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Abstract

Background

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Interven-

tion relies on identifying high-risk regions, yet rapid Schistosoma diagnostics (Kato-Katz

stool assays (KK) and circulating cathodic antigen urine assays (CCA)) yield different preva-

lence estimates. We mapped S. mansoni prevalence and delineated at-risk regions using a

survey of schoolchildren in Rwanda, where S. mansoni is an endemic parasite. We asked if

different diagnostics resulted in disparities in projected infection risk.

Methods

Infection data was obtained from a 2014 Rwandan school-based survey that used KK and

CCA diagnostics. Across 386 schools screened by CCA (N = 19,217). To allow for uncer-

tainty when interpreting ambiguous CCA trace readings, which accounted for 28.8% of total

test results, we generated two presence-absence datasets: CCA trace as positive and CCA

trace as negative. Samples (N = 9,175) from 185 schools were also screened by KK. We

included land surface temperature (LST) and the Normalized Difference Vegetation and

Normalized Difference Water Indices (NDVI, NDWI) as predictors in geostatistical

regressions.
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Findings

Across 8,647 children tested by both methods, prevalence was 35.93% for CCA trace as

positive, 7.21% for CCA trace as negative and 1.95% for KK. LST was identified as a risk

factor using KK, whereas NDVI was a risk factor for CCA models. Models predicted high

endemicity in Northern and Western regions of Rwanda, though the CCA trace as positive

model identified additional high-risk areas that were overlooked by the other methods. Esti-

mates of current burden for children at highest risk (boys aged 5–9 years) varied by an order

of magnitude, with 671,856 boys projected to be infected by CCA trace as positive and only

60,453 projected by CCA trace as negative results.

Conclusions

Our findings show that people in Rwanda’s Northern, Western and capital regions are at

high risk of S. mansoni infection. However, variation in identification of environmental risk

factors and delineation of at-risk regions using different diagnostics likely provides confusing

messages to disease intervention managers. Further research and statistical analyses,

such as latent class analysis, can be used to improve CCA result classification and assess

its use in guiding treatment regimes.

Author summary

Schistosomiasis control efforts rely on rapid diagnostic tests to generate maps of disease

prevalence. This is so that high-risk areas can be identified and provided with treatments.

A range of tests are available, yet it is unclear how their differing results can inform disease

mitigation. This study compared the results of diagnostic methods for uncovering areas at

risk of Schistosoma mansoni infection in Rwanda. A national survey of Rwandan school-

children used two detection methods: a test detecting a schistosome antigen in urine

(CCA) and a test to detect parasite eggs in stool (KK). We divided the CCA test into two

datasets, as there is large uncertainty when interpreting its reading. We found that these

three datasets all tell different stories about the distribution of S. mansoni in Rwanda.

While all tests found similar high-risk areas where prevalence reaches 50%, such as North-

ern and Western regions, their overall messages are mixed. Some urine tests find areas

that are high-risk, while stool tests in the same area may consider it low-risk. This makes

it difficult to design budgets for treatment programs, as it is unclear where resources

should go. More research and analyses are needed to determine how these tests can be

used as tools for schistosomiasis risk mapping. Furthermore, the interpretations of map-

ping outcomes will also likely rest on national decisions regarding programmatic goals.

Introduction

Schistosomiasis, caused by parasitic trematode species of the genus Schistosoma, is an infec-

tious disease affecting people throughout the world’s tropical and sub-tropical regions [1, 2].

Chronic infections can lead to impaired growth and development in children, making schisto-

somiasis one of the world’s most important neglected tropical diseases [3]. Schistosomiasis is

often linked to absence of access to latrines and / or clean water, which can lead to the use of
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freshwater bodies that can become contaminated with parasite eggs when infected people uri-

nate or defecate while bathing, washing and swimming. Freshwater snails, often present in

these water bodies, act as intermediate hosts for the parasites. Following infection of appropri-

ate snail hosts, asexual replication occurs followed by the development of the infectious stages

of the parasite which can be released into the water and infect people. Consequently, infection-

related morbidity is especially common in poor agricultural areas that rely on unsanitized

freshwater [4, 5]. Globally, it is estimated that more than 779 million people live in areas with

high risk of human Schistosoma transmission [6]. Infection risk is particularly high in sub-

Saharan Africa, where up to 90% of the world’s infections occur [6, 7]. Burdens in this region

are enormous, matching or exceeding those related to malaria and HIV/AIDS [3]. An esti-

mated 300,000 people die from schistosomiasis in Africa each year [8].

Mass delivery of anthelminthic treatment can reduce Schistosoma prevalence and facilitate

major improvements to public health outcomes [9]. Mass administration of praziquantel can

be cost effective, especially in areas with relatively high prevalence of infection and high trans-

mission intensity [7, 10]. Yet burdens are so great that mass drug administration remains unaf-

fordable for most low-income endemic countries [9, 11]. Steps have been taken by Merck

KGaA, the United States Agency for International Development, the Bill and Melinda Gates

Foundation, the British Department of International Development and the Global Network

for Neglected Tropical Diseases to increase delivery of doses to sub-Saharan African countries

[12].

Designing effective drug delivery programmes to reduce Schistosoma transmission is com-

plicated by inadequate understanding of regional burdens and risk factors [13, 14]. The geo-

graphical distributions and transmission rates of Schistosoma parasites are poorly studied in

many endemic regions but are broadly known to be driven by environmental heterogeneity

[15–17]. Climate or environmental variables that influence soil moisture and composition can

reflect variability in molluscan host distributions and parasite larval survival rates [18–20].

Data-driven approaches to identify environmental correlates of infection risk in understudied

endemic regions are imperative to design mitigation procedures.

In addition to climatic and environmental heterogeneity in infection risk, uncertainty sur-

rounding regional infection prevalence is a barrier to treatment design. The World Health

Organization (WHO) recommends that treatment for schistosomiasis should be provided to

areas of high endemism in efforts to reduce morbidity. Such treatment is important not only

for morbidity control but also for current pushes to eliminate schistosomiasis where feasible

[21]. Developing treatment regimens to achieve these goals relies on gathering accurate esti-

mates of infection prevalence. Moreover, with targets for 2020–2030 now under public consul-

tation [21], critical assessments of inferences resulting from different diagnostic tests are

needed. This is particularly true considering that different diagnostics may be chosen depend-

ing on whether a country’s specified goal is elimination as a public health problem (morbidity

control) or interruption of transmission. However, gathering estimates of prevalence is chal-

lenging, particularly since symptoms of intestinal schistosomiasis are incredibly variable and

can include headache, fever, rash, anaemia, bloody diarrhoea and abdominal pain, hepatosple-

nomegaly, blood in urine, burning sensation during urination, fibrosis of the bladder, and spe-

cifically in females, genital lesions which may lead to irreversible consequences, including

infertility [2, 22]. Use of rapid diagnostic tests is therefore recommended for generating esti-

mates of prevalence. For intestinal schistosomiasis, detection of eggs in the faeces (primarily

using the Kato-Katz (KK) method, which involves microscopic examination of faecal smears

[23]) or of circulating cathodic antigen (CCA) in urine are the primary methods of choice for

diagnosis of infections [24, 25]. However, the two methods can return different prevalence

estimates, with CCA generally yielding higher sensitivity [26, 27]. The KK method may show
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particularly low sensitivity in low to moderate endemic areas, especially when there are many

low-intensity infections [28].

Without an accurate understanding of current burdens and environmental correlates, iden-

tifying areas in need of treatment remains difficult. Geostatistical models that use up-to-date

infection data and account for environmental risk factors are useful tools for producing evi-

dence-based projections of populations at risk of Schistosoma infection [29, 30]. Modelling

assessments should ideally be formulated following adequate scrutiny of assessment of the per-

formances and inferences that are provided by different available diagnostic methods.

Rwanda is a landlocked central African country bordered by Tanzania to the East, Uganda

to the North, the Democratic Republic of the Congo (DRC) to the West, and Burundi to the

South. With a land area of 26,338 square kilometres and a population of over 10.7 million,

Rwanda is one of the most densely populated countries in Africa [31]. The economy is mostly

agriculture-based and the average life expectancy is 63 years [32]. Rwanda sustained wide-

spread public health disruption as a result of political and social unrest throughout the 1990’s

[33]. Health workforce training and public health outcomes have since improved, however,

infectious disease monitoring and control still present major challenges [34–36]. Previous sur-

veys suggest that Schistosoma mansoni is highly endemic and hence a parasite of high public

health importance in Rwanda [34, 37]. While some evidence suggests intestinal schistosomiasis

reaches 60% prevalence or higher in certain areas, research on infection rates is limited to

small-scale regional studies [1, 38–40]. Consequently, we have a poor understanding of risk

factors for schistosomiasis in Rwanda.

This study aims to understand geographical variation in S. mansoni infection risk in

Rwanda and to provide new insights into uncertainties in treatment pathways that can arise

from variation in chosen on-the-ground diagnostic procedures. To accomplish these aims, we

outline two key objectives. First, we apply geostatistical models to data from a national school-

based survey in Rwanda to identify S. mansoni risk factors, map infection prevalence and

delineate endemic clusters of high risk. Second, we compare geographical patterns in projected

infection risk arising from the use of the CCA and KK methods. We hypothesize that infection

risk will be spatially clustered within the country but that geographical disparities in the size

and intensity of these clusters will arise when relying on different diagnostics, providing con-

fusing messages to policymakers designing treatment guidelines.

Methods

Ethics statement

Ethical clearance for this analytical study was provided by The National Ethics Committee in

Rwanda (Sep 2014, Ref No: 261/RNEC/2014).

Detecting Schistosoma mansoni infections in Rwandan schoolchildren

Schistosoma mansoni presence-absence data was obtained from a nationwide school-based

survey undertaken in Rwanda between June and mid-July 2014. Methods for school selection

were as follows: a national sampling effort was carried out following the first nationwide sur-

veys for prevalence of intestinal schistosomiasis and soil-transmitted helminthiasis (STH) in

Rwandan schoolchildren, conducted between 2007 and 2008 [1]. This sampling scheme was

designed to (1) provide insights into endemicity of S. mansoni across the country and (2)

guide the decision of new treatment and surveillance strategies for Rwanda, in alignment with

WHO guidelines [41]. The scheme took into consideration groups of sectors as administrative

mapping units. Schools were chosen by selecting units likely to have similar S. mansoni
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transmission characteristics (based on epidemiological characteristics such as nearby perennial

water bodies) and to ensure sample sizes in each mapping unit were statistically representative.

To assess possible geographical disparities in risk mapping arising from choice of diagnostic

method, infection data was obtained using both the circulating cathodic antigen (CCA;

detected in urine) and Kato-Katz (KK; detected in faeces) diagnostic methods. Specifically,

CCA was used to survey S. mansoni infection in schoolchildren (aged 5 to 18 years) across 386

schools. A single urine sample was collected from each randomly-selected participant and

tested with a point of care CCA rapid test (Rapid Medical Diagnostics, South Africa). A single-

use pipette was used to add the drop of urine to the test cassette well, followed by a drop of the

provided buffer. It should be noted that CCA tests returns negative, trace, 1+, 2++ or 3+++

readings, which are designed to give an indication of the strength of the reading. Results were

read after 20 minutes and graded into one of four intensities: 0 = negative; trace; 1+; 2++;

3+++ using a reference image showing representative incremental readings (Supporting

Information, S1 Fig). All CCA kits were from Rapid Medical Diagnostics Batch number

33955, ensuring we did not need to account for possible batch-to-batch variation in trace read-

ings. We did not use a band density reader to avoid observational bias, as it would have been

extremely expensive to provide such a tool to every team in the field. Moreover, we note that

even though there is an mReader that Mobile Assay and SCORE, developed in 2016 for provid-

ing quantitative CCA test results, this mReader cannot distinguish between a trace ‘true posi-

tive’ and a trace ‘false positive’. Therefore, during this study and indeed to this day, the visual

read of the intensity of the test band on the strip compared to the supplied control image is

still considered standard practice in Rwanda.

The KK method was also used in 174 of these schools (concurrent urine and faecal samples

were collected from the same participants), while a further 11 schools were surveyed using

only KK (bringing the total number of schools surveyed using KK to 185). For this test, a single

stool specimen was collected from each participant and duplicate thick smears were prepared

for microscopic examination. Smears were assessed for presence of S. mansoni eggs by trained

technicians, with each smear assessed by at least two different technicians. Quality control was

performed by independent external consultants to ensure accurate diagnosis from KK micros-

copy. This involved random allocation of 10% of the smears for re-examination by two inde-

pendent experts.

For each of the visited schools, up to 50 students per school were sampled for parasite infec-

tion. However, while the original CCA datasets included 19,371 children, only children with

complete information were included in the analysis (children without age, sex, or geocoordi-

nates recorded were excluded). As a result, the total number of children included in CCA anal-

yses was 19,217. Following removal of children with missing data, the total number of pupils

ranged from 25–50 per school for CCA sampling (mean = 49.78, sd = 1.89) and from 25–50

for KK sampling (mean = 49.59, sd = 2.05). Across the 174 schools sampled by all three meth-

ods, the number of pupils ranged from 44–50 (mean = 49.70, sd = 1.01).

Extraction of environmental variables

Environmental measurements were extracted at the school level to be included as covariates in

analyses. We extracted information for three variables likely to influence Schistosoma spp. sur-

vival and transmission. These included: average land surface temperature (LST), extracted

from the WorldClim database (www.worldclim.org), and the Normalized Difference Vegeta-

tion and Normalized Difference Water Indices (NDVI and NDWI), both extracted from the

National Oceanographic and Atmospheric Administrations’ Satellite and Information Services

database (NOAASIS) (http://noaasis.noaa.gov/). LST was included because this can influence

Disparities in Schistosoma risk-mapping using different diagnostics
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both the density of intermediate molluscan hosts and the rate of schistosomal development

within the molluscan host [42]. NDVI and NDWI variables capture local variation in vegeta-

tion, moisture and the presence of water bodies, which can impact the distributions of inter-

mediate molluscan hosts [16, 42, 43]. Environmental variables were obtained using the Google

Earth Engine in ArcGIS version 10.4.0.5524 [44] at 1km x 1km grid cell resolution and were

standardized to unit variance prior to analysis.

Statistical analysis to identify infection risk factors

Our analysis assessed the presence of S. mansoni infection in 19,217 students from 386 schools

who provided a urine sample for CCA assay analysis. While trace readings are recommended

by the manufacturer and by the WHO [45] to be considered as positive infections, some pro-

grams have reported weaker trace readings as negative because they may not reliably confirm

the presence or absence of infection [46]. For our analysis, we created two datasets for statisti-

cal analyses to account for this uncertainty when categorizing trace readings [47]. To do this,

CCA tests were stratified into two separate presence-absence datasets, namely CCA with trace
as positive (i.e. only those readings of 0 were considered negative, while readings of trace, 1+,

2+ or 3++ were considered positive) and CCA with trace as negative (i.e. readings of either 0 or

trace were considered negative, while all other readings were considered positive). In addition,

9,175 students had stool specimens collected for Kato-Katz analyses, collected from 185 of the

386 schools. Data regarding school geolocation and participant demography (i.e. age and sex)

was included for all observations. We stratified ages of participants into a three-level categori-

cal variable (5 to 9 years old; 10 to 14; and 15 to 18 years old). The average age of participants

included in analyses was 13.36 years. School polygon centroids were estimated from a shapefile

representing Rwanda’s current administrative units (obtained from the geographic data ware-

house DIVA GIS (www.diva-gis.org/Data)). Parasite infection and environmental covariate

data were linked to their corresponding school centroids.

To assess evidence for spatial autocorrelation in infection probability, we fit logistic regres-

sion models (binomial errors with logit link function) using participant sex and age (categori-

cal variables) and the scaled environmental predictors LST, NDVI and NDWI. Correlations

between environmental covariates were investigated using Pearson’s correlations. Residuals

were extracted and examined with semivariograms (calculated using functions in the ‘geoR’

package [48]) in R version 3.1.1 (The R foundation for statistical computing, Vienna, Austria,

http://www.R-project.org). A semivariogram is a graphical representation of the spatial varia-

tion in an outcome variable; residual semivariograms represent spatial variation that is left

unexplained after accounting for predictors. A semivariogram is characterised by three param-

eters: the partial sill, representing the spatially structured semivariance component and

indicating the tendency for geographical clustering; the nugget, representing the spatially

unstructured semivariance component (representing either small-scale spatial variability, mea-

surement error or random variation); and the range, representing the pairwise distance above

which two locations can be considered independent (indicative of the average size of geo-

graphical clusters). We estimated the tendency for geographical clustering within a region (i.e.

proportion of variation due to spatial proximity) by dividing the partial sill by the sum of the

nugget plus the partial sill [49]. Separate models were developed using KK, CCA with trace as
positive and CCA with trace as negative presence-absence datasets.

Geostatistical models

Examination of spatial autocorrelation revealed some level of residual spatial clustering for

each model (see Results below). We implemented geostatistical models to account for our
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covariates and to simultaneously explore this autocorrelation. Bayesian logistic models with

geostatistical random effects were built for CCA tests using the open software OpenBUGS

[50]. We assumed the observed presence-absence vectors for each diagnostic group were ran-

dom draws from an underlying infection probability according to a Bernoulli distribution.

Using a logit link function, we modelled this probability as a linear regression that included an

intercept, our fixed predictors and a multivariate normal geostatistical random effect capturing

distances (km) between pairs of locations (using the spatial.exp function BUGS language,

which is essentially a Bayesian kriging model). Note that due to a low overall prevalence in the

KK dataset, we had inadequate infection data to generate precise estimates of spatial effects.

We instead investigated possible spatial clustering using aggregated data by classifying loca-

tions as a binomial variable based on whether that location’s mean observed prevalence was

higher or lower than the mean prevalence (1.95%) observed in the entire dataset (i.e. each

survey location was categorised using 1 or 0 based on whether its prevalence was� 1.95%

or< 1.95%).

Geostatistical models were estimated in a Bayesian framework using Markov Chain Monte

Carlo (MCMC) sampling based on the Gibbs sampler in OpenBUGS [50]. Normal priors with

mean = 0 and variance = 100 (i.e. precision = 0.01) were specified for intercepts and regression

coefficients. Geostatistical random effects were assumed to follow a normal distribution with

mean = 0 and variance = 1/tau, where tau was drawn from a gamma distribution (shape =

0.001, scale = 0.001). For CCA models, a burn-in of 5,000 MCMC iterations was used followed

by 5,000 iterations. For the KK model, a burn-in of 2,000 iterations was used followed by

another 3,300 iterations. Convergence for all models was assessed visually based on inspection

of posterior density and trace plots. Significance of predictor effects was inferred based on

whether 95% confidence intervals of posterior estimates did not include zero.

Model predictions were used to generate representative maps of the prevalence of S. man-
soni infections across Rwanda for boys aged between 5–9 years, the subgroup with the highest

overall prevalence of S. mansoni infection in our dataset (though it should be noted that age

was not a significant predictor of infection probability, see Results below). Predictions were

made at the nodes of a 0.03 × 0.03 decimal degree grid (approximately 3km2). The mean and

standard deviation were extracted from the posterior distributions of predicted risk. Mar-

ginal predictions of risk were calculated using the spatial.unipred command in OpenBUGS,

which carries out single site predictions to yield marginal prediction intervals for each sample

site.

Estimation of the number of infections in population at risk of Schistosoma
mansoni infections in Rwanda in 2018

To assess geographical discrepancies in S. mansoni endemicity and the estimated numbers of

at-risk individuals across the three diagnostic datasets, we selected the highest risk group in

our dataset, represented as boys aged between 5 to 9 years old. A raster map of the estimated

total population size of this select group (estimated for the year 2018) was multiplied by the

predicted prevalence of S. mansoni in the at-risk group to produce a map of the total number

of infected children in each grid cell. To create the 2018 population raster, we retrieved a 2015

population density raster from the Center for International Earth Science Information Net-

work (CIESIN) [51], which was originally estimated using National Institute of Statistics

Rwanda’s Fourth Population and Housing Census 2012 data. This raster was multiplied by the

reported United Nations Development Programme (UNDP) average annual rate of population

change (i.e. 2.53%), which was then multiplied by the proportion of 5 to 9 year-olds (i.e.

13.5%) to produce a raster map of the estimated densities of children in this focal group in

Disparities in Schistosoma risk-mapping using different diagnostics
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2018. All spatial calculations and plots were conducted in ArcGIS version 10.4.0.5524 [44].

Data required to replicate analyses is included in Supporting Information, S1 Data.

Results

Summary statistics of Schistosoma mansoni prevalence in Rwandan

schoolchildren

A total of 174 schools were tested for the prevalence of S. mansoni infection using all three

methods, with 8,647 pupils providing both stool and urine samples. Across these samples,

observed prevalence using CCA with trace as positive was 37.5%, 8.6% when using CCA with
trace as negative and only 2% when using KK (Supporting Information, S1 Table). Results

were broadly similar when taken across the entire dataset: only 1.95% of the 9,175 children

tested with the KK method were diagnosed as infected (Table 1), while observed prevalence

was 35.93% for CCA with trace as positive and 7.21% for CCA with trace as negative
(N = 19,218; Table 1).

Despite these large discrepancies in diagnosed outcomes, some spatial agreement was evi-

dent across tests. Prevalence was generally highest in Northern and Western regions of the

country for all three diagnostic groups (Fig 1: Panel A to C). However, this pattern of spatial

variation was more evident for the CCA with trace as positive group, with many high-burden

locations (i.e. with prevalence >50%) occurring within close proximity of one another in the

Northern and Western regions of Rwanda (Fig 1: Panel B). The KK and CCA with trace as neg-
ative groups tended to show very low prevalence in most regions, with only a few high-preva-

lence locations occurring in the Northern and Western Regions (Fig 1: Panel A and C,

respectively).

Spatial clustering in Schistosoma mansoni prevalence and risk prediction

Semivariograms based on residuals from non-spatial models revealed a tendency for spatial

clustering for all diagnostic groups, warranting the need for geostatistical methods (Support-

ing Information, S2 Fig). Sex of participants was an important risk factor for S. mansoni infec-

tion across all models, with males exhibiting higher risk compared to females (odds ratios of

increased risk for males = 1.71, 1.08 and 1.35 for KK, CCA with trace as positive and CCA with
trace as negative, respectively; Table 2). However, environmental predictors differed among

methods. We found a positive association between LST and infection risk when using the KK

test, whereas NDVI was positively associated with risk for both CCA groups (Table 2).

For the KK method, regions with highest probability of harbouring above-average preva-

lence generally occurred in the Northern region, Nyagatare and Burera districts, the Western

region such as Rusizi districts and also in inland-areas of Rwanda such as Kamonyi and Rwa-

magana (Fig 2: Panel A; see S3 Fig in Supporting Information for locations of districts).

Table 1. Summary statistics of observed Schistosoma mansoni prevalence across Rwandan schools recorded using

different diagnostic methods. A total of 5,547 CCA results were categorised as ‘trace’. The CCA with trace as positive
dataset considered these as positive, while the CCA with trace as negative dataset considered these as negative. CCA;

Circulating Cathodic Antigen.

Kato-Katz CCA with trace as positive CCA with trace as negative
Number of schools sampled 185 386 386

Number of pupils positive 179 6,906 1,385

Number of pupils negative 8,996 12,311 17,832

Mean prevalence (%) 1.95% 35.93% 7.21%

https://doi.org/10.1371/journal.pntd.0007723.t001
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Fig 1. Observed prevalence of Schistosoma mansoni infection in Rwandan schoolchildren estimated using three

different diagnostic methods: Kato-Katz (Panel A), CCA with trace as positive (Panel B), and CCA with trace as
negative (Panel C). Refer to S3 Fig in Supporting Information for names of geographical districts. This figure was

produced in ArcMap 10.4 (ESRI, Redlands, CA) using a shapefile representing Rwanda’s current administrative units

(obtained from the geographic data warehouse DIVA GIS (www.diva-gis.org/Data)). CCA; Circulating Cathodic

Antigen.

https://doi.org/10.1371/journal.pntd.0007723.g001
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Predicted prevalence of S. mansoni using CCA with trace as positive was mostly between 30 to

40% across Rwanda, with highest prevalence (i.e. with>50% predicted prevalence) occurring

in Northern districts (including Nyagatare, Gicumbi and Gakenke) as well as Southern dis-

tricts such as Gisagara and Nyanza (Fig 2: Panel B; S3 Fig). In contrast, predicted prevalence

using CCA with trace as negative was mostly <10% across Rwanda, with the highest predicted

prevalence observed only in a small localized area in the Northern Nyagatare district (Fig 2:

Panel C; S3 Fig). Importantly, vast areas of the country identified as high-risk when consider-

ing trace results as positive were estimated to have prevalence <10% when considering trace
results as negative.

Comparison of population densities in at-risk regions using different

diagnostic tests

Our spatially-adjusted projection maps identified areas where high densities of individuals in

the focal group (boys aged 5 to 9 years) live in risk-prone environments. Projections were

broadly in agreement across diagnostic tests, though it should be noted that our KK prediction

map is restricted to estimating total at-risk individuals in spatial clusters with above-average

predicted prevalence. Areas within and around the capital Kigali in the central area of Rwanda

(i.e. the capital city Kigali, and the southwest part of Kigali including Rwezamenyo, Gitega,

Kimisagara, Nyakabanda sectors) had high estimated densities of at-risk individuals across all

three tests (Fig 3: Panel A to C; S3 Fig). In addition, target areas were also identified in local-

ised areas around Mururu sector in Rusizi district in South-Western province, and Nkombo

sector which is located around the southern end of Lake Kivu in Rusizi district.

Despite some general agreement, we identified considerable discrepancies in spatial pat-

terns and estimated densities of at-risk children across diagnostic tests. For the CCA with trace
as positive test, we estimated that approximately 671,856 boys aged 5 to 9 years are currently

Table 2. Predictor associations with an individual child’s probability of being infected with Schistosoma mansoni,
estimated using three different diagnostic methods to account for possible discrepancies in diagnostic perfor-

mance and estimates of geographical endemicity. For each diagnostic method, a geostatistical model was built to

estimate predictor effects while accounting for spatial autocorrelation. Presented are effect means and 95% credible

intervals (in brackets). KK; Kato-Katz. CCA; Circulating Cathodic Antigen.

Variable KK CCA with trace as
positive

CCA with trace as
negative

Age 10–14 y (versus 5–9 y) 1.47 (-4.75, 10.15) 0.01 (-0.55, 0.57) 1.11 (-0.20, 2.73)

Age 15–18 y (versus 5–9 y) 0.91 (-5.35, 9.56) -0.16 (-0.76, 0.46) 1.08 (-0.29, 2.72)

Male (versus female) 0.54 (0.21, 0.88) 0.08 (0.02, 0.15) 0.30 (0.18, 0.43)

Land surface temperaturea 0.91 (0.14, 1.73) 0.08 (-0.03, 0.20) 0.12 (-0.06, 0.30)

Normalized difference vegetation indexa 0.93 (-0.08, 2.00) 0.23 (0.08, 0.38) 0.28 (0.03, 0.54)

Normalized difference water indexa -0.36 (-1.59, 0.80) -0.10 (-0.29, 0.08) -0.25 (-0.56, 0.06)

ϕ (phi: rate of decay of spatial

correlation)b
11.90 (4.24,

19.34)

17.36 (13.10, 19.88) 14.81 (9.06, 19.54)

σ2 (sigma: variance of spatial random

effect)b

11.74 (5.93,

23.15)

1.17 (0.95, 1.46) 2.65 (2.00, 3.62)

Tau (precision) 0.10 (0.04, 0.17) 0.86 (0.69, 1.05) 0.39 (0.28, 0.50)

Intercept -9.57 (-18.32,

-2.99)

-0.80 (-1.42, -0.19) -4.87 (-6.54, -3.48)

a Variables were standardized to have mean = 0 and standard deviation = 1
b Measured in decimal degrees and 3/phi determines the cluster size; one decimal degree is approximately 111km at

the Equator (the size of the radii of the clusters).

https://doi.org/10.1371/journal.pntd.0007723.t002
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infected with S. mansoni in Rwanda (95% CI: 655,349–678,692), while only 60,453 individuals

in this target group are predicted to be infected based on the CCA with trace as negative test

(95% CI: 52,452–61,116; Table 3). While both CCA datasets identified the Gisenyi sector of the

Rubavu district in the Western province as a potential target, estimated densities were much

higher when using the CCA with trace as positive data (with up to 887 at-risk individuals per

square km; compared to 117 people per square km for CCA with trace as negative; Fig 3: Panel

B and C). Moreover, the KK map identified a target area around Rukomo sector in Gicumbi

district (North-Eastern region) that was not identified by the CCA tests (Fig 3: Panel A).

Fig 2. Predicted prevalence of Schistosoma mansoni infection in Rwandan boys aged 5–9 years, estimated using

three different diagnostic methods: Kato-Katz (Panel A), CCA with trace as positive (Panel B), and CCA with trace
as negative (Panel C). Predictions were generated using separate geostatistical models to account for possible

discrepancies in diagnostic performance and estimates of geographical endemicity. Refer to S3 Fig in Supporting

Information for names of geographical districts. This figure was produced in ArcMap 10.4 (ESRI, Redlands, CA) using

a shapefile representing Rwanda’s current administrative units (obtained from the geographic data warehouse DIVA

GIS (www.diva-gis.org/Data)). CCA; Circulating Cathodic Antigen.

https://doi.org/10.1371/journal.pntd.0007723.g002
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Fig 3. Distributions of the number of Rwandan boys aged 5–9 years (per square kilometre) estimated to be infected with

Schistosoma mansoni based on results from three different diagnostic methods: Kato-Katz (Panel A), CCA with trace as positive
(Panel B) and CCA with trace as negative (Panel C). Estimates were generated using geostatistical predictions applied to a map of

Rwanda’s 2018 population. This raster was generated by multiplying National Institute of Statistics Rwanda, Fourth Population and

Housing Census 2012 data [51, 52] by the reported United Nations Development Programme (UNDP) average annual rate of

population change (i.e. 2.53%), which was then multiplied by the proportion of 5–9 year olds. Refer to S3 Fig in Supporting

Information for names of geographical districts. This figure was produced in ArcMap 10.4 (ESRI, Redlands, CA) using a shapefile

representing Rwanda’s current administrative units (obtained from the geographic data warehouse DIVA GIS (www.diva-gis.org/

Data)). CCA; Circulating Cathodic Antigen. SCH; Schistosoma prevalence mapping unit.

https://doi.org/10.1371/journal.pntd.0007723.g003
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Discussion

Our study outlines important risk factors and provides national geostatistical projections of

Schistosoma mansoni infection burden in Rwanda. Concordant spatial predictions for diagnos-

tic test groups highlighted areas in most need of interventions. Population-dense areas in the

West and around Rwanda’s capital region are projected to exhibit environmental conditions

that are conducive to transmission and harbour high densities of at-risk children. Our findings

therefore provide useful insights that can be leveraged to devise tailored monitoring and inter-

vention programs. However, our assessment of multiple diagnostic procedures highlights a

major issue in efforts to design intervention strategies that can reduce schistosomiasis-related

morbidity. Variation in parasite detection rates, identification of different environmental risk

factors and geographical discrepancies in at-risk projections suggest that considerably different

inferences will be gleaned from surveys using either KK or CCA datasets [27]. This is particu-

larly evident in Rwanda, where the low overall prevalence leads to even greater insensitivity by

the KK method and is similar to a comparable country-wide survey done in Burundi [53]. We

stress that data collection using multiple diagnostic sources may be necessary to generate accu-

rate infection estimates while dealing with diagnostic test uncertainty.

Identifying areas at greatest need of targeted Schistosoma mansoni
mitigation: Discrepancies across Kato-Katz and circulating cathodic

antigen surveys

Helminth infection is among the most common causes of anaemia and subsequent hospitaliza-

tion in Rwanda [31, 54]. As one of Africa’s most densely populated countries and with an

economy that relies on agriculture [32], it is unsurprising that up to 36% of schoolchildren

are estimated to be infected with S. mansoni. However, infection rates are not homogenous

throughout the country. Determining accurate estimates of Schistosoma prevalence is an

important step to design mitigation programs, particularly considering that even low infection

intensities can cause morbidity [3]. We provide multiple lines of evidence that different diag-

nostic procedures yield different inferences about S. mansoni infection rates and spatial pat-

terns in Rwandan schoolchildren. Our prevalence estimates varied largely across procedures,

with the KK method yielding far lower estimates compared to the CCA datasets. Explaining

this discrepancy requires an understanding of what these tests are designed to detect. Positive

detection by the KK method is limited to individuals that are infected with egg-producing

female worms in sufficient numbers to consistently yield eggs in their faeces. This immediately

rules out detection of some infections that are composed of male worms, of worms that have

not reached sexual maturity or low numbers of worms that produce low numbers of eggs.

Moreover, parasite egg counts in our study (as in most KK studies) were based on a single

stool sample, which can limit the ability of technicians to identify infections [28]. Finally, other

Table 3. Predicted number of individual boys aged 5 to 9 years estimated to be harbouring Schistosoma mansoni infection in Rwanda in 2018 based on results from

two different diagnostic methods: CCA with trace as positive and CCA with trace as negative. CCA; Circulating Cathodic Antigen.

Total population for 2015 (in

Thousands)a
Annual population growth rate for 2015–2020

(Percentage)a
Percentage of individuals

aged 5-9ya
Predicted number of individuals with S.

mansoni infection in 2018

CCA with as trace
positive

CCA with as trace
negative

11629.6 2.53 13.85 671,856 60,453

a Source: World Population Prospects 2017 Revision Population Database: Rwanda

CCA; Circulating Cathodic Antigen

https://doi.org/10.1371/journal.pntd.0007723.t003
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work suggests that KK detections are strongly associated with infection intensity or egg-laying

rates [55]. In contrast, CCA tests are thought to provide a more unbiased estimate across het-

erogeneous environments [26, 56, 57]. Children who harbour pre-patent adult worms or low

densities of egg-producing females are highly likely to be diagnosed as uninfected using the

KK method [58], while detection of schistosome-released antigenic proteins using CCA may

still be accurate [26].

Running separate analyses using multiple diagnostic procedures may not be cost-effective

and clearly can lead to conflicts in resource management when attempting to reduce schistoso-

miasis in endemic areas. Given that CCA tests do not require a stool sample and have greater

capabilities to detect low-intensity infections than KK, implementation of CCA diagnostics

could be the best approach for rapid screening during ongoing monitoring programmes.

However, the problem of interpretation for CCA tests still remains [56], although a recent sys-

tematic modelling paper comparing KK with CCA results from many different countries and

endemic levels of infection indicates the relative comparative results of these two assays [27].

Despite the minimal training required for CCA testing, approaches to classify different trace

results can be inconsistent [47, 56]. Nevertheless, as previously reported for Burundi [53],

comparisons of the KK, CCA and CAA assays by latent class analysis indicate that at least half

of trace results are estimated to be true positives.

Analysis of the CCA datasets in our study delivered quite different inferences. The esti-

mated number of 5 to 9 year-old boys currently harbouring infection varied by an order of

magnitude, a large difference that could be confusing to decision-makers. It should also be

noted that even CCA with trace as positive tests are known to miss some confirmed infections

[56], suggesting that our projections of burden in Rwanda could still be conservative. Because

many nations where Schistosoma parasites are endemic do not have adequate funds for blanket

treatment, this variation in prevalence estimates has important ramifications for the decision-

making process. WHO guidelines are used around the world for designing mass drug adminis-

tration strategies to reduce intestinal helminth infection rates in endemic nations [11, 33, 59].

Current guidelines for reducing schistosomiasis suggest that the prevalence in the at-risk

school population should determine the number of interventions to use over the course of a

child’s primary school years [41]. For example, areas with estimated prevalence >50% should

receive treatment on an annual basis, while areas with prevalence <10% should be treat each

child twice during their primary school years [41]. In light of our study, decisions about

whether areas are high-risk (including many endemic clusters identified using the CCA with
trace positive analysis) or low-risk (covering most of the country when considering the other

two analyses) can lead to dramatic differences in the overall cost of treatment across diagnostic

methods.

Based on our findings and on previous work suggesting a high sensitivity of CCA tests [25,

47, 57], we suggest treatment should be focused on areas that were identified by the CCA with
trace as positive procedure as high-risk. This seems a useful approach to ensure adequate cov-

erage of areas that likely exhibit high prevalence, high average intensity of infection and a rela-

tively large number of infected schoolchildren. Here, our modelling identifies districts around

the capital region and along the Western and Northern borders of the country (consisting of

mountain highlands, the Virunga volcano range, and Lake Kivu [31]) as harbouring high S.

mansoni burdens. These regions are some of the most heavily populated in the country [32,

51], and our projections indicate they contain high densities of at-risk populations. Indeed,

using the less conservative CCA with trace as positive test, we estimate that prevalence of S.

mansoni reaches >50% among schoolchildren in some of these districts. Targeting these areas

will likely be the most cost-effective intervention approach for reducing prevalence and
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associated morbidity, as programs targeting areas with high transmission risk are expected to

be more efficient reduction measures for battling schistosomiasis [10, 59].

In addition to mass drug administration, additional measures should ensure improved

access to clean water and environmental measures to control snail abundances and reduce

transmission [59, 60]. With malnutrition and diarrhea presenting as two of the most com-

mon causes of hospital-based child mortality in Rwanda [34], population densities and lack

of adequate sanitation likely play strong roles in driving the observed spatial variation in S.

mansoni infection rates. Schistosoma parasites maintain high transmission rates in regions

where overcrowding and poor sanitation coincide [61]. For example in Rwanda’s capital city

Kigali, where we identified an endemic cluster of high S. mansoni infection risk, construction

of adequate sanitation facilities has not kept pace with rapid population expansion in recent

years [62]. Instead, many people reside in high-density temporary slums where access to

freshwater is limited. However, the issue of poor sanitation is not restricted to urbanised

areas. Pit latrines, which facilitate the spread of infectious diseases through environmental

contamination, are the most common toilet facilities, while defecation in fields or rivers is

also commonplace [63]. Poverty contributes to these poor sanitation practices, as low-income

communities are often located in marsh or swamp lands skirting urban centres in Rwanda

[62]. In these areas, densities of intermediate snail hosts may be high, leading to high trans-

mission forces.

Risk factors for Schistosoma mansoni infection in Rwandan schoolchildren

Female S. mansoni worms can produce hundreds of eggs per day [64]. When sanitation rates

are poor and burdens are high, ecological risk factors that influence vegetation or water prop-

erties, both of which impact parasite survival and/or infectivity, become especially important.

The widespread availability of satellite imagery has played a key role in identifying ecological

correlates of geographical distributions and infection rates for an incredible diversity of patho-

gens [29, 65–69]. For human helminth parasites, numerous geostatistical analyses have delin-

eated spatial clusters of high infection risk, further indicating a strong role of environmental

forces [29, 65, 70, 71]. In our case, we identified LST and NDVI as important predictors of S.

mansoni infection probability and spatial clustering. Temperature of the land surface is a key

predictor of population dynamics for intermediate snail hosts, while low temperatures can

impede the development of Schistosoma parasites within snails [43]. Vegetation indices could

reflect distributions of habitats that are suitable for snails, while both variables in tandem may

influence vegetation or soil properties that determine the survival of parasite stages in human

excreta (Schistosoma eggs that release miracidia) or the infectivity of water-borne stages that

penetrate human skin (cercariae) [4, 61]. Identifying key drivers of infection risk using

remotely sensed variables presents a major advantage in efforts to provide continuously

updated high-resolution projection maps [66, 72–74].

Study limitations

We provide new insights into risk factors and the spatial distribution of S. mansoni infections

in Rwanda. However, our study has some weaknesses that should not be ignored. Our dataset

did not consider whether infection with other intestinal parasites might have influenced risk of

S. mansoni infection. Parasite co-infections are ubiquitous, and there is mounting evidence

indicating that biotic parasite associations can have marked influences infection risk and/or

disease progression [70, 71, 75–79]. In addition, remote-sensed variables such as those used in

our study come with their own levels of uncertainty, though these are commonly ignored
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when producing raster maps [80, 81]. Moreover, our projection maps of at-risk population

densities used population estimates from the UN population database. These estimates may

not be entirely accurate, as data on the proportion of persons within our target age group over-

laps a number of UN categories. Further uncertainty in our estimates could result from our

approach to calculate population sizes using the UNDP average annual rate of population

change. This average rate may not reflect spatio-temporal variation in population changes in

Rwanda. Finally, while school-based surveys are the primary method of choice for mapping

intestinal parasite infections, estimates of infections in adults would provide useful additional

information to gain better insights into population-level risk factors [82].

Conclusions

We provide high-resolution predictions of spatial heterogeneity in S. mansoni infection preva-

lence in Rwandan schoolchildren. Together with our identification of risk factors and data-

driven projections of current burdens in at-risk populations, these results can be leveraged to

make informed decisions about mass drug treatment regimes. Treatment decisions based on

mapping and modelling approaches such as ours could be useful for managers deciding

between sustained morbidity control or moving toward elimination [21]. Ongoing monitoring

and use of continuously updated geostatistical models will be essential for designing intestinal

parasite mitigation programmes and evaluating their efficacy [66, 72–74]. Nevertheless, we

highlight important discrepancies in spatial disease projections that rely on different diagnos-

tic procedures. Greater emphasis is needed to develop standardized guidelines for classifying

CCA trace results, as our risk maps yielded very different conclusions about areas in need of

treatment when considering traces as positive or negative. We hope that our research provides

a platform to help mitigate Schistosoma infection burdens and associated morbidity in the

tropical and subtropical regions.
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71. Raso G, Vounatsou P, Singer BH, Eliézer K, Tanner M, Utzinger J. An integrated approach for risk pro-

filing and spatial prediction of Schistosoma mansoni–hookworm coinfection. Proc Nat Acad Sci. 2006;

103(18):6934–9. https://doi.org/10.1073/pnas.0601559103 PMID: 16632601

72. Pullan RL, Gething PW, Smith JL, Mwandawiro CS, Sturrock HJ, Gitonga CW, et al. Spatial modelling

of soil-transmitted helminth infections in Kenya: a disease control planning tool. PLoS Negl Trop Dis.

2011; 5(2):e958. https://doi.org/10.1371/journal.pntd.0000958 PMID: 21347451

73. Truscott J, Turner H, Farrell S, Anderson R. Soil-transmitted helminths: Mathematical models of trans-

mission, the impact of mass drug administration and transmission elimination criteria. Adv Parasitol.

94: Elsevier; 2016. p. 133–98. https://doi.org/10.1016/bs.apar.2016.08.002 PMID: 27756454
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