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ABSTRACT Xanthobacter aminoxidans is a Gram-negative pleomorphic and diazotrophic
Knallgas bacillus that undergoes asymmetric budding of V-shaped branched cells during
cell division. Like other Xanthobacter spp., cells are yellow from production of zeaxanthine
dirhamnoside. We sequenced strain 14aT (= ATCC BAA-299T) and report a genome size of
5,829,486 bp with a G1C content of 67.9%.

The family Xanthobacteraceae of the class Alphaproteobacteria, which is found in freshwater,
wetlands, soils, marine sediments, and plant roots and in waste treatment systems and

polluted sites, contains aerobic chemoheterotrophs, although facultative chemolithoauto-
trophy utilizing hydrogen is also commonly found (1–13). Xanthobacter aminoxidans (strain
14aT = VKM B-2254T = ATCC BAA-299T) was isolated from the activated sludge of a sewage
purification system at the Baikal paper mill in Russia in 1979 (8). X. aminoxidans cells are
Gram-negative pleomorphic rods that branch into V-shaped cells in asymmetric cell division
(8, 10). Xanthobacter aminoxidans has varied metabolic capabilities, including growing auto-
trophically in H2 plus O2 plus CO2, reducing nitrates to nitrites, and utilizing many carbon
sources, including glutamine and methanol; the latter function is potentially useful to
combat methanol pollution in wastewater treatment (10, 12, 14). Additionally, X. aminoxidans,
like other Xanthobacter species, is capable of fixing N2 under low-oxygen conditions (10, 12).
While some Xanthobacter strains have been sequenced (12, 15–17), X. aminoxidanswas still
not sequenced, which led to the sequencing effort described below.

Xanthobacter aminoxidans ATCC BAA-299T was obtained from ATCC (Manassas, VA, USA)
in lyophilized form. Bacteria from an isolated colony were cultured in tryptic soy broth for 24 h
at 30°C. A QIAamp DNA Mini Kit (Qiagen, Valencia, CA, USA) was employed to extract non-
size-selected genomic DNA (gDNA), and the KAPA HyperPlus kit (KR1145, v.5.19 [KK8515];
Kapa Biosystems, Wilmington, MA, USA) was then used to create the sequencing library by en-
zymatic fragmentation with HyperPlus end repair. The DNA library was sequenced on an
Illumina HiSeq 2500 instrument by the Hubbard Center for Genome Studies at the University
of New Hampshire (Durham, NH, USA), generating 250-bp paired-end fragments. The
resulting reads were trimmed by Trimmomatic v.0.38 (settings: paired-end mode with a
window size of 4, quality requirement of 15, and minimum read length of 36) (18). SPAdes
v.3.13.0 (19) assembled 23,117,624 trimmed short reads with default bacterial parameters.
After removal of small (,500 bp) and low-coverage (,65�) contigs, gene prediction
and annotation for the remaining 78 X. aminoxidans contigs were completed using the
NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v.6.1 (settings: best-placed reference
protein set and GeneMarkS-21) (20). The largest contig was 596,261 bp long, with a genome
N50 value of 242,177 bp. The total genome length was 5,829,267 bp, with a G1C content of
67.9%, similar to other members of the genus, such as Xanthobacter oligotrophicus 29kT

(5,313,426 bp, with a G1C content of 67.9%) (12). A total of 5,542 total genes were identified,
of which 5,415 were protein-coding genes. The genome contained 54 RNA genes (1 complete
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copy of each rRNA, 47 tRNAs, and 4 noncoding RNAs) and 73 pseudogenes. The genome
assembly was estimated to contain 100% of the expected highly conserved essential genes by
benchmarking universal single-copy orthologs (BUSCO) v.5.2.2 analysis (default bacterial line-
age settings, with no duplicated BUSCOs detected) (21–23), with an average genome cover-
age of 1,156�.

Consistent with known metabolism, we found by RAST analysis (24) genetic signatures of
diverse types of nitrogenmetabolism (from N2 fixation to ammonia assimilation), carbohydrate
metabolism (including C1 and C2 metabolic functions), and catabolism of diverse aromatic
compounds. Interestingly, we also found a number of phage/prophage elements within the
genome sequence, as well as 17 flagellar genes, although X. aminoxidans is described as a
nonmotile species (8, 10).

Data availability. The Xanthobacter aminoxidans ATCC BAA-299T whole-genome
sequencing (WGS) project was deposited in DDBJ/ENA/GenBank under accession number
JAMJXC000000000. The raw data from BioProject accession number PRJNA509625 were
submitted to the NCBI Sequence Read Archive (SRA) under accession number SRX15392594.
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