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Abstract: The aim of this work is to demonstrate that the alkylation and dealkylation of selenium
atoms is an effective tool in controlling polymer amphiphilicity and, hence, its assembly and dis-
assembly process in water. To establish this concept, poly(ethylene glycol)-block-poly(glycidyl
methacrylate) was prepared. A post-synthesis modification with phenyl selenolate through a base-
catalyzed selenium-epoxy ‘click’ reaction then gave rise to the side-chain selenium-containing block
copolymer with an amphiphilic character. This polymer assembled into micellar structures in water.
However, silver tetrafluoroborate-promoted alkylation of the selenium atoms resulted in the forma-
tion of hydrophilic selenonium tetrafluoroborate salts. This enhancement in the chemical polarity
of the second polymer block removed the amphiphilic character from the polymer chain and led to
the disassembly of the micellar structures. This process could be reversed by restoring the original
amphiphilic polymer character through the dealkylation of the cations.

Keywords: organoselenium polymers; selenium-epoxy ‘click’ reaction; alkylation/dealkylation;
polymer assembly; micellar nanostructures; micellar disassembly

1. Introduction

In nature, reversible methylation and demethylation processes play a critical role
in determining protein structure and function [1]. In synthetic polymers, however, such
reversible alkylation/dealkylation-based strategies are not employed in controlling poly-
mer properties. Towards this end, we envisaged that the methylation of selenium (Se)
atoms to selenonium (Se+) cations would result in a large change in the chemical polarity
of the system. While organoselenides are neutral and hydrophobic, selenonium salts are
positively charged and hydrophilic in nature. Therefore, if a copolymer chain contains
a hydrophilic block and an organoselenium-based [2–13] hydrophobic block, it would
assemble in water due to an amphiphilic nature of the polymer (Figure 1). However, if
the selenium-containing polymer block is methylated, its chemical nature would change
to reflect a hydrophilic character. Thus, upon alkylation, the amphiphilic character of
the block copolymer would be lost and the micellar structure would be disrupted. If the
alkylation and dealkylation can be carried out in a reversible fashion, the polymer micelles
could be formed and broken through the methylation/demethylation of selenium atoms.
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Figure 1. The concept of controlling chemical nature of the polymer chain and, thus, its assem-
bly/disassembly behavior in water through alkylation/dealkylation process (APDC—ammonium
pyrrolidinedithiocarbamate).

2. Results and Discussion

To examine the feasibility of the aforementioned concept, it was necessary to first
establish whether the selenonium polymer segment would be soluble and stable in wa-
ter. To investigate these aspects, the epoxide side-chains of poly(glycidyl methacrylate)
(Mn = 36,400, Mw = 41,900, Mw/Mn = 1.15) were subjected to a base-catalyzed selenium-
epoxy ‘click’ reaction to furnish polymer one (Mn = 42,500, Mw = 52,400, Mw/Mn = 1.23)
(Scheme 1, Figure 2 and Figure S1) [14,15]. The side-chain selenoethers could then be
subjected to a methylation reaction using methyl iodide and silver tetrafluoroborate to
give polymer two [14,15]. The use of silver tetrafluoroborate for the alkylation reactions is
well established in small molecule and polymer chemistry [14–17]. The tetrafluoroborate
anion is non-nucleophilic (in contrast to halide ions) and is known to enhance polycation
stability [18]. Therefore, an ion exchange to chloride anion, as is typical in polyelectrolyte
chemistry, was not pursued.

Scheme 1. Synthesis of selenonium homopolymer 2.
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Figure 2. The 1H-NMR of PGMA (a), polymer 1 (b), and polymer 2 before (c) and after addition of a
slight excess of APDC (1.1 equiv./cation) (d). The measurement was carried out immediately after
the addition of APDC to the polymer solution. The bottom shows the 1H-NMR of APDC (e). Signals
from residual solvents (water and dimethylsulfoxide) are shown with an asterisk.

In 1H-NMR, the proton resonances from the methylene groups adjacent to the sele-
nium atoms in polymer one were observed at 3 ppm (Figure 2). The aromatic signals were
seen in the range of 7.2–7.5 ppm. Once the selenium atoms were methylated, they became
electron-deficient. Therefore, the aromatic resonances shifted downfield to 7.5–8 ppm. Fur-
thermore, the methyl signal appeared at 3.1 ppm in polymer two. Polymer two was found
to be well soluble in water as all proton resonances could be clearly seen in deuterated
water (Supplementary Materials, Figure S2). It was also found to be stable as no changes
could be seen in the 1H-NMR spectrum upon prolonged storage in water at 37 ◦C.

Having access to two also enabled us to examine the demethylation process. For this,
inspired by the studies of Deming and coworkers on sulfonium polymers, ammonium
pyrrolidinedithiocarbamate (APDC) was used as the dealkylating agent [19]. APDC is a
strong nucleophile that reverts the selenonium cations to their neutral selenoether form
by removing the methyl group. In this process, the methyl group is transferred onto the
nucleophile. This methyl group can be located in the 1H-NMR spectrum of the crude
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reaction mixture at 2.6 ppm. The aromatic resonances also shift completely up field,
thus, indicating a quantitative removal of the alkyl groups from the selenium atoms. The
demethylation reaction was found to be instantaneous as the crude reaction mixture was
observed immediately upon the addition of APDC to the aqueous polymer solution.

Encouraged by these results, the synthesis of poly(ethylene glycol)-based block copoly-
mer was targeted. For this, macroinitiator three was used to polymerize glycidyl methacry-
late monomer through an atom transfer radical polymerization process [20]. This pro-
cess led to the formation of reactive block copolymer four (Mn = 14,400, Mw = 17,900,
Mw/Mn = 1.24) (Scheme 2 and Figures S3 and S4). The sequence of ring-opening and
methylation then gave access to polymers five (Mn = 16,300, Mw = 20,100, Mw/Mn = 1.23)
and six (Figure S5).

Scheme 2. Synthesis of organoselenium block copolymers. The degree of polymerization was
calculated with the help of area integration analysis in 1H-NMR spectroscopy.

The poly(ethylene glycol) segment in polymer five is hydrophilic while the organose-
lenium segment is hydrophobic. Therefore, the overall character of the block copolymer is
amphiphilic. The aqueous solutions of 5, therefore, appeared to be cloudy due to the for-
mation of micellar structures (Figure 3a). In this secondary structure, poly(ethylene glycol)
segments formed a micellar shell and the organoselenium segment formed the micellar
core. In this arrangement, the poly(ethylene glycol) chains maximized while the hydropho-
bic block minimized their interactions with water molecules. The nano-sized micellar
structures were confirmed with the help of dynamic lighter scattering (DLS) (Figure 4)
and transmission electron microscopy (TEM) (Figure 5a) analyses. DLS indicates micellar
sizes of approximately 50–60 nm (Table S1). In TEM, the micellar cores higher in electron
density due to the aromatic rings can be visualized with sizes in the range of 18–20 nm.
Upon alkylation, however, the micellar assembly disrupted and in the DLS examination,
a complete shift to unimolecular structures with sizes below 1 nm were seen. In TEM,
an ill-defined large aggregate populated the substrate (Figure 5b). Visually, the aqueous
solution appeared transparent due to the dissolution of the hydrophilic polymer chains
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in water (Figure 3b). This process can be reversed through in situ dealkylation with the
help of APDC [19]. The demethylation was instantaneous in the case of block copolymers
too (Figure S5) and led to the restoration of the originally coded amphiphilicity in the
polymer structure and re-formation of the micellar assembly (Figures 4 and 5c). Visually,
the aqueous solution became cloudy once more, indicating the formation of nanostructures
(Figure 3c). A control experiment indicated that the micelles remained unperturbed when
subjected to the alkylation conditions in the absence of silver tetrafluoroborate and methyl
iodide (Figure S6).

Figure 3. Digital photographs of aqueous solutions of polymer 5 (a), polymer 5 upon treatment with
methyl iodide and silver tetrafluoroborate (b), and upon treatment with APDC (c).

Figure 4. Dynamic light scattering analysis of the aqueous solution of polymer 5 before alkylation,
after alkylation, and after dealkylation.
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Figure 5. Transmission electron micrographs of samples prepared from an aqueous solution of polymer 5 before alkylation
(a), after alkylation (b), and after dealkylation (c).

3. Conclusions

To summarize, the methylation of selenium atoms can convert an amphiphilic block
copolymer into a hydrophilic structure through selenonium salt formation. Demethylation,
on the other hand, can restore the original (chemically neutral) polymer character. Thus,
while dealkylation facilitates the micellar assembly of the amphiphilic block copolymer
in water, alkylation dissolves the assembled structure. Since methylating enzymes such
as methyltransferases (MTases) are commonly found in cell biology, polymeric micelles
sensitive to such natural cues can be useful for bio-relevant release applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13152456/s1, Figure S1: GPC of PGMA (solid line) and polymer 1 (dash line), Figure S2:
the 1H-NMR of polymer 2 in D2O at 37 ◦C. Residual solvent signal is shown with an asterisk, Figure
S3: The 1H-NMR of polymer 4 in deuterated dimethylsulfoxide (DMSO). Residual solvent signal is
shown with an asterisk, Figure S4: GPC of polymers 4 (solid line) and 5 (dash line), Figure S5: The 1H-
NMR of polymer 5 (top), after alkylation (middle) and upon exposure with APDC (bottom). Signals
from residual solvents are shown with an asterisk. The measurements were carried out immediately
after addition of APDC to the polymer solution, Figure S6: DLS data for the control experiment in
which the micelles of block copolymer 5 were exposed to 50 ◦C in absence of silver tetrafluoroborate
and methyl iodide for 24 h prior to data acquisition (diameter = 63.1 nm, PDI = 0.196). Table S1: DLS
data for polymer 5 before and after dealkylation process.
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