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Genomic Characterization of Upper-
Tract Urothelial Carcinoma in 
Patients With Lynch Syndrome

INTRODUCTION

Lynch syndrome (LS) is an autosomal domi-
nant cancer predisposition syndrome caused by  
germline mutations in the mismatch repair 
(MMR) genes MLH1, MSH2, MSH6, or PMS2. 
Patients with LS have an increased risk of devel-
oping a variety of tumors, particularly those aris-
ing in the colon, but also extracolonic cancers, 
including urothelial carcinomas (UCs).1-3 UC 
is the third most frequent malignancy in LS, 
occurring in approximately 5% of patients.3,4 
Patients with LS have up to a 22-fold greater 
risk of developing upper-tract urothelial carci-
noma (LS-UTUC) over the general population 
and a median age of onset 10 to 15 years earlier 
than patients with sporadic UTUC.2-5

Although both UC of the bladder (UCB) and 
UTUC are believed to arise from a common 
precursor cell population within the urothelium, 
increasing evidence suggests that these two 
malignancies represent different disease entities 
from both clinicopathologic and genetic per-
spectives.6-10 In support of this concept, tumor 
genomic sequencing of UCB and UTUC has 
identified distinct mutational profiles between 
these two urothelial malignancies.11,12

Here, we sought to determine whether patients 
with UTUC with known germline mutations 
uniformly harbored loss of heterozygosity of the 
wild-type allele of the gene that was the basis 
of their LS diagnosis and whether their tumors 
exhibited a pattern of hypermutation consis-
tent with MMR deficiency. We also sought to 
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identify differences in the patterns of mutational 
changes in LS-UTUC versus sporadic UTUC 
that may represent potential therapeutic targets.

PATIENTS AND METHODS

Study Samples

Upper-tract tumors (n = 21) and normal samples 
were collected from patients with a known germ-
line mutation in an LS-associated gene through 
a collaborative effort between the Colon Cancer 
Family Registry (CCFR) and Memorial Sloan 
Kettering Cancer Center. The CCFR activi-
ties are conducted across six multiple–principal 
investigator sites and six subaward sites: Univer-
sity of Melbourne (Melbourne, Victoria, Austra-
lia), Fred Hutchinson Cancer Research Center 
(Seattle, WA), Sinai Health System (compris-
ing Mount Sinai Hospital and Lunenfeld- 
Tanenbaum Research Institute [Toronto, Ontario, 
Canada]), Mayo Clinic (Mayo Clinic Arizona 
[Scottsdale, AZ] with a subaward to Mayo Clinic 
Minnesota [Rochester, MN]), Cedars-Sinai 
Consortium (comprising Cedars-Sinai Medical 
Center [Los Angeles, CA] with subawards to 
Cleveland Clinic [Cleveland, OH], University 
of Minnesota [Minneapolis, MN], Dartmouth 
College [Hanover, NH], and University of 
Virginia [Charlottesville, VA]), and University 
of Hawaii (University of Hawaii Medical Cen-
ter [Honolulu, HI] with a subaward to Cancer 
Prevention Institute of California [Fremont, 
CA]). This was formed as a resource to support 
studies on the etiology, prevention, and clinical 
management of colorectal cancer. The resource 
comprises data and biospecimens from approxi-
mately 40,000 participants from 14,000 families 
recruited from 1998 to 2016.13 For this study, the 
inclusion criteria were proven pathogenic germ-
line mutation in one of the DNA MMR genes 
MLH1, MSH2, MSH6, or PMS2; diagnosis of 
UTUC confirmed by expert pathologic exam-
ination; and availability of archival tissue blocks 
for genetic analysis. Study approval was obtained 
from the institutional review board or human 
research ethics committee of each participating 
institution. A previously characterized cohort 
of 82 patients with presumed sporadic UTUC 
treated with radical nephroureterectomy was 
used as a comparison group.11

Sample Preparation

Germline DNA was extracted from peripheral 
blood lymphocytes provided by the CCFR for 
each patient. Paraffin-embedded tumor blocks 
were obtained. Hematoxylin and eosin–stained 
sections were prepared from each block and 
reviewed by a board-certified pathologist to con-
firm the histologic diagnosis and tumor grade. 
For four tumors obtained from the Mount Sinai 
Hospital, previously extracted tumor genomic 
DNA was provided. For these cases, pathologic 
review was performed on high-resolution digi-
tal images of the hematoxylin and eosin–stained 
sections. No patient had a dominant variant 
histologic subtype. When not provided by the 
CCFR, DNA was extracted from paraffin sec-
tions as previously described.12 Clinical and 
demographic information were obtained from 
the prospectively maintained registry of the 
CCFR.

Targeted Sequencing

All protein-coding exons of 341 cancer-associated  
genes were sequenced using the Memorial Sloan 
Kettering Integrated Molecular Profiling of 
Actionable Cancer Targets (MSK-IMPACT) assay  
as previously described (Data Supplement).14 
All candidate mutations and indels were reviewed 
manually. The accumulated sequence coverage for 
each exon was compared in tumor and matched 
germline samples. Coverage ratios ≥ 3× were 
defined as amplifications, and ratios ≤ 0.3× were 
defined as deletions, whereas coverage ratios  
≥ 2× and ≤ 0.5× were defined as gains and losses, 
respectively.

To determine allelic configurations, total and 
allele-specific copy-number states were inferred 
for all tumor samples using FACETS (version 
0.5.6).15 The proportions of unstable microsatel-
lites were quantitated using MSIsensor (version 
0.2).16 Microsatellite instability (MSI) score was 
defined as the percentage of unstable microsat-
ellite sites divided by total number of microsat-
ellite sites surveyed. Signature decomposition 
analysis17,18 was performed for all tumor samples 
with ≥ 10 single-nucleotide somatic mutations. 
From the somatic mutations in an individual 
tumor sample, contributions were inferred from 
known mutational signatures, which are proba-
bility distributions over the nucleotide change 
and flanking 5’ and 3’ nucleotide context of each 
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mutation. The quasi P value for a particular sig-
nature was calculated as the fraction of samples 
with a signature proportion greater than a pre-
calculated noise threshold (1 × 10−5). Signatures 
representing ≥ 15% mutations and with a signif-
icant quasi P value (< .05) were plotted.

Statistical Analysis

Pearson’s χ2 test or Fisher’s exact test were used 
to test statistical significance of differences 
between clinical and demographic variables. 
Bivariable comparisons of individual mutation 
frequencies by cohort were performed using 
Fisher’s exact test. Counts of gains, losses, and 
total copy-number alterations were analyzed 
using negative binomial regression. P values  
< .05 were considered statistically significant. All 
analyses were conducted using R software (ver-
sion 2.13.1; R Foundation, Vienna, Austria).

RESULTS

Genomic Characterization of LS-UTUC

Of the 21 tumors analyzed, four were reclassi-
fied as renal cell carcinoma (RCC) on central 
pathologic review. Genomic DNA from all 21 
sample tumors (LS-UTUC, n = 17; RCC, n = 4)  
and matched normal peripheral blood lympho-
cytes were analyzed for alterations in 341  
cancer-associated genes. The average sequenc-
ing coverage was 315× for all targeted exons 
across all 21 patients, with average coverage of 
251× per tumor (Data Supplement). In all 21 
patient cases, we confirmed the presence of a 
deleterious germline alteration in an LS-associ-
ated gene. In patients with LS-UTUC, MSH2 
was the most common germline alteration (13 
[76%] of 17), followed by MSH6 (three [18%] 
of 17) and PMS2 (one [6%] of 17). No germline 
alterations were identified in MLH1 or PMS1. 
Thirteen (76%) of 17 patients had loss of het-
erozygosity in the DNA repair genes that corre-
sponded to the germline alterations identified in 
their germline DNA (Fig 1A; Appendix Fig A1).

A total of 1,834 somatic coding alterations were 
identified across all patients with LS-UTUC, 
involving 300 different genes (Data Supplement). 
The median number of somatically altered genes 
per tumor was 47 (range, nine to 204). Charac-
teristic of MMR-deficient neoplasms, the mean 
MSIsensor score was high (median, 25.1; range, 
6 to 37.7), with an excess of frameshift mutations 

(142 [8%] in 1,834), whereas copy-number alter-
ations were uncommon.19 Using mutational decom-
position analysis in samples with ≥ 10 somatic 
mutations, we identified evidence of MSI/MMR 
signatures in seven tumors, whereas the mitotic 
clock/aging signature was predominant in nine 
(Fig 1B). Notably, the four RCCs found to arise 
in the patients with LS had low mutation rates 
(median, two; range, one to nine), low MSIsensor 
scores (median, 4.7; range, 3 to 11.6), and no 
evidence of loss of heterozygosity of their LS- 
associated germline mutation, suggesting that 
the pathogenesis of these tumors was biologi-
cally independent of their LS diagnosis.

The most frequently mutated genes in the 17 
LS-UTUC tumors (present in > 10 patients) in 
decreasing frequency were KMT2D, CREBBP, 
ARID1A, SMARCA4, CIC, FAT1, FGFR3, 
FOXP1, KMT2C, NOTCH1, and NOTCH3 
(Appendix Fig A2). With the exception of CIC, 
FOXP1, and KMT2C, these genes were also 
those with the highest mutation rate (> 0.002 
mutations per nucleotide; Data Supplement). 
TP53 was mutated in a smaller subset of carcino-
mas (five [29%] of 17), and in four of these, the 
TP53 mutation co-occurred with FGFR3 muta-
tions. RB1 alteration was found in four (24%) of 
17. Of interest, although only 11 focal amplifica-
tions were identified within the 17 LS-UTUCs, 
five of these 11 amplification events involved 
CDKN1B. Moreover, CDKN1B amplification 
showed a tendency toward mutual exclusivity 
with both FGFR3 and TP53 mutations.

Comparison of Genomic Profiles of  
LS-UTUC and Sporadic UTUC

To identify potential differences in the muta-
tional landscape between LS-UTUC and spo-
radic UTUC, we compared the results of the 
LS-UTUC cohort with those from a previously 
reported analysis by our group of 82 patients with 
sporadic UTUC. One patient in this prior cohort 
had an ultramutated phenotype (422 mutations 
and no focal copy-number alterations) attribut-
able to a hotspot mutation in POLE.11 Patient 
demographic and clinicopathologic characteris-
tics of the two groups are listed in Table 1. Com-
pared with those with sporadic UTUC, patients 
with LS were significantly younger (median 
age, 61 years; interquartile range [IQR], 53–66 
years v 68.5 years; IQR, 63-75 years; P = .005), 
had had less exposure to tobacco (47% v 73%;  
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P = .035), and had a different distribution of pri-
mary tumor location (47% ureteral tumor in LS 
v 18% in the sporadic cohort; P = .011).

As expected, the median number of mutations 
per sample for LS-UTUC was significantly 
greater than that seen in the sporadic cohort 
(58; IQR, 47-101 v six; IQR, 4–10; P < .001), 
and the MSIsensor score was also significantly 
higher (median, 25.1; IQR, 17.9-31.2 v 0.03; 
IQR, 0-0.44; P < .001; Fig 1C). Most of the spo-
radic samples with ≥ 10 somatic mutations had 
an AID/APOBEC (activation-induced cytidine 

deaminase/apolipoprotein B mRNA-editing 
enzyme catalytic polypeptide) signature (12 of 16; 
Fig 1B).

We next compared the frequencies of genetic 
alterations in the most commonly altered genes 
(Table 2; Fig 1D) between the two tumor cohorts. 
This revealed that, although the mutational land-
scapes overlapped, some genes were targets of 
somatic alteration in both cohorts; however, the 
frequency of alteration was significantly higher 
in LS-UTUC (ie, KMT2D, CREBBP, ARID1A, 
and SMARCA4). Moreover, some genes were 
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somatic targets almost exclusively in the LS 
cohort. Examples of this include CIC, FOXP1, 
NOTCH1, NOTCH3, or RB1, each of which 
harbored somatic alterations in nonoverlapping 
subsets in < 6% of sporadic UTUCs versus 24% 
to 65% in LS-UTUCs (P < .001). Copy-number 
alterations such as CDKN1B amplification were 
also unique to LS-UTUCs (five of 17 v zero of 
82; P < .001). Of note, alteration in at least one 
of the DNA damage response and repair genes 
(ERCC2, ERCC3, ERCC4, ERCC5, BRCA1, 
BRCA2, RAD50, RAD51, RAD51B, RAD51C, 
RAD51D, RAD52, RAD54L, NBN, MRE11A, 
ATM, ATR, MDC1, CHEK1, CHEK2, PALB2, 
BRIP1, FANCA, FANCC, BLM, MUTYH, 
RECQL4, PARP1, and POLE) was found in 94% 
of the patients with LS, compared with 23% in 
the sporadic cohort (P < .001). When adjust-
ing for grade, most of the differences between 
the two cohorts remained significant, although 
the frequency of gene alterations was different 
between low- and high-grade tumors (Table 2).

Finally, we noted that both cohorts had similar 
frequencies of FGFR3 mutations (LS-UTUC, 
11 [65%] of 17 v sporadic UTUC, 41 [50%] of 
82; P = .269; Appendix Fig A3). Not surprisingly, 

FGFR3 mutations were more frequent in low-
grade tumors (80% of low-grade LS-UTUCs v 
94% of low-grade sporadic UTUCs; P = .218). 
However, whereas the most prevalent FGFR3 
hotspot mutation in sporadic UTUC was S249C 
(26 [63%] of 41 mutations; 13 of 22 and 13 of 19 
for low- and high-grade tumors, respectively), in 
LS-UTUC, the FGFR3 mutations noted were 
predominantly R248C (nine [82%] of 11 muta-
tions; four of four and five of seven for low- and 
high-grade tumors, respectively) and to a lesser 
extent G380R (four [36%] of 11 mutations; two 
of four and two of seven for low- and high-grade 
tumors, respectively; Fig 2A).

Given this unexpected finding, we rereviewed  
all 41 FGFR3 mutations in our sporadic cohort  
of 82 UTUCs and identified two carcinomas with 
an FGFR3 R248C mutation. These UTUCs 
had 31 and 54 total somatic mutations, respec-
tively, by MSK-IMPACT, suggesting the pos-
sibility of an MMR defect. However, their 
MSIsensor scores were low (0 and 0.11), and the 
mutational decomposition analysis revealed an 
AID/APOBEC signature.

Validation of FGFR3 R248C as Marker of 
LS-UTUC

To determine the extent to which the presence 
of an FGFR3 R248C mutation may be associ-
ated with LS or an LS-like hypermutator phe-
notype, we queried 14,800 tumors prospectively 
sequenced as part of clinical care at Memo-
rial Sloan Kettering Cancer Center using the 
MSK-IMPACT assay. Twenty-three patients had 
an FGFR3 R248C mutation, corresponding to 
11 UTUCs, nine UCBs, and three tumors with 
other primary sites (one squamous cell carcinoma 
of the lung, one lung metastasis from breast car-
cinoma, and one squamous cell carcinoma of 
the tongue; Fig 3). The 11 patients with UTUC 
had a median number of mutations of 41 (range, 
one to 414 mutations). Consent for germline 
genomic analysis was lacking for two patients. 
Of the nine evaluable patients with presumed 
sporadic UTUC and an FGFR3 R248C hotspot 
mutation, seven displayed germline evidence of 
LS (six germline mutations in MSH2 and one in 
MSH6). One of the patients without evidence of 
a germline mutation had a hypermutator tumor 
(41 mutations) with absence of MSH2 and MSH6 
expression by immunohistochemistry consistent 
with a somatic MSI-high, LS-like phenotype.
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Table 1. Population Demographics and Clinical Characteristics

Characteristic

No. (%)

P
LS-UTUC  

(n = 17)
Sporadic UTUC  

(n = 82)

Median age (IQR), years 61 (53-66) 68.5 (63-75) .005*

Sex .267

  Male 9 (53) 55 (67)

  Female 8 (47) 27 (33)

Smoking status .035*

Active/former 8 (47) 60 (73)

Never 9 (53) 22 (27)

Tumor location .011*

  Renal pelvis 9 (53) 67 (82)

  Ureter 8 (47) 15 (18)

Grade .910

  Low 5 (29) 23 (28)

  High 12 (71) 59 (72)

T stage .956

  < pT2 (pTa, pT1, pTis) 6 (55) 44 (54)

  ≥ pT2 (pT2, pT3, pT4) 5 (45) 38 (46)

Abbreviations: IQR, interquartile range; LS, Lynch syndrome; UTUC, upper-tract urothelial 
carcinoma.
*Significant.
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In our study, the presence of an FGFR3 R248C 
hotspot mutation was associated with a higher 
median number of somatic mutations compared 
with tumors with an FGFR3 S249C mutation 
(58; IQR, 45.5-84 v seven; IQR, 6-11.8; P < .001;  
Fig 2B). Similarly, of the 14,800 tumors pro-
spectively sequenced at our institution, the 23 
samples with FGFR3 R248C mutations, includ-
ing 20 UCs and three other tumors, had a sig-
nificantly higher median number of somatic 
mutations compared with that in the 84 patients 
with FGFR3 S249C mutations across all tumor 
types (22; IQR, 8-53 v nine; IQR, 6-11.8;  
P < .006).

DISCUSSION

LS is an autosomal dominant cancer predisposi-
tion syndrome attributable to germline muta-
tions in an MMR gene. Upwards of 80% of 
patients with LS will develop a malignancy, with 

colorectal cancer being the most common.20 UC 
is the third most common site of extracolonic 
malignancy in the LS spectrum and occurs in 
approximately 5% of patients. Few studies to date 
have sought to define the somatic mutational 
profile of MMR-deficient urothelial tumors, 
in part because of the perception that the high 
mutational load would limit the ability to iden-
tify true driver events.19 In this study, we per-
formed targeted sequencing of UTUC from 17 
patients with known germline mutations in an 
LS-associated gene to characterize the genomic 
landscape of these tumors and compared the 
results with those from a cohort of 82 patients 
with clinically presumed sporadic UTUC.

Next-generation sequencing (NGS) can be used 
to discover novel, targetable, or pathogenic 
somatic alterations and identify patients with 
mutations for which therapies already exist. 
Although many of the driver genes identified in 

6� ascopubs.org/journal/po JCO™ Precision Oncology

Table 2. Comparison of Frequency of Gene Alterations in Both Cohorts

Gene

UTUC

Low Grade High Grade All

Lynch 
 (n = 5)

Sporadic 
 (n = 23)

P

Lynch 
 (n = 12)

Sporadic 
 (n = 59)

P

Lynch 
 (n = 17)

Sporadic 
 (n = 82)

PNo. (%) No. (%) No. (%)

DDR genes 5 (100) 5 (22) .001 11 (92) 14 (24) < .001 16 (94) 19 (23) < .001

KMT2D 4 (80) 12 (52) .254 12 (100) 18 (31) < .001 16 (94) 30 (37) < .001

CREBBP 3 (60) 7 (30) .211 11 (92) 8 (14) < .001 14 (82) 15 (18) < .001

ARID1A 3 (60) 3 (13) .02 10 (83) 8 (14) < .001 13 (76) 11 (13) < .001

SMARCA4 3 (60) 3 (13) .02 10 (83) 5 (8) < .001 13 (76) 8 (10) < .001

CIC 3 (60) 1 (4) .001 8 (67) 1 (2) < .001 11 (65) 2 (2) < .001

FAT1 3 (60) 2 (9) .007 8 (67) 6 (10) < .001 11 (65) 8 (10) < .001

FGFR3 4 (80) 22 (96) .218 7 (58) 19 (32) .087 11 (65) 41 (50) .269

FOXP1 2 (40) 0 (0) .002 9 (75) 0 (0) < .001 11 (65) 0 (0) < .001

KMT2C 3 (60) 10 (43) .502 8 (67) 12 (20) .001 11 (65) 22 (27) .003

NOTCH1 2 (40) 3 (13) .154 9 (75) 2 (3) < .001 11 (65) 5 (6) < .001

NOTCH3 3 (60) 1 (4) .001 8 (67) 2 (3) < .001 11 (65) 3 (4) < .001

KDM6A 2 (40) 9 (39) .971 6 (50) 20 (34) .291 8 (47) 29 (35) .364

PIK3CA 2 (40) 6 (26) .533 4 (33) 7 (12) .061 6 (35) 13 (16) .064

CDKN1B 1 (20) 1 (4) .218 4 (33) 0 (0) < .001 5 (29) 1 (1) < .001

TP53 1 (20) 0 (0) .029 4 (33) 15 (25) .573 5 (29) 15 (18) .299

TSC1 1 (20) 4 (17) .890 4 (33) 10 (17) .193 5 (29) 14 (17) .240

CDKN2A 1 (20) 4 (17) .890 3 (25) 13 (22) .823 4 (24) 17 (21) .797

RB1 1 (20) 0 (0) .029 3 (25) 1 (2) .001 4 (24) 1 (1) < .001

STAG2 0 (0) 10 (43) .066 3 (25) 9 (15) .412 3 (18) 19 (23) .618

Abbreviations: DDR, DNA damage repair; UTUC, upper-tract urothelial carcinoma.

http://ascopubs.org/journal/po
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the LS and sporadic UTUC cohorts tended to be 
similar (FGFR3, KDM6A, PIC3CA, and TP53), 
differences in the genomic profiles were observed. 
As would be expected from an MSI-associated 
malignancy, the median number of mutations 
per tumor was significantly higher in LS-UTUC 
than sporadic UTUC (58 v six; P < .001). There 
was an excess of frameshift mutations (142 [8%] 
of 1,834), and copy-number alterations were rel-
atively uncommon. Mutation of some genes was 
almost exclusive to LS-UTUC (CIC, NOTCH1, 
NOTCH3, and RB1). Of note, however, hyper-

mutation or loss of heterozygosity of the LS 
germline mutation was not noted in the four 
RCC samples collected from patients with LS, 
suggesting that the pathogenesis of these tumors 
was unrelated to the LS diagnosis.

Although we were able to identify somatic alter-
ations in most patients driving loss of heterozy-
gosity in the germline LS genes relevant to each 
corresponding patient, four patients with LS 
had germline mutations without evidence of loss 
of heterozygosity as detectable by tumor DNA 
sequencing. All four, however, had genomic 
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Other tumors (n = 3)
   SCC of the lung (n = 1)

   Lung metastasis from breast (n = 1)
   SCC of the tongue (n = 1)

Not evaluable 
(n = 2)

Not evaluable 
(n = 5)

Tumors prospectively sequenced by MSK-IMPACT
(N = 14,800)

FGFR3 R248C mutations identified
(n = 23; 0.2%)

UCs
(n = 20)

UCBs
(n = 9)

UTUCs
(n = 11)

Germline evidence of LS
(n = 1 of 4)

Germline evidence of LS
(n = 7 of 9)

Fig 3. Flow chart of 
identification of the patients 
with FGFR3 R248C muta-
tion in the clinical Memorial 
Sloan Kettering Integrated 
Molecular Profiling of 
Actionable Cancer Targets 
(MSK-IMPACT) cohort. 
LS, Lynch syndrome; SCC, 
squamous cell carconima; 
UC, urothelial carcinoma; 
UCB, UC of the bladder; 
UTUC, upper tract UC.
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signatures consistent with MSI, suggesting 
that these patients may have had transcriptional 
silencing by promoter hypermethylation, as 
previously reported.21 Regarding the mutational 
decomposition analysis, only seven LS-UTUC 
tumors had an MMR/MSI signature. This 
mutational decomposition analysis only uses 
single-nucleotide polymorphisms, and these are 
not the most prevalent type of mutation present 
in MSI/MMR cases.19 This may partially explain 
why the decomposition analysis did not identify 
a strong MSI/MMR signature in some patient 
cases, including many with high MSIsensor 
scores.

Among the most striking findings in our study 
was the identification of an R248C hotspot 
mutation in FGFR3 that may serve as a poten-
tial biomarker for LS in patients with UTUC. 
FGFR3 is one of four members of the fibro-
blast growth factor receptor family of receptor 
tyrosine kinases that promote cell growth and 
proliferation. Activating mutations of FGFR3 
are particularly common in low-grade UCs.22,23 
FGFR3 R248C leads to increased FGFR3 dimer 
stability and constitutive receptor activation 
in the absence of ligand, resulting in activa-
tion of the phosphatidylinositol 3-kinase–AKT 
and mitogen-activated protein kinase signal-
ing pathways.24,25 This mutation has already 
been described in UCB,26 but its presence in 
UTUC was highly associated with a signifi-
cantly increased median number of somatic 
mutations.

Some hereditary cancers are misclassified as spo-
radic, although their identification might have  
consequences for both patients and their family  
members, because this information would prompt 
germline testing and, if positive, screening for 
LS-related malignancies.27 Our data suggest that 
the finding of an FGFR3 R248C somatic mutation 
is a potential biomarker for LS and its identifica-
tion in a patient should prompt germline testing 
for LS. Furthermore, recent data suggest that 

tumors with MMR deficiency are more respon-
sive to immune checkpoint blockade than MMR- 
proficient tumors.28 It is possible that patients with 
LS-UTUC may derive greater benefit from anti–
PD-1 therapy, suggesting an immediate clinical 
implication for screening and potential person-
alization of therapy in these patients.

One potential limitation of our study was the 
use of a targeted sequencing approach focus-
ing on a panel of 341 cancer-related genes. A 
broader sequencing approach, such as whole- 
exome sequencing, may have identified addi-
tional genes differentially altered in sporadic 
and LS-UTUCs. Recently, the analysis of 28 
samples of sporadic UTUC identified four RNA 
expression profiles with different clinical char-
acteristics, and it would be biologically import-
ant to study how LS-UTUCs cluster within this 
classification.29 Additionally, although ours is the 
largest series to date to our knowledge profiling 
LS-UTUC using NGS, the sample size remains 
small, and a larger study may have revealed other 
significant patterns of comutated genes. Conse-
quently, there is a need for a larger cohort with 
external validation.

In conclusion, we performed targeted NGS of 17 
UTUCs that arose in patients with LS to com-
pare the genetic characteristics of such tumors 
with those of sporadic UTUC tumors. Although 
the spectrums of mutated genes showed some 
similarities, LS-UTUCs were characterized by 
a unique genetic signature, consisting of hyper-
mutation and frequent hotspot mutations at 
FGFR3 R248C. The results of this study may 
help to differentiate between presumed sporadic 
UTUC and UTUC with an underlying MSI- 
associated germline defect, which could be used 
to guide specific screening and treatment rec-
ommendations.
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Fig A1. FACETS 
analysis of five samples 
without somatic alterations 
corresponding to germ-
line mutations identified 
in mismatch repair genes. 
Sample s_BB_lynch_019_T 
was found to present loss of 
heterozygosity in MSH2. 
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