performance across all phases. 

3.3. Model performance comparison 

For the AP, PCP, and VP CT image, the histogram analysis revealed that the RFLS achieved a higher AUC value than the DLS in the 
four testing cohorts, as shown in Fig. 7a and. b, and Fig. 7c. 

To provide a comparative evaluation of the model performance, the testing cohort predictions of the four clients were merged and 
their AUCs were computed. These calculations comprehensively demonstrated the effectiveness of the RFLS algorithm, which was 
based on AP, PCP, and VP phase images. In comparison to the DLS, the RFLS achieved superior AUCs (RFLS vs. DLS: 0.816 vs. 0.798, p 
= 0.437; 0.889 vs. 0.838, p = 0.003; 0.903 vs. 0.825, p < 0.001), respectively. Moreover, this study compare RFLS with different deep 

Fig. 4. Federated learning framework.  

Fig. 5. The ROC curves of based on three phase. (a) The ROC curves of AP CT images. (b) The ROC curves of PCP CT images. (a) The ROC curves of 
VP CT images. ROC, receiver operating characteristic; AP, arterial phase; PCP, pre-contrast phase; VP, venous phase. 
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Table 2 
Diagnostic performance of DLS based on AP, PCP and VP.  

phase Testing cohort AUC(95%CI) ACC SEN SPE PPV NPV 

AP Client1 0.719 (0.455–0.982) 0.833 0.500 1.00 1.00 0.800 
Client2 0.801 (0.707–0.895) 0.744 0.950 0.548 0.667 0.920 
Client3 0.715 (0.619–0.812) 0.629 0.810 0.544 0.453 0.544 
Client4 0.848 (0.761–0.935) 0.833 0.878 0.791 0.800 0.872 
Average 0.771 0.760 0.785 0.721 0.730 0.784 

PCP Client1 0.602 (0.358–0.845) 0.583 0.750 0.500 0.429 0.800 
Client2 0.842 (0.756–0.929) 0.793 0.900 0.691 0.735 0.879 
Client3 0.803 (0.730–0.877) 0.750 0.833 0.711 0.574 0.901 
Client4 0.870 (0.793–0.947) 0.833 1.00 0.674 0.746 1.00 
Average 0.780 0.740 0.871 0.644 0.621 0.895 

VP Client1 0.766 (0.556–0.975) 0.792 0.500 0.938 0.800 0.790 
Client2 0.838 (0.751–0.924) 0.781 0.825 0.738 0.750 0.816 
Client3 0.871 (0.812–0.930) 0.788 0.905 0.733 0.613 0.943 
Client4 0.863 (0.782–0.945) 0.833 1.00 0.674 0.746 1.00 
Average 0.835 0.780 0.808 0.771 0.727 0.887 

CI, Confidence Interval; DLS, deep learning signature; AP, arterial phase; PCP, pre-contrast phase; VP, venous phase. AUC, area under curve; accuracy, 
ACC; sensitivity, SEN; specificity, SPE; negative predictive value, NPV; positive predictive value, PPV. 

Fig. 6. The ROC curves of based on three phase. (a) The ROC curves of AP CT images. (b) The ROC curves of PCP CT images. (a) The ROC curves of 
VP CT images. ROC, receiver operating characteristic; AP, arterial phase; PCP, pre-contrast phase; VP, venous phase. 

Table 3 
Diagnostic performance of RFLS based on AP, PCP and VP.  

phase Client AUC(95%CI) ACC SEN SPE PPV NPV 

AP Client1 0.734 (0.486–0.983) 0.792 0.625 0.875 0.714 0.824 
Client2 0.828 (0.738–0.918) 0.781 0.975 0.595 0.696 0.962 
Client3 0.751 (0.662–0.839) 0.682 0.810 0.622 0.500 0.875 
Client4 0.872 (0.799–0.945) 0.786 0.902 0.674 0.726 0.879 
Average 0.796 0.760 0.828 0.692 0.659 0.885 

PCP Client1 0.836 (0.669–1.00) 0.792 0.750 0.813 0.667 0.867 
Client2 0.875 (0.799–0.951) 0.829 0.850 0.810 0.810 0.850 
Client3 0.847 (0.781–0.913) 0.765 0.905 0.700 0.585 0.940 
Client4 0.968 (0.922–1.00) 0.952 0.951 0.954 0.951 0.954 
Average 0.882 0.835 0.864 0.819 0.753 0.903 

VP Client1 0.781 (0.574–0.988) 0.792 0.625 0.875 0.714 0.824 
Client2 0.919 (0.858–0.979) 0.866 0.750 0.976 0.968 0.804 
Client3 0.914 (0.868–0.960) 0.818 0.976 0.744 0.641 0.985 
Client4 0.931 (0.872–0.990) 0.893 0.927 0.861 0.864 0.925 
Average 0.886 0.842 0.820 0.864 0.797 0.885 

CI, Confidence Interval; RFLS, robust federated learning signature; AP, arterial phase; PCP, pre-contrast phase; VP, venous phase. AUC, area under 
curve; accuracy, ACC; sensitivity, SEN; specificity, SPE; negative predictive value, NPV; positive predictive value, PPV. 
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learning networks (ResNet34 [26] and VGG16 [27]) to further validate the effectiveness of the present network (AP: Ours network v.s. 
ResNet34 v.s.VGG16: 0.796 v.s. 0.760 v.s. 0.783; PCP: Ours network v.s. ResNet34 v.s.VGG16: 0.882 v.s. 0.756 v.s. 0.802; PVP: Ours 
network v.s. ResNet34 v.s.VGG16: 0.886 v.s. 0.741 v.s. 0.775). More detailed results are provided in Supplementary A4. 

Furthermore, the net reclassification index (NRI) metrics suggested that the RFLS had superior capability in distinguishing me
tastases from benign adrenal lesions compared to the DLS (NRI = 0.126, P < 0.072; NRI = 0.209, P < 0.001; NRI = 0.643, P < 0.001). 
The decision curve analysis (DCA) revealed that within the threshold probability range of 0.01–0.99, the RFLS generated a larger net 
benefit than the DLS, indicating greater clinical utility (Fig. 8a and. b, and Fig. 8c). These results underscore the potential of the RFLS to 
improve diagnosis and patient management for those with adrenal lesions. 

Further, to verify the effectiveness of this paper’s method, this study also compared RFLS with state-of-the-art methods, including 
FedAvg [15], FedProx [28], and PFedME [29], to further ascertain the effectiveness of the approach proposed in this paper. The results 
demonstrated that RFLS had the highest average AUC among these methods. Specifically, in the AP phase, the AUCs were 0.727 
(FedAvg), 0.757 (FedProx), 0.739 (PFedME), and 0.796 (RFLS). In the PCP phase, the AUCs were 0.781 (FedAvg), 0.851 (FedProx), 
0.790 (PFedME), and 0.882 (RFLS). Lastly, in the VP phase, the AUCs were 0.789 (FedAvg), 0.814 (FedProx), 0.779 (PFedME), and 
0.886 (RFLS). 

These findings further validate the superior performance of the RFLS over other advanced federated learning methods in dis
tinguishing metastases from benign adrenal lesions. For a detailed comparison, please refer to Supplementary A4. 

4. Discussion 

The present study developed a robust federated learning signature (RFLS) and a deep learning signature (DLS) based on three-phase 
CT images to differentiate benign adrenal lesions from metastases, and the following three main things were done in this study. First, 
considering the data privacy issues in clinical practice, this study tries to use a federated learning framework to construct a multicenter- 
oriented computerized diagnostic model without sharing the raw data only the model parameters. Second, this study compares with 
traditional deep learning algorithms DLS, ResNet34 and VGG16 to further validate the effectiveness of the RFL proposed in this study 
in distinguishing adrenal glands from metastases. Finally, this study was analyzed on three sequences (aterial phase (AP), pre-contrast 
phase (PCP), and venous phase (VP)), The results from the four testing cohorts supported this observation, showing that both the VP- 
based DLS and RFLS achieved better AUC scores. The satisfactory diagnostic performance suggests that RFLS could potentially be more 
effective in concurrently distinguishing benign adrenal lesions from metastases when incorporating the robust federal learning 
algorithm. 

Indeed, based on the AUC results, both the DLS and RFLS models built on the Venous Phase (VP) appeared more effective in 
distinguishing benign adrenal lesions from metastases. There are several potential reasons for this superior performance: Enhanced 
Image Information: The venous phase is an enhanced imaging stage that provides more detailed information about the tumor’s blood 
supply. This additional detail can contribute to the model’s ability to differentiate between benign and malignant lesions. In theory, the 
contrast patterns seen in the VP phase could exhibit significant differences between benign adrenal lesions and metastases, hence 
aiding the model in distinguishing between the two. Easier Observation: Compared to the Arterial Phase (AP), the VP phase generally 
makes the enhancement of mass more observable. This clarity improves the detection rate of renal masses in clinical practice. This 
could be another factor contributing to the superior performance of the VP-based DLS and RFLS. The results from the four testing 
cohorts supported this observation, showing that both the VP-based DLS and RFLS achieved better AUC scores (DLS: 0.766, 0.838, 
0.871, and 0.863. RFLS: 0.781, 0.919, 0.914, and 0.931). This suggests that the VP phase may be a more optimal choice when 
developing models for differentiating between benign adrenal lesions and metastases, such as literatures [30,31]. 

For the traditional deep learning approach, the deep learning signature (DLS) from this study provided AUC values similar to those 
found in other studies within the testing cohort. Both previous and current research suggest that CT-based deep learning (DL) has 
potential for differentiating metastases from benign adrenal lesions [32]. However, the performance of the DLS, while promising, still 
falls slightly short of what might be considered satisfactory for widespread clinical use (with average AUC for AP, PCP, and VP being 
0.771, 0.780, and 0.835 respectively). One possible reason for this discrepancy could be due to data consolidation. While combining 
data from multiple sources into a single data center can help to increase the size of the training dataset, it can also introduce significant 
variations due to differences in data collection equipment, acquisition parameters, and image quality among the different institutions. 
This heterogeneity in the data can potentially reduce the generalization performance of the final deep learning model, meaning that 
models trained on local data might not perform as well when validated against external data. Hence, it’s crucial to consider these 
factors and account for them when designing and training deep learning models for clinical use. In this case, the use of federated 
learning approach can help to alleviate some of these challenges by allowing for model training that considers the heterogeneity of 
data across different sites. 

In contrast, the federated learning algorithm is emerging as a promising approach to address the limitations of traditional deep 
learning models. By enabling joint training of a globally shared model across multiple centers, it can outperform individual local 
models in terms of diagnostic efficacy [15]. This has been evidenced in various medical diagnostic studies including but not limited to 
breast density classification [20], brain tumor segmentation [22], and lung diseases classification [33]. Applying this strategy, we 
developed a Robust Federated Learning Signature (RFLS) for distinguishing metastatic tumors from benign adrenal masses. As ex
pected, the RFLS substantially improved the diagnostic performance compared to the Deep Learning Signature (DLS) across all testing 
cohorts in three phases (average AUCs for RFLS vs. DLS were 0.816 vs. 0.798, 0.889 vs. 0.838, and 0.903 vs. 0.825 respectively). 

This improvement can be attributed to two key advantages of the robust federated learning approach. First, this approach utilizes a 
distributed machine learning strategy where local models are trained individually. This not only enhances the overall accuracy of 
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computer-aided diagnostic systems, but it also ensures data security by only sharing model parameters and not actual patient data. 
Second, in a federated learning framework, each participant retains their own unique data distribution and characteristics. These 
differing datasets are fused and collectively trained to improve the generalization ability and performance of the model. This effec
tively leverages the diversity in data across different participants to enhance the robustness and adaptability of the overall model. 
Thus, the robust federated learning approach exhibits significant potential for enhancing diagnostic performance in medical appli
cations, and the results of our study underscore its effectiveness in differentiating metastatic tumors from benign adrenal masses. 

Moreover, to further validate the efficacy of the proposed method, we constructed a FedAvg [15], FedProx [26] and PFedME [27], 
which we validated on the testing cohort (Supplementary A4). Compared with other federated learning algorithms, this study in
troduces a meta-learning strategy to synthesize gradient information from multiple iterations of multiple clients. Based on this gradient 
information, the parameter update of the global model is performed and sent down to the local model, so as to train personalized 
parameters that better meet the needs of local clients. The results once again confirmed that the RFLS significantly improved the 
diagnostic performance based on AP-、PCP- and VP-CT compared to the state-of-the-art federal learning methods (FedAvg vs. FedProx 
vs. PFedME vs. RFLS: 0.727 vs. 0.757 vs. 0.739 vs. 0.796; 0.781 vs. 0.851 vs. 0.790 vs. 0.882; 0.789 vs. 0.814 vs. 0.779 vs. 0.886). 

Some limitations of this study need to be addressed. (1) Bias in data collection: As this is a retrospective study, it’s inevitably subject 
to certain biases related to data collection. For example, it might be that the data disproportionately represents certain demographics 
or disease severities, which could skew the results. To further validate the findings and reduce such biases, a prospective study should 
be conducted. (2) Some adrenal lesions (such as benign tumors including nonfunctional pheochromocytoma, and malignant tumors 
such as adrenocortical carcinoma and lymphoma.) were confirmed by subsequent workup but not histopathological confirmation, 
which does not fully rule out all the situations. This approach may have led to bias in the study results, and we need to consider the 
impact of these factors in future research. 

5. Conclusions 

The RFLS demonstrated superiority over the DLS for distinguishing metastases from benign adrenal lesions on the three-phase CT 
images. The proposed CT-based RFLS could potentially serve as a readily accessible and user-friendly method to assist in individualized 
adrenal lesions treatments. 

Fig. 7. The model performance comparison based on three phase. (a) The AUC value of DLS and RFLS based AP CT images. (b) The AUC value of 
DLS and RFLS based PCP CT images. (a) The AUC value of DLS and RFLS based VP CT images. AUC, area under curve; DLS, deep learning signature; 
RFLS, robust federated learning signature; AP, arterial phase; PCP, pre-contrast phase; VP, venous phase. 

Fig. 8. The DCA curves of based on three phase. (a) The DCA curves of DLS and RFLS based AP CT images. (b) The DCA curves of DLS and RFLS 
based PCP CT images. (a) The DCA curves of DLS and RFLS based VP CT images. DCA, decision curve analysis; DLS, deep learning signature; RFLS, 
robust federated learning signature; AP, arterial phase; PCP, pre-contrast phase; VP, venous phase. 
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