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Background: The results from animal and human research indicate that acute
intermittent hypoxia can enhance brain-derived neurotrophic factor (BDNF) plasma
levels and gene expression. As BDNF is known to promote the differentiation of
new neurons and the formation of synapses, it has been proposed to mediate adult
neuroplasticity. Thus, the present study aimed to analyze the long-term effects of
daily intermittent exposure to normobaric hypoxia (simulating high altitude exposure at
approximately 4000–5000 m) over 2 weeks on BDNF levels in young adults.

Methods: Twenty-eight young adults (age: 19–33 years) were randomized into a
hypoxic intervention group (N = 14) or the control group (N = 14). Participants in the
intervention group breathed intermittent normobaric hypoxic air at resting conditions
(5 min intervals, 80–85% SpO2 measured via a finger pulse oximeter, 12 sessions for
60 min/day for 2 weeks) via a hypoxic generator. BDNF plasma and serum levels were
determined at baseline and at 2 weeks after intervention using sandwich ELISAs.

Results: After 2 weeks of daily intermittent hypoxic treatment (IHT), we found a
significant group x time interaction effect for BDNF plasma levels based on a significant
decrease in BDNF levels in the hypoxia group.

Conclusion: Our results demonstrate that daily intermittent administration of hypoxic
air has a significant effect on BDNF regulation in healthy young adults. Contrary to other
results reporting an increase in BDNF levels under hypoxic conditions, the present data
suggest that hypoxic treatment using intensive IHT can reduce BDNF plasma levels for
at least 2 weeks. This finding indicates that the daily application of hypoxic air is too
frequent for the aimed physiological response, namely, an increase in BDNF levels.
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INTRODUCTION

Hypoxia is defined by a reduced oxygen content in air and
can be divided into intermittent and chronic forms. Thereby,
intermittent hypoxia applies to a large spectrum of stimuli that
range from exercise in high altitude to obstructive sleep apnea
(OSA). Intermittent hypoxia treatment (IHT) was first used
in sports medicine to enhance human physical performance
(erythropoiesis and angiogenesis) (Viscor et al., 2018). During
the following years, hypoxic training was increasingly employed
for non-pharmacological treatment of several diseases (e.g.,
bronchial asthma, hypertension, and cardiovascular diseases).
IHT can effectively stimulate various metabolic processes
(Serebrovskaya et al., 2008) and can have numerous positive
health effects similar to cardiovascular physical activity (Enette
et al., 2017). IHT may serve as a protective mechanism for the
brain by inducing neurogenesis. For instance, histological studies
in adult rats have shown that IHT promotes a transient increase
in progenitor cell proliferation in the subventricular zone and
a long-term increase in the dentate gyrus (Zhu et al., 2005)
and has the potential to recover spatial learning deficits after
cerebral ischemia by increased hippocampal neurogenesis (Tsai
et al., 2011). However, intermittent normobaric hypoxia is not
associated with positive effects only per se. For example, the
clinical syndrome of OSA leads to intermittent hypoxia as well
(Burtscher et al., 2009) and is associated with numerous negative
effects such as reduced cognitive performance (Yan, 2014; Malle
et al., 2016). Hence, based on different characteristics such as
the dose and the duration, we can assume that hypoxia induces
both protective and pathological effects. It has been proposed
that low-dose intermittent hypoxia (9–16% inspired O2) with
short durations can enhance positive physiological processes,
whereby high-dose hypoxia (2–8% inspired O2) is associated
with progressively pathological mechanisms (Navarrete-Opazo
and Mitchell, 2014).

The results from animal and human research indicate that
acute intermittent hypoxia (Vermehren-Schmaedick et al., 2012)
and physical activity (Enette et al., 2017) can enhance brain-
derived neurotrophic factor (BDNF) blood levels and BDNF
gene expression. Such gene expression is explained by an oxygen
deficit recognized by the oxygen sensory system (Sharp and
Bernaudin, 2004) changing the oxygen-dependent degradation
domain of hypoxia-inducible factor (HIF-1), thereby inducing
an increase in HIF-1-alpha levels (Wiener et al., 1996). HIF-
1-alpha is known to act as a transcription factor to modulate
the expression of several genes, such as BDNF growth factor
levels (Helan et al., 2014). The BDNF neurotrophin is a member
of the nerve growth factor family and is widely expressed
in the human brain, especially in the hippocampus, but it
is also expressed in peripheral tissues such as the pulmonary
vasculature (Aravamudan et al., 2012; Helan et al., 2014). Current
research studies indicate BNDF plasma levels as a potential
biomarker for reliable diagnosis of neurocognitive disorders
(Levada et al., 2016). The protein is secreted in an activity-
dependent manner but is also secreted in response to hypoxia
(Haubensak et al., 1998; Hartmann et al., 2001; Kohara et al.,
2001; Brigadski et al., 2005; Matsuda et al., 2009; Brigadski

and Leßmann, 2014; Helan et al., 2014; Edelmann et al., 2015;
Hartman et al., 2015). Research results indicate that 75% of the
BDNF in the peripheral blood plasma originates from the brain
(Krabbe et al., 2007; Rasmussen et al., 2009). Several studies have
suggested that BDNF is an important modulator of the CNS
and promotes the differentiation of new neurons and synapses
(Huang and Reichardt, 2001; Leschik et al., 2013; Park and
Poo, 2013; Edelmann et al., 2014). BDNF, therefore, represents
one of the major mediators of neuroplasticity (Calabrese et al.,
2014). Furthermore, some authors have suggested that BDNF
blood levels may serve as a biomarker for the diagnosis of
neurodegenerative diseases and psychiatric disorders and can
also serve as a surrogate marker for the success of therapies in
these disorders (Ruscheweyh et al., 2011). Reduced BDNF blood
levels have been reported in Alzheimer’s disease (Laske et al.,
2007) and mild cognitive impairment (Forlenza et al., 2010).

Regarding the effect of intermittent hypoxia on BDNF blood
levels in humans, the status of research is currently unclear.
The results from animal and human studies have shown an
acute increase in BDNF plasma levels in response to hypoxia.
Helan et al. (2014) observed an increase in BDNF levels in 30
healthy volunteers after 72 h of normobaric hypoxia. Schega
et al. (2016) reported no effects on BDNF in serum in older
adults (N = 34, 66.4 ± 3.3 years) after 4 weeks of intermittent
normobaric hypoxia (3× per week for 90 min) in addition to
cardiovascular exercise. However, their data indicated that BDNF
levels increased in the exercise-intervention group and in the
exercise control-group after a compensation period of several
weeks. This finding raises the question of whether the delayed
effect could have been observed after hypoxic treatment alone,
i.e., without concomitant cardiovascular exercise intervention.

Previous studies in animal research indicate an occurrence
of neurogenesis in dentate gyrus within 4 weeks subsequent to
intermittent hypoxia (Zhu et al., 2005). Based on these results
we conducted a feasibility study to test the effects of 2 weeks
of daily exposure to hypoxic air, which simulated intermittent
hypoxia treatment (IHT), on peripheral BDNF levels. Therefore,
we expected an increase in BDNF levels (as a central mediator of
neurogenesis).

With respect to previous research on passive IHT methods,
a protocol was chosen that has been shown to increase aerobic
capacity and exercise tolerance in elderly men (Burtscher
et al., 2004). In view of the data from Zhu et al. (2005) and
based on recommendations for IHT regimes (Bassovitch and
Serebrovskaya, 2009), we estimated the peak long-term effects of
IHT to emerge 2 weeks after the intervention. If successful, this
process is an easy to administer, low-cost intervention that may
have great potential in inducing neuroplasticity and preventing
cognitive deficits.

MATERIALS AND METHODS

The study was designed as a two-week randomized, controlled
intervention. The ethics committee at the Otto-von-Guericke-
Universität Magdeburg, approved the study, and all of the
subjects signed a written informed consent form prior to
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participation. The exclusion criteria were acute or chronic
cardiovascular, renal, metabolic, orthopedic and/or neurological
diseases.

Twenty-eight young adults (age: 19–33 years) were
randomized to a hypoxic intervention group [N = 14 (9
female), mean age 27.78, SD = 2.39] or a control group
[N = 14 (5 female), mean age 22.85, SD 2.35] using the website
www.randomization.com. The participants in the intervention
group breathed intermittent normobaric hypoxic air at resting
conditions (5 min intervals at a target of 80–85% SpO2 via a
finger pulse oximeter, 12 sessions for 60 min/day for 2 weeks)
generated by a hypoxic generator (b-cat and integra ten). The
simulated high altitude was continuously manually adjusted
between 4000 and 5000 m to reach the target SpO2. The control
group received no intervention.

Fasting blood samples were taken in the mornings at baseline
and at posttest (2 weeks after the last training session). From the
blood samples, the plasma and serum concentrations of BDNF
were determined using sandwich ELISAs (BDNF DuoSet; R&D
Systems, Wiesbaden, Germany) as previously described (Schega
et al., 2016).

For the intervention group, the blood samples for the small
blood count were taken 4 times at baseline, 1 week after the
intervention, at the end of intervention (consecutive day of last
intervention session) and 2 weeks after the intervention. Five
missing data sets for the second time point and 3 missing data sets
for the third time point were reported (subjects did not show up).

Statistical analysis of BDNF plasma levels, BDNF serum levels
and small blood count levels were performed with SPSS (SPSS 22
Inc./IBM). The intervention effects for BDNF were tested using
repeated-measures ANOVAs with group (IHT and CG) as the
between-subject factor and time (pre and post) as the within-
subject factor. Age and gender were included as covariates.
Additionally, post hoc pairwise comparisons were performed to
determine the longitudinal changes in the hypoxia and control
groups separately. In the case of non-normal distribution of
data, we used the Mann-Whitney U-test or the Wilcoxon test
instead of t-tests. The effect size was quantified by partial eta
squared (η2). For interaction effects, the percentage changes
from baseline to post measures were calculated for BDNF and
small blood count values and were then correlated with Pearson’s
formula.

RESULTS

The plasma and serum levels of BDNF were analyzed in the blood
samples before the onset of the intervention as well as after the
intervention. A significant group x time interaction effect was
observed for the BDNF plasma levels [F(1,26) = 10.742, p = 0.002,
η2 = 0.292]. Post hoc pairwise comparisons showed a significant
decrease in BDNF plasma levels only in the hypoxia group from
baseline to the posttest period (Wilcoxon-Test, Z = −3.296,
p = 0.001). The intraindividual changes in BDNF plasma levels
reached a reduction of 66.34% of the pretreatment period. No
significant time × group interactions emerged for BDNF serum
levels (see Table 1 and Figure 1).

For the intervention group, blood samples for a small blood
count were collected 4 times at baseline, 1 week after the
intervention, at the end of the intervention (consecutive day of
the last intervention session) and 2 weeks after the intervention.
Five missing data sets for the second time point and 3 missing
data sets for the third time point were reported (subjects did not
show up). Using mixed linear effects to model the effect over time,
the red blood cell distribution showed a linear decrease over time
(p < 0.01; Table 2).

Furthermore, an analysis of Pearson correlations between
the baseline to post measure changes (%) revealed a close to
significant positive correlation (one-tailed) for BDNF plasma and
leucocyte counts (RWBC = 0.446; p = 0.055) and a trend for
a negative BDNF and lymphocyte interaction (Rlym = −0.374;
p = 0.094).

DISCUSSION

Normobaric hypoxia such as with high-altitude training is
generally assumed to have positive effects on physical and
cognitive performance. Here, we tested the effect of a daily
intermittent normobaric hypoxic training during a period of
2 weeks on the BDNF levels. While we observed the expected
effects on blood parameters such as on the mean corpuscular
hemoglobin concentration, contrary to our expectation, we found
BDNF plasma levels to be significantly reduced 2 weeks after
daily intermittent normobaric hypoxia over a period of 2 weeks.
Regarding BDNF serum levels, no changes were detected.
Research results from Pan et al. (1998) indicate that BDNF
can pass the blood brain barrier by a high-capacity, saturable
transport system and that 75% of BDNF plasma levels stems from
the brain (Krabbe et al., 2007; Rasmussen et al., 2009).

Decreased BDNF levels are typically found in animal research
when the animals have previously experienced stress. Various
types of stress, including oxidative stress, have been shown to lead
to decreased BDNF gene expression in cortical regions, including
the hippocampus (Smith, 1996; Smith and Cizza, 1996; Bath
et al., 2013; Kwon et al., 2013; Rothman and Mattson, 2013).
In humans, a reduction in BDNF levels was seen after muscle
damage or with very intensive physical exercise. To avoid such
overtraining, successful exercise training is known to require
sufficient resting periods (Parra et al., 2000). In rodents, physical
activity induces BDNF gene expression in cortical regions,
especially in the hippocampus (Neeper et al., 1995; Uysal et al.,
2015). Studies on humans have reported an increase in BDNF
levels following sportive interventions (Erickson et al., 2012;
Müller et al., 2017a,b; Rehfeld et al., 2018). Others, however,
failed to show changes in the levels of any of the neurotrophic
factors that were assessed (Maass et al., 2016). A current review
by Enette et al. (2017) provides a comprehensive analysis of the
effects of aerobic training on BDNF plasma and serum levels in
older adults. In 11 of the 14 randomized controlled trials that
were included, the authors reported significantly increased BDNF
plasma and/or serum levels after aerobic intervention.

Together, these findings indicate that our IHT protocol with
its daily applications of hypoxic air might have been too intensive
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TABLE 1 | Statistics of rANOVA on BDNF plasma and serum levels.

Time Group Interaction (time x group)

BDNF df F P η2 F p η2 F p η2

plasma level 1,26 11.52 0.002∗∗ 0.307 0.425 0.520 0.016 10.742 0.003∗∗ 0.292

Serum level 1,25 2.24 0.147 0.082 10.53 0.003∗∗ 0.296 3.68 0.066 0.128

∗∗p < 0.01.

FIGURE 1 | BDNF plasma and serum levels between baseline and post intervention measures in the hypoxia intervention group and the control group (Mean ± SD).
∗∗p < 0.01 and ∗∗∗p < 0.001.

TABLE 2 | Small blood count for the treatment group.

Small blood count

Baseline (N = 14) 1 week IHT (N = 9) 2 weeks IHT (N = 11) Posttest (N = 14) Linear time effect Quadratic time effect

Mean SD Mean SD Mean SD Mean SD F p F p

RBCC (×106/ml) 4.94 0.43 5.00 0.29 4.75 0.36 4.83 0.36 1.066 0.308 0.628 0.539

RDW (%) 13.66 0.90 13.64 0.13 12.70 0.62 12.61 0.59 20.84 0.00∗∗ 1.259 0.295

HCT 0.46 0.03 0.44 0.03 0.43 0.03 0.45 0.03 1.852 0.181 1.443 0.248

HBG (mmol/L) 9.07 0.72 9.22 0.81 8.89 0.62 8.74 0.58 2.120 0.153 0.318 0.729

MCH (fmol) 1.84 0.13 1.84 0.08 1.87 0.10 1.81 0.09 0.287 0.595 0.903 0.414

MCHC (mmol/l) 19.79 0.79 21.02 0.55 20.48 0.52 19.70 0.53 0.163 0.689 11.77 0.000∗∗

MCV (fl) 93.14 3.80 87.40 2.79 91.64 4.37 92.07 4.08 0.145 0.705 3.866 0.029∗

WBC (×103/ml) 8.22 3.72 7.72 1.80 7.28 0.75 6.21 0.80 5.099 0.030∗ 0.106 0.899

SumGranul 0.63 0.10 0.66 0.06 0.61 0.06 0.58 0.06 3.369 0.074t 0.603 0.552

Segs 0.60 0.10 0.63 0.05 0.58 0.07 0.55 0.06 3.839 0.057t 0.908 0.411

Mono 0.06 0.01 0.07 0.01 0.06 0.02 0.06 0.02 0.071 0.792 0.496 0.613

Thrombocyte (×103/ml) 285.14 78.16 278.80 41.56 271.91 66.43 252.64 42.76 1.883 0.178 0.074 0.929

The mean values and SD for the RBCC, red blood cell count; RDW, red blood cell distribution width; HCT, hematocrit; HBG, hemoglobin; hypEryth, hypochromic
erythrocytes; WBC, leukocyte count; MCH, lymphocytes, mean corpuscular/cellular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean
corpuscular volume; Mono, absolute monocyte count; Segs, segmented neutrophil granulocytes; SumGranul, sum granulocytes, thrombocytes. ∗∗p < 0.01 ∗p < 0.05
tp < 0.09.

and, therefore, too stressful for the participants’ bodies. In
agreement with this finding, we observed a change in blood
marker levels that were indicative of inflammation, namely,

lymphocytes and granulocytes. Intensive physical exercise also
induces inflammatory processes (Brown et al., 2015), and the
latter has also been shown to relate to reduced BDNF levels after
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acute exercise at higher intensities (Nofuji et al., 2012; Cabral-
Santos et al., 2016). Other conditions in which a reduction in
BDNF levels was observed in the past include sleep apnea (Wang
et al., 2012), birth stress associated with psychiatric disease later in
life (Cannon et al., 2008), and stroke with low functional outcome
(Lasek-Bal et al., 2015). With respect to the present study, the
results of Wang et al. (2017) are of special relevance, as sleep
apnea is associated with nocturnal intermittent hypoxia. Again,
this finding suggests that “overdosing” hypoxia has detrimental
effects on BDNF secretion.

The assumption that our IHT protocol was too intense and
therefore decreased BDNF levels leads to the crucial question
of whether other less stressful IHT protocols could still have
a positive effect. In addition, methodological aspects (sampling
time and preanalytical variations) could have an influence on the
gained results. Indeed, there is an ongoing discussion of what
type of hypoxia treatment is most effective (Serebrovskaya and Xi,
2016). A protocol that increases physical fitness at the same time
may have negative effects on BDNF (Enette et al., 2017). Indeed,
we had used a protocol that, in a former study, had shown positive
effects on aerobic capacity.

Metabolic and Cardiovascular Response
to Hypoxia
Several field experiments in the mountains and environmental
studies in chambers report physiological effects of hypoxia
(Heinonen et al., 2016). These experiments show that hypoxia
can induce cardiovascular stress, can increase sympathetic neural
activation and can alter energy metabolism. The complex
metabolic response causes a release of various stress hormones
(Kayser and Verges, 2013). Regarding cardiovascular response
to normobaric hypoxia Heinonen et al. (2014) reported a
significantly increased cardiac output, ejection fraction and
tachycardia. Additionally, Heinonen et al. (2014, 2017) discuss
hypoxia as a potential trigger for the release of brain natriuretic
peptide (BNP) and the hormone apelin.

Limitations and Outlook
This randomized controlled feasibility study has several
limitations. First, the sample size was small (N = 28). Second, the

blood samples were only analyzed at baseline and after 2 weeks of
intervention. Another limiting factor in the BDNF blood analyses
is the large variances.

Future studies are needed to evaluate the correct
dose of normobaric intermittent hypoxia to increase
BDNF plasma levels and examine the underlying
neurobiological mechanisms. An intensive assessment
(neuropsychology, MRI/PET, cortisol, and IGF-1) would
be useful to analyze the physiological adaptations to
hypoxia.

In addition, BDNF has been suggested to play a mediating
role in schizophrenia (Sokoloff et al., 2004; Guillin et al., 2007).
Thus, several studies indicate an increase of the BDNF levels
and gene expression in patients with schizophrenia (Laske and
Eschweiler, 2006). In conclusion, an intermittent normobaric
hypoxia regimen that successfully increases the BDNF levels
may offer a non-pharmacological treatment to patients with
schizophrenia.
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