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The size of the pupil depends on light level. Watson and
Yellott (2012) developed a unified formula to predict
pupil size from luminance, field diameter, age, and
number of eyes. Luminance reflects input from the L and
M cones in the retina but ignores the contribution of
intrinsically photosensitive retinal ganglion cells (ipRGCs)
expressing the photopigment melanopsin, which are
known to control the size of the pupil. We discuss the
role of melanopsin in controlling pupil size by
reanalyzing an extant data set (Bouma, 1962). We
confirm that melanopsin-weighted quantities, in
conjunction with Watson and Yellott’s formula,
adequately model intensity-dependent pupil size. We
discuss the contributions of other photoreceptors into
pupil control.

In a paper adequately described as a tour de force,
Watson and Yellott (2012) developed a unified formula
to predict pupil size from luminance, field diameter, age,
and number of eyes.1 This letter concerns the parame-
trization of the retinal intensity, which in Watson and
Yellott’s model is given in terms of luminance, i.e., the
radiance of the stimulus weighted by the photopic
luminosity curve V(k). V(k) corresponds to a mixture of
the L and M cones in the retina, thereby largely ignoring
the potential role of S cones, rods, and the intrinsically
photosensitive retinal ganglion cells (ipRGCs) express-
ing the photopigment melanopsin (Dacey et al., 2005;
Gamlin et al., 2007; Provencio et al., 2000).

The observation that V(k)-weighted quantities do
not predict pupil size is not new (Berman, Fein, Jewett,
Saika, & Ashford, 1992; Krastel, Alexandridis, &
Gertz, 1985). Already in 1962, Bouma (1962) noted
that the spectral sensitivity of pupil control is neither
V(k) nor the rod-based V’(k), conjecturing that the
outcome of his experiments ‘‘may turn out to be related
to other adaptive processes in the human eye’’. Bouma
himself modeled the spectral sensitivity as a combina-

tion of S cones and rods. We know now that steady-
state pupil size is largely controlled by melanopsin.

To test if Bouma’s (1962) data are consistent with
melanopsin-based pupil control, we reanalyzed the
intensity-response curves from Bouma as follows. We
first extracted the data from Bouma’s figure 1, as shown
in our Figure 1A and B using WebPlotDigitizer
(https://automeris.io/WebPlotDigitizer/). For mono-
chromatic lights, which we assumed Bouma used, it is
simple to convert the reported V(k)-weighted luminous
flux into a melanopsin-weighted radiant flux (Com-
mission Internationale de l’Eclairage [CIE], 2018). As
radiant flux describes the total amount of energy
emitted by a source, it is not an appropriate measure to
describe corneal or retinal illumination, so the absolute
quantities are not informative unless a geometry is
specified. Allowing for fixed but arbitrary horizontal
shift, the data for all wavelengths now coincide, except
for long-wavelength lights (Figure 1C). In addition,
Watson and Yellott’s (2012) formula (red line) ac-
counts well for the shape of the pupil response as a
function of normalized melanopic radiant flux.

One notable and systematic deviation occurs for the
670-nm data points, which a melanopsin-exclusive
model appears not to predict well. This suggests that
melanopsin is not the only photoreceptor controlling
steady-state pupil size. This is not surprising, as
melanopsin-containing retinal ganglion cells receive
cone and rod inputs (Dacey et al., 2005).

Indeed, there is now a good body of evidence that all
photoreceptors can control the diameter of the pupil.
The best evidence comes from studies examining pupil
size using the method of silent substitution, in which
pairs of lights are alternated such that only one
photoreceptor class is stimulated (Estévez & Spekreijse,
1982; Spitschan & Woelders, 2018). Studies examining
pupil control using this method are given in Table 1.

A key realization is that while all photoreceptors
may contribute to controlling the pupil size, the when
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and how is important. For example, due to rod
saturation (Aguilar & Stiles, 1954), rods are not
expected to contribute to pupil control at photopic
light levels. The temporal regimes in which the
photoreceptors contribute are also different. Notably,
LþM stimulation is band-pass, while S cones and
melanopsin are tuned to low frequencies in driving the
pupil (Spitschan, Jain, Brainard, & Aguirre, 2014).
McDougal and Gamlin (2010) found that cones and
rods account for pupil constriction between 1 and 10 s
from the onset of the light exposure; at 100 s, pupil size
is largely controlled by melanopsin with some contri-
bution from the rods.

To what extent does Watson and Yellott’s (2012) use
of luminance as an input parameter call into question
the generalizability of their model? From first princi-
ples, differences between V(k)-weighted and melanopic
quantities are largest with monochromatic lights. But
we typically do not live under monochromatic illumi-
nation. We explored this question by examining the
range of melanopic irradiances at a fixed illuminance.
In other words, how wrong would we be if we
continued using V(k)-weighted quantities to predict
pupil size?

Using a database of 401 polychromatic (‘‘white’’)
illuminant spectra (Houser, Wei, David, Krames, &
Shen, 2013), we calculated the range of melanopic
irradiance while keeping the photopic illuminance fixed
at 100 lux (Figure 2A). Across all 401 spectra, a 100 lux
light source has a melanopic irradiance of 75.5 6 23.4
mW/m2. Crucially, the melanopic irradiance of an
illuminant at 100 lux depends also on the correlated
color temperature (CCT) of the source (Figure 2B),
with higher, more bluish CCT illuminants generally
having a higher melanopic irradiance. Irrespective of
CCT, the range of melanopic irradiances is between
20.4 and 164 melanopic mW/m2, i.e., in the worst case a

Figure 1. (A) Original graph from Bouma (1962) relating luminous flux to pupil diameter in millimeters. From ‘‘Size of the static pupil

as a function of wave-length and luminosity of the light incident on the human eye,’’ by H. Bouma, 1962, Nature, 193(4816), 690–691.

Copyright 1962 by Springer Nature. Reprinted with permission. (B) Replotted extracted pupil size data. (C) Data replotted in terms of

normalized melanopic radiant flux, along with the unified formula by Watson and Yellott (2012), allowing for a horizontal shift aligning

the data with the curve.

Photoreceptor class Reference

Melanopsin Tsujimura, Ukai, Ohama, Nuruki, and

Yunokuchi (2010)

Viénot, Bailacq, and Rohellec (2010)

Tsujimura and Tokuda (2011)

Spitschan et al. (2014)

Cao, Nicandro, and Barrionuevo (2015)

Barrionuevo and Cao (2016)

Spitschan et al. (2017)

Zele, Feigl, Adhikari, Maynard, and Cao

(2018)

L cone Spitschan et al. (2014) (LþM)

Spitschan et al. (2017) (LþMþS)
Barrionuevo and Cao (2016)

Murray, Kremers, McKeefry, and Parry

(2018)

Woelders et al. (2018)

M cone Spitschan et al. (2014) (LþM)

Spitschan et al. (2017) (LþMþS)
Barrionuevo and Cao (2016)

Murray et al. (2018)

Woelders et al. (2018)

S cone Viénot, Bailacq, and Rohellec (2010)

Spitschan et al. (2014)

Spitschan et al. (2017)

Barrionuevo and Cao (2016)

Cao et al. (2015)

Murray et al. (2018)

Woelders et al. (2018)

Rods Barrionuevo, McAnany, Zele, and Cao

(2018)

Barrionuevo et al. (2014)

Table 1. Evidence of photoreceptor contributions to pupil
control.
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factor of ;8. In other words, using a V(k)-based pupil
formula could lead to a misrepresentation of the retinal
intensity by up to one order of magnitude (log10(8)¼
0.9), which manifests in the horizontal shift of the
intensity response curve in Figure 1A and B.

The degree of misestimation of pupil size from a
V(k)-based model depends on the retinal intensity (as
the curve is nonlinear). It is also conceivable that the
diversity in pupil formulæ found by Watson and
Yellott (2012) could simply reflect the fact that previous
investigators used different spectral power distribu-
tions, which had the same (il)luminance but differed in
their melanopic (ir)radiance.

Whether or not the worst-case misprediction by
using a V(k)-weighted quantity has tangible conse-
quences depends on the application. Predicting pupil
size in a psychophysical experiment at mesopic light

levels requires less stringent estimation of retinal
intensity than safety-critical calculations.

A recent study reported an attempt to derive a
formula for predicting pupil size from melanopsin
activation but only focused on a rather narrow
luminance range (50–300 cd/m2; Rao, Chan, & Zhu,
2017). While this is a good start, it might be a useful
empirical exercise to collect natural pupil sizes under a
large range of illumination conditions (indoors, out-
doors) under natural behavior with conjoint spectral
measurements. Our analysis of pupil size as a function
of melanopic retinal intensity provides a starting point
for predicting pupil size from the spectral properties of
a scene.
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Footnote

1 The Watson and Yellott (2012) article contains two
typos. In their equation 13, the last term, 0.07(log L)2,
should be subtracted, not added. In their equation 14,
the term s3 is missing a minus sign. Their supplemen-
tary Mathematica notebook and our reimplementation
(at https://github.com/spitschan/Spitschan2019_JOV)
does not contain these errors.
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