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Abstract
Our understanding of transcriptional gene regulation has dramatically increased over the past decades, and many
regulators of gene expression, such as transcription factors, have been analyzed extensively. Additionally, in recent
years, deeper insights into the physiological roles of RNA have been obtained. More precisely, splicing, polyadenyla-
tion, various modifications, localization and the translation of messenger RNAs (mRNAs) are regulated by their
interaction with RNA-binding proteins (RBPs). New technologies now enable the analysis of this regulation at differ-
ent levels. A technique known as ultraviolet (UV) cross-linking and immunoprecipitation (CLIP) allows us to deter-
mine physical protein^RNA interactions on a genome-wide scale. UV cross-linking introduces covalent bonds
between interacting RBPs and RNAs. In combination with immunoprecipitation and deep sequencing techniques,
tens of millions of short reads (representing bound RNAs by an RBP of interest) are generated and are used to char-
acterize the regulatory network mediated by an RBP. Other methods, such as mass spectrometry, can also be
used for characterization of cross-linked RBPs and RNAs instead of CLIP methods. In this review, we discuss experi-
mental and computational methods for the generation and analysis of CLIP data.The computational methods include
short-read alignment, annotation and RNA-binding motif discovery. We describe the challenges of analyzing CLIP
data and indicate areas where improvements are needed.

Keywords: Next-generation sequencing; cross-linking and immunoprecipitation; posttranscriptional gene regulation;
RNA-binding motif discovery

BACKGROUNDONRNA-BINDING
PROTEINS
The recognition and binding of certain RNAs by

different RNA-binding proteins (RBPs) is essential

to maintain the viability of any living cell. RBPs act

on many kinds of RNA, such as ribosomal RNA

(rRNA), transfer RNA (tRNA), small interfering

RNA and microRNA, particularly at different

stages of the messenger RNA (mRNA) life-cycle

from splicing, polyadenylation, various modifications

and subcellular localization to translation [1]. The

mechanisms of RBPs regulating selected mRNAs
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have already been described, but RBPs have a high

diversity [2]. Thus, a detailed investigation of the

regulatory networks mediated by RBPs is needed

to fully understand their posttranscriptional regula-

tory mechanisms [3]. Consequently, it is crucial to

explore the specific effects of particular RBPs on the

bound mRNAs. A large-scale study identified >300

RBPs and described a systematic approach that

makes use of two different cross-linking protocols

(with individual advantages as well as disadvantages)

followed by mass spectrometry [4]. Among other

findings, the study identified a set of novel RBPs

involved in different human diseases, for example,

insulin-independent type 2 diabetes or infantile

mitochondrial encephalomyopathy. These findings

represent a promising starting point for further inves-

tigations of these diseases.

The binding between an RNA and RBP involves

the recognition of a specific sequence element and

also often the identification of a specific secondary

structure within the RNA molecule by the RBP [5].

Single-stranded RNA seems to be more accessible

for proteins, whereas structural elements such as hair-

pin loops result in a weaker binding affinity [6].

However, cases in which RBPs have high binding

affinity to RNAs forming hairpin loops have also

been reported [7]. Because the knowledge of the

functional importance of the secondary RNA struc-

tures has increased, computational methods for

RNA-binding site discovery that take information

about the secondary structure into account have

recently been developed [8].

The RNA-binding domain (RBD) of an RBP

recognizes a region of up to 5 or 6 nt, which deter-

mines its specificity and binding affinity to a particu-

lar RNA. Additionally, some RBPs increase their

specificity for particular RNAs through the presence

of more than one RBD in the same RBP [9, 10].

The binding by a single RBD as well as the coopera-

tive binding by multiple RBDs enables the identifi-

cation of a wide range of RNA molecules (Figure 1).

Importance of RBPs in neurological
diseases and cancerogenesis
RNAs are crucial for cell viability. Without the

regulation, transport and other mechanisms regulated

by RBPs, RNAs cannot perform their activities [1].

Genomic aberrations such as single nucleotide mu-

tations, chromosomal translocations or gene amplifi-

cations can result in the gain or loss of a function of

particular RBPs, thus probably leading to the devel-

opment of specific disorders [11]. Many RBPs have,

for example, been found to be altered in neuro-

logical diseases. The insertion of a specific trinucleo-

tide repeat within the 50 untranslated region (UTR)

of the FMR1 gene (fragile X mental retardation 1),

e.g. leads to the loss of its function [12]. FMR1 is an

RBP that downregulates the translation of proteins

that are important in synaptic plasticity in dendrites.

If this regulation is interfered with, mental retard-

ation by a decrease in the synaptic plasticity is the

result [13]. We have previously described the shift in

bound mRNA targets in disease-causing mutants of

the RBP FUS (fused in sarcoma) [14]. These FUS

mutants cause familial amyotrophic lateral sclerosis,

an adult-onset, rapidly progressing and fatal neuro-

degenerative disorder [15, 16].

Given the important roles of RBPs in the life

cycles of all mRNAs, it is not surprising that RBP

mutations or altered expression levels have also been

described for carcinogenesis. An RBP that affects

tumor progression is Sam68. It is involved in

Figure 1: RBPs and their different RBDs.
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alternative splicing and is overexpressed in several

cancer types, including breast and prostate cancer.

Upon overexpression of Sam68, an additional exon

is retained when splicing the mRNA of CD44,

which, in turn, has tumorigenic effects [17]. For

the aforementioned RBP FUS, we could show an

upregulation in liposarcoma [18]. FUS, together

with EWSR1 and TAF15, forms a gene family

(FET) of abundant ubiquitously expressed RBPs

[19]. FET genes are affected by genomic rearrange-

ments, primarily in sarcomas and in leukemia

[20, 21].

EXPERIMENTALTECHNIQUES
Initial method for characterizing
RNA-binding sites
The term RNA-recognition element (RRE) is

sometimes used for the RNA sequence recognized

by the RBP [22] or for the highly conserved protein

domain of the RBP that binds to the RNA [23]. In

this review, we follow the first convention and refer

to the RNA sequence that is recognized by the RBP

as the RRE. In the 1990s, an in vitro method for the

identification of RREs was developed and widely

established [24, 25], called systematic evolution of

ligands by exponential enrichment (SELEX). In the

first step, a library of synthetic random RNA mol-

ecules of a specified length is generated. Next, RNA

molecules that bind to the molecule of interest (e.g.

an RBP) are enriched with a purification technique

such as affinity chromatography. To increase specifi-

city, this step is repeated several times and followed

by conventional Sanger sequencing. However, using

synthetic random RNA molecules limits the biolo-

gical significance of the method, as the bound RNAs

do not necessarily correspond to naturally occurring

RNAs. In contrast, the use of naturally occurring

mRNAs extracted from human brain samples instead

of a library of random RNA molecules led to the

discovery of the RRE for the RBP ELAVL2 (also

known as HuB) by an iterative binding and purifi-

cation strategy [26].

Immunoprecipitation methods for
identifying protein^RNA interactions
The first method that used immunoprecipitation for

the identification of protein-bound RNA transcripts

is known as RNA immunoprecipitation CHIP

(RIP-CHIP), which couples immunoprecipitation

to microarray analysis [27–29]. The term CHIP

signifies that the methods use microarray chips.

RIP-CHIP is performed without any treatment of

the cells. After cell lysis, the RBP of interest and the

bound RNAs are immunoprecipitated. After separ-

ation of the RBP and RNA, the purified RNA mol-

ecules are characterized by microarray analysis. One

of the limitations of RIP-CHIP is that full-length

mRNAs are extracted during immunoprecipitation,

which does not allow resolving the binding site with

single nucleotide resolution. Nevertheless, the results

of a RIP-CHIP experiment can be used to identify

the RRE for a particular RBP with RNA-binding

motif discovery software. Although the RIP-CHIP

procedure, like the cross-linking and immunopreci-

pitation (CLIP) procedures discussed in the next

paragraph, has advantages and disadvantages [30],

reassortment of mRNA targets is not observed in

RIP-CHIP mRNA experiments that use the original

experimental protocol [27, 28]. For example, Mili

and Steitz [30] used a sonication method optimized

for small nuclear ribonucleoproteins, whereas

mRNA RIP-CHIP uses mild polysome lysis buffer

and no sonication to avoid the shearing of large

RNAs and their reassortment [29].

Ultraviolet (UV) CLIP methods [22, 31–33]

overcome some drawbacks of SELEX and RIP-

CHIP. When coupled to deep sequencing, CLIP

allows characterizing RNA–RBP-binding inter-

actions on a genome-wide scale thus revealing start-

ing points for further investigations of targeted

RNAs by the RBP. The general idea of CLIP is to

retrieve a snapshot of all bound RNAs by an RBP of

interest in the cell. Before cell lysis, the cells are

exposed to UV light at 254 nm (or 365 nm, depend-

ing on the protocol), which results in covalent links

of single nucleotides being formed between bound

RNA and the RBP [34–36]. In the next step, the

cross-linked RNA molecules are purified via immu-

noprecipitation of the RBP and sequenced. Next-

generation sequencing (NGS) is widely available,

and a single sequencing run covers thousands of tran-

scripts on a genome-wide scale. The sequence reads

that are obtained by CLIP experiments reflect

the functional network in which a particular RBP

operates. Furthermore, additional information can be

gathered by an analysis of the RNA sequences, such

as whether the protein regulates only a subset of

splice variants for a particular gene. A potential limi-

tation is that the purified RNA molecules only cor-

respond to the bound RNAs by the RBP at the

moment of cross-linking. Potentially, therefore, not

104 Kloetgen et al.

above-
,
which
 employed
RNPs
while
 cross-linking and immunoprecipitation (
)
RNA-binding protein
ultraviolet 


all possible RNA targets are identified within a single

experiment. Besides this, the molecular mechanism

of cross-linking is still not fully understood, and low

efficiencies of cross-linking specific RBPs to their

target RNAs were reported [35]. Low cross-linking

efficiencies seem to be associated with specific amino

acid compositions of the RBP’s RBD or with the

nucleotide distribution within the RRE [37].

Photoactivatable-ribonucleoside-enhanced CLIP

(PAR-CLIP) [22] improves the cross-linking com-

pared with standard UV cross-linking by using a

photoactivatable nucleoside (e.g. 4-thiouridine),

which is incorporated into nascent transcripts. This

incorporation leads to more cross-linked sites be-

tween the RNA and the protein because of the

higher photoreactivity of such nucleosides [38].

This increases the specificity of the method by re-

covering a larger fraction of RBP-bound RNAs and

the removal of less specifically bound RNAs through

more stringent washing steps during the immuno-

precipitation. Furthermore, the incorporation of

4-thiouridine allows to irradiate cells with 365 nm

UV light, which minimizes the risk of unwanted

photodamage on the cellular level. The incorporated

4-thiouridine results in a thymidine to cytidine

(T–C) conversion, sometimes also called a ‘muta-

tion’, in the cross-linked sites during the following

reverse transcription [22]. When sequencing the

generated complementary DNA (cDNA) library,

one thus obtains sequences with T–C mutations at

the cross-linked sites (Figure 2). The presence of

such mutations in the sequences obtained represents

a useful criterion for distinguishing between truly

RBP-bound and nonspecifically bound RNAs.

However, the incorporation of photoreactive nu-

cleosides comes with its own issues. The most im-

portant limitation is the cytotoxicity, which was

observed in some cell lines and tissues following

exposure to photoreactive nucleosides [40] such as

4-thiouridine. This cytotoxicity makes it difficult to

investigate RBPs in some settings with PAR-CLIP.

A detailed protocol for users who are new to PAR-

CLIP that guides one through all steps of the tech-

nique is given in [41].

In summary, CLIP can be used for a first investi-

gation of the RBP’s regulatory network and indicate

potential target genes that are important in this

network [3]. Additionally, integrating the results of

different global protein–RNA analysis techniques

(e.g. RIP-CHIP and PAR-CLIP) can be helpful to

overcome the different technical as well as systematic

limitations of individual methods. Such data integra-

tion provided more detailed insights for an RBP of

interest in recent studies [42, 43].

BIOINFORMATICMETHODSAND
SOFTWARE FOR ANALYZING
(PAR-) CLIP NGS DATASETS
Because NGS data and, in particular, (PAR-) CLIP

data can be challenging to analyze [44, 45], we dis-

cuss the individual steps and available methods in

detail in the next sections.

Quality and adapter clipping
Raw NGS reads may contain parts of the adapter

sequences that have been used for cDNA library

preparation and sequencing. Therefore, after sequen-

cing, all known adapters that were used have to be

identified and removed from all reads. This can be

achieved by searching for (inexact) matches between

partial or the full adapter sequences and parts of a

read. This identifies undesirable adapter sequences at

the ends or even within the reads, which can then be

removed. Furthermore, the 50 and 30 ends of reads

often have low base quality scores from the sequen-

cing run. As this results in incorrect base calls and

may affect their alignment to the reference genome,

one strategy is to remove (clip) such regions from the

reads. Read aligners such as MAQ [46] or SOAP [47]

provide such functionality. However, the clipped

reads cannot be directly exported, and thus these

methods cannot be used solely for this purpose

within a pipeline. Alternatively, read clippers such

as cutadapt [48] or Trimmomatic [49] can be used

as stand-alone tools. The performance and accuracy

of these tools was evaluated using Illumina NGS data

[50], which revealed that trimming increases the

quality of subsequent read alignment, assembly or

single nucleotide polymorphism calling. A potential

problem of this approach is, however, that the re-

moval of such low-quality regions can generate short

reads that are uninformative and cannot be unam-

biguously mapped to a reference genome.

An alternative strategy is to correct errors caused

by low base quality scores in the read sequences, such

as false base calls (mismatches), deletions or inser-

tions. The benefit of a correction is that the retained

reads are longer, and thereby can be used to improve

assembly and mapping quality. Compared with

deleting information, the general concept of correct-

ing reads to decrease the number of mismatches
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relative to the reference is thus more powerful.

Tools such as SHREC [51] or Quake [52] identify

different types of errors such as amplification or

sequencing errors within genomic DNA sequence

reads and return corrected reads that can subse-

quently be mapped less ambiguously to a reference

genome. Software for correcting sequencing errors

in RNA reads, such as SEECER, has also been pub-

lished [53]. The algorithm of SEECER tries to dis-

tinguish between single nucleotide variants and

sequencing errors within sets of reads that cover

the same genomic area. However, SEECER is not

suitable for analyzing PAR-CLIP data, as T–C mu-

tations would be ‘corrected’ and would no longer be

available as a quality criterion for subsequent

analyses.

Short-read mappers
The next step after read quality improvement is to

map the obtained reads against a reference genome

to infer the genomic origin of a read. There are two

different ways of addressing this problem. The first

one is de novo assembly. This approach assembles the

reads based on partial sequence overlaps into longer

continuous pieces without considering a reference

genome sequence. The second approach attempts

to map the sequence reads to a position within a

reference genome. Here, we focus on the second

Figure 2: Process from the RNA^RBP interaction to the RNA sequence using PAR-CLIP. First, the mRNA with
incorporated 4-thiouridines is bound within the binding pocket of the RBP. Next, the cell is irradiated with UV
light at 365nm, thereby cross-linking single nucleotides from the RNA to amino acids of the RBP.The RNA^protein
complex is then extracted by cell lysis, and the mRNA portion that is not protected by the binding pocket is cleaved
by RNaseT1. Afterward, immunoprecipitation and proteinase K are used to extract and then separate RNA and
RBP. Adapters are ligated to the 30 and 50 ends of the free mRNA to make the short RNA fragments accessible
for reverse transcription, when conversions occur. These conversions can be seen as T^C mutations on the
sequence level (adapted from [39]).
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case, as CLIP methods are commonly used for iden-

tifying posttranscriptional regulation in organisms

with an already existing genome sequence, such as

the human genome sequence, version 19 [54].

A common computational approach to search for

matches of a query sequence within a large reference

sequence is the use of prefix or suffix trees. For this

purpose, the reference sequence is preprocessed and

saved as a prefix/suffix tree. This subsequently en-

ables the efficient identification of all exact matches

to the query sequence in linear time relative to the

length of the reference sequence [55]. However, the

maximum memory requirements for prefix/suffix

trees (or even arrays) increase quadratically with the

length of the reference sequence. The Burrows–

Wheeler Transformation (BWT) reduces the use of

memory to a linear scale [56] by generating an index

for the prefix/suffix tree (Figure 3) [57]. A widely

used algorithm for short-read mapping based on the

BWT is the Burrows–Wheeler Aligner (BWA) [58].

Other commonly used aligners, such as Bowtie [59]

and Bowtie2 [60], also use the BWT.

For finding inexact matches of a read in the ref-

erence sequence, an adaptation of the common

backward search of the BWT has been realized in

both BWA and Bowtie. It is necessary to allow mis-

matches when using these algorithms on PAR-CLIP

data because of the presence of T–C mutations in

the reads. Bowtie incorporates a strategy for read

alignment, which evaluates mismatches based on

base-calling quality: Unless the alignment of a

query sequence is found without a mismatch at a

particular position, a mismatch can be introduced.

Mismatches can only be introduced if the base-

calling quality of a mispairing base is low, as these

are most likely sequencing errors. Mismatches are

introduced until the sum of the base quality scores

for all incorporated mismatches exceeds a given

threshold. This approach has a constraint, as it fol-

lows a greedy strategy: it finds a valid alignment if

one exists, but this might not be the best alignment.

An important property of RNA sequencing data

is that the reads may span exon–exon junctions,

which makes it difficult to align them to a reference

genome sequence. This is because inserts of several

hundred bases within the reference sequence can

occur relative to the read because of the presence

of intron sequences (Figure 4). Bowtie and BWA

outperform previous read mappers, such as MAQ

and SOAP, for contiguous reference alignment in

terms of speed and accuracy (Table 1). However,

they are not designed for the identification of

exon–exon junctions but for the alignment of con-

tinuous sequences with only smaller deletions rela-

tive to a reference, such as sequence reads of

genomic DNA. Thus, other methods were intro-

duced to align RNA-seq reads across exon–exon

junctions [45]. Some are restricted to the identifica-

tion of already known and annotated splice junctions

[66, 67], whereas others have the ability to identify

de novo splice junctions [68].

A method called Subjunc [64] has been designed

to identify exon–exon junctions within RNA-seq

data. It applies a seed-and-vote principle to align

short-read datasets, in contrast to the commonly

used seed-and-extend principle (e.g. MapSplice

[62]). The seed-and-vote principle does not use a

single seed mapped with high quality to a reference

genome sequence to extend it to both sides. Instead,

a single read is split into many slightly overlapping

‘subreads’ of �10–25 bases, and each subread is

aligned without errors to the reference sequence.

Some subreads may match perfectly to different

parts within the genome (so-called multireads).

Multireads that map more often than a given thresh-

old (e.g. 10 times) are excluded. For every read, the

two genomic regions with most aligned subreads are

determined as potential exons, and this is called the

‘voting’ step of the algorithm. Subsequently, the

genome sequence between these two putative

exons is scanned for a donor site (GT) and an ac-

ceptor site (AG). Next, L1 and L2, the distances of

the outermost uniquely mapping subreads to the

Figure 3: Application of the BWT algorithm to the
string ‘AGGCT$’, where ‘$’ marks the end of the string
and is lexicographically smaller than all other charac-
ters. First, a suffix array is created; afterward, it is
sorted lexicographically. After the BWT has been per-
formed, only the last column of characters and the
order of the starting positions (each has the same
length as the string) within the original string are
saved. This reduces the memory requirements to a
linear scale relative the length of the string.
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donor or acceptor sites, respectively, are determined

(Figure 5). If the overall distance L between these

outmost uniquely matching subreads equals the sum

of L1 and L2, this supports the presence of an exon–

exon junction within this read. In the second step

of Subjunc, a validation of all putative junctions

is performed. The following criteria have to be ful-

filled: A read mapping across a splice junction must

have more matching bases with the reference than

the best continuous mapping to any genomic loca-

tion for this read. Additionally, this splice junction

has to be supported by at least one more read.

If all criteria are met, the putative splice junction is

accepted.

Another method that identifies splice junctions de
novo is TopHat [65]. This includes a two-step pro-

cedure, where all reads are initially aligned to the

reference genome with Bowtie. All mapped

reads are assembled with the assembly module of

the read aligner MAQ [46], which identifies

read-covered regions as putative exons. The remain-

ing reads—the so-called ‘initially unmapped’ reads—

could originate from spliced transcripts, as Bowtie

does not support read alignments across larger in-

trons. Next, the algorithm tries to map the initially

unmapped reads across pairs of the putative exons

determined above. An update of TopHat, called

TopHat-Fusion [69], has been designed to identify

Table 1: Selection of publicly available read alignment tools

Aligning
tool

Identifies
exon
junctions

Novel
splice
junction

Useful for CLIP data Algorithm type References

Bowtie No ^ Yes, but it is not able to map reads that span exon junctions BWT [59, 60]
BWA No ^ Yes, but it is not able to map reads that span exon junctions BWT [58]
GSNAP Yes No Yes Seed and extend [61]
MapSplice Yes Yes Yes Seed and extend [62]
MAQ No ^ Yes, but it is not able to map reads that span exon junctions Seed and extend [46]
SOAPsplice Yes Yes Yes BWT [63]
Subjunc Yes Yes Yes Seed and vote [64]
TopHat Yes Yes No BWT [65]

Figure 5: This figure shows the first step of the read alignment tool Subjunc. Donor (GT) and acceptor sites (AG)
between two putative exons are searched, and the length of the genomic mapping (L1þL2) is compared with the
overall distance between the outmost mapping subreads (L) (adapted from [64]).

Figure 4: Example of the two types of RNA-seq reads. Read 1 is fully contained within Exon I. Read 2 contains an
exon^ exon junction, so that the first part of the read matches Exon I, but the second part matches Exon II.
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gene fusions in a similar fashion. However, TopHat

is not ideal for the alignment of CLIP reads, as entire

and rather short reads are less likely to map to

two neighboring exons than subreads, though the

latter approach may also lead to more false-positive

findings.

Annotation of mapped reads
Many genes and their functions are annotated and

curated in public databases, such as the UCSC

Genome Browser database [70], the HUGO Gene

Nomenclature Committee [71] or DAVID [72].

This information allows one to connect the aligned

reads and genomic regions to functional annotations

of genes or other genomic elements. Stand-alone

software such as HOMER [73] directly annotates

gene names and gene functions for genomic regions

covered by aligned read sequences. Additionally, for

every read, HOMER can report whether it is part of

an intron or exon, or if it lies within the 30 or 50

UTR of a gene.

Processing PAR-CLIP data
What we have described so far are more or less

standard procedures for preprocessing NGS datasets.

In the following, we discuss specific analysis methods

for PAR-CLIP data that allow us to determine a cer-

tain RRE that is recognized by an RBP and to char-

acterize the posttranscriptional effects of an RBP.

An important step after the preprocessing of NGS

data produced by PAR-CLIP is the clustering

of reads and subsequent assessment of the clusters,

regarding, for example, the presence of an RRE.

Clustering can, for instance, be performed by hier-

archical bottom-up clustering [74]. In single-linkage

hierarchical clustering, clusters of reads are deter-

mined, in which every read of a cluster overlaps

with at least one other read of the same cluster by

at least a prespecified minimum length. The resulting

clusters correspond to pileups of reads in certain

regions on the reference genome and therefore can-

didate binding sites for RBPs.

The resulting clusters can be analyzed to deter-

mine whether they include valid RREs: here, the

presence of T–C mutations can be used as a criter-

ion of cluster quality for PAR-CLIP data [22].

A genome region covered by a cluster of PAR-

CLIP reads is assumed to encode a transcript

bound by the RBP if a certain percentage of all

reads of the cluster, e.g. 20%, contain T–C mutations

[22]. Only regions with a thymidine inside or in

the vicinity of the RRE will be identified by

this method, which is almost always the case.

Optionally, if there is a reason to assume that the

regions will not contain thymidines, different photo-

activatable nucleosides can be incorporated, such as

6-thioguanosine [22]. These will generate other mu-

tations on the sequence level. If the data have been

generated by CLIP methods without the use of

photoactivatable nucleosides, the read coverage can

be used as a criterion of the cluster quality. However,

this is not as stringent as the T–C criterion, as read

clusters can also represent highly abundant but non-

specifically bound transcripts. The publicly available

PARalyzer algorithm [75] is specifically designed to

generate such read pileups for PAR-CLIP reads. It

makes use of a kernel density estimate classifier to

generate read pileups representing genomic regions

that are targeted by an RBP. It additionally uses the

information given by the T–C mutations of each

aligned read as a quality measurement.

Amotif finder for RREs
The genome sequence covered by a read cluster can

be used as input for RRE discovery methods.

Notably, a ‘cluster sequence’ usually contains only

one RRE, although several RREs within nearby

clusters may also occur [42]. Many RBPs containing

more than one RBD of the same type have been

identified during recent years. Some RBDs of the

same type identify slightly different RNA motifs.

For instance, zinc finger domains of the same protein

identify distinct RREs [76]. The cooperative binding

of multiple RBDs that recognize similar sequences

allows realizing a wide range of binding specificities

and affinities to different mRNAs.

Several motif-finding methods have been de-

veloped to identify an RRE from a set of sequences

that share at least one RRE (Table 2). Some of these

methods search for a single motif within a given set

of sequences, whereas others can infer multiple

RREs from a set of sequences. Some methods are

trained with already published RREs, whereas others

identify denovo RREs. The mcast software [79], pro-

vided by the online available MEME suite [82], is

able to identify multiple RREs within a set of se-

quences. Although it was originally conceived for

detecting instances of DNA-binding motifs in a se-

quence or, more precisely, for the identification of

transcription factor binding sites in promoter regions,

it is also applicable to find known RREs in a set of

sequences. The scoring scheme of mcast allows the
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program to determine instances of multiple but al-

ready known motifs within a given sequence. This is

achieved by scoring matches of known motifs within

the sequences, allowing gaps between these matches

and the assembly of these to clusters of matches using

a nontraditional hidden Markov model (HMM)

(called the Meta-MEME model). The HMM is

called nontraditional because it has no transition

probabilities; instead, arbitrary transition costs are

defined between any two states. The Meta-MEME

model is built from known motifs from a motif data-

base. Each motif has a state within the model for its

forward strand and also a second state for the reverse

complement of the motif, which is relevant for the

analysis of DNA motifs. Afterward, the Viterbi algo-

rithm is applied to find instances of a known motif in

a particular input sequence. As only few RREs have

so far been described, this restricts the use of mcast

for this problem.

As CLIP experiments characterize RNA-binding

sites on a genome-wide scale, de novo RRE identifi-

cation tools have also been developed during recent

years and will be discussed here. The mCarts soft-

ware package [78] is an example of a de novo identi-

fication method, which determines new RRE motifs

from a set of input sequences. The input corresponds

to a set of sequences, each sequence of which con-

tains a particular RRE (the positive set) and a set of

sequences without this RRE (the negative set). The

read sequences of a PAR-CLIP experiment can be

assigned to a positive and negative set using the clus-

ter quality criteria discussed earlier. The HMM used

in mCarts is more generic than the one in mcast.

It contains only states that represent a motif or a

background signal. Transitions between these states

are given by a probability combining the distance

to the previous motif, the accessibility within a pos-

sible secondary structure and the conservation of this

motif within different species. The positive and

negative sets are used for parameterization of the

HMM. Afterward, the trained HMM is able to iden-

tify motifs on a genome-wide scale by applying the

Viterbi algorithm, e.g. using all exonic regions of

annotated genes as input. mCarts can find multiple

instances of one RRE, which occur in all sequences

of the positive set, but a potential limitation is that it

would not find different RREs.

RNAcontext [81] also identifies de novo motifs by

considering the secondary structure of an RNA mol-

ecule. This method also uses two distinct sets of

sequences as input (‘positive’ and ‘negative’). From

these, the algorithm derives a structural annotation

for each sequence. This means that possible second-

ary structures of a sequence are predicted and scored

with publicly available software [76]. Second, the

parameters for the motif identification model are

estimated. An interesting aspect of the parameter

estimation is that information on the RBPs’ bind-

ing affinity is included, which is determined with

RNAcompete [83]. The latter assures that the

model depends not only on a positional weight of

a certain base but also on the context of the second-

ary structure and the binding affinity, which are both

included in the complete model. The output of

mCarts and RNAcontext are motifs of a few bases

in length, which may also include ambiguous base

characters (Figure 6) and the location of motif in-

stances in the input sequences. The motifs represent

the RREs of the RBP of interest.

SAMPLE PIPELINE FOR
ANALYZING PAR-CLIP DATA
After discussing the different programs available for

each data processing step, we will now describe an

exemplary PAR-CLIP analysis pipeline (Figure 7). It

starts with the preprocessing of the NGS data for the

mRNAs bound by an RBP of interest. First, quality

and adapter clipping is performed with cutadapt.

Next, the reads are mapped to the publicly available

Table 2: Available software for RNA-binding motif discovery

Tool De novo
identification

Allows for multiple
RREs per sequence set

Algorithm References

cERMIT Yes Yes k-mer ranking [77]
mCarts Yes No HMM [78]
Mcast No Yes Nontraditional HMM [79]
PhyloGibbs Yes Yes Gibbs sampling coupled with simulated annealing [80]
RNAcontext Yes Yes Adaptation of logistical function [81]
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human genome version 19 and against rRNA,

tRNA and other noncoding RNA databases pro-

vided by the UCSC genome browser. To this end,

we use BWA with one mismatch at most per aligned

read, which means that we only allow for a single

T–C mutation. Allowing for more than one T–C

mutation is possible but would reduce the fraction

of unambiguously alignable reads. Afterward, reads

are clustered with single-linkage clustering and

scored based on the percentage of T–C mutations

per cluster. This procedure identifies the genomic

regions that are most extensively covered by

mRNA reads. The putative RBP-bound sequences

identified in this manner are returned in a plain text

format and can be used for further analyses. Motif

identification within this positive set of sequences

containing a binding motif is then performed using

the MEME suite (Figure 7).

CONCLUSIONSANDOUTLOOK
Improvements for short-read mapping
Read mapping is not only one of the most important

but also one of the most time-consuming steps in the

processing of CLIP sequencing data. The results of

the overall analysis notably depend on the mapping,

as false-positive as well as false-negative alignments

will be used in all subsequent steps. Some ideas of

how to improve short-read mappers that are also able

to map longer reads of up to some hundreds of base

pairs are outlined below. This will be of interest not

only for analyzing CLIP data but also for all RNA

sequencing data. Additionally, a study of four human

and mouse RNA-seq datasets has shown that 26 cur-

rent read-mapping protocols still have various issues

with real data [84]. Such problems are exon–exon

junction discovery, alignment yield or basewise

accuracy, which indicates that improvements in this

field are required.

The biggest challenge in aligning mRNA reads is

that these often span splice junctions and a specific

alignment method for this problem is required.

TopHat addresses this by further processing of ini-

tially unaligned reads and searching for exon–exon

junctions. Additionally, one could align the initially

unaligned reads against expressed sequence tags that

were obtained by earlier transcriptome sequencing

using an accurate read alignment tool, such as

Subread [64]. Although this would not discover all

expressed variants, it would further reduce the

amount of reads that could not be mapped during

the first step. This computational effort of mapping a

single read against two exons of a reference could

thus be avoided for a larger subset of the initially

unmapped reads. The computational difficulty of

mapping spliced reads is caused by the unknown

position of the splice junction. Furthermore, as pre-

viously outlined, additional information could be

considered when aligning reads. For instance, special

handling of the T–C mutations in the PAR-CLIP

data instead of treating them like standard sequencing

errors would improve read mapping. This could

optimize the balance between allowing multiple

T–C mutations per read and obtaining unique read

mapping to a reference sequence. To this end, sim-

ultaneous error correction and read alignment

may allow us to align a larger portion of the reads.

Current error correction approaches could be im-

proved so that they would be applicable not only

to NGS data generated with ‘pure’ CLIP protocols

but also to PAR-CLIP data with T–C mutations.

Figure 7: Scheme for NGS data preprocessing and
analysis of PAR-CLIP data. The upper box represents
steps contained in the preprocessing of NGS data.
Steps within the lower box are performed to identify
the binding motifs of a particular RBP investigated by a
PAR-CLIP experiment.

Figure 6: Example output of RNA-binding motif dis-
covery tools. It shows a pattern of four bases with
more or less clearly assigned bases, where Position 1
can be either an adenosine or a cytidine, but the
second base must be a cytidine.
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Conclusion on motif identification
The tools for RRE discovery discussed in this review

differ in their abilities. Mcast can identify multiple

different RREs within the input sequences but does

not perform a de novo identification, whereas mCarts

can identify a single RRE multiple times in a de novo
fashion. However, it may be that different RRE

motifs are bound by a single RBP and affect its bind-

ing affinity to a particular mRNA [42]. Inferring

multiple RRE motifs is therefore an important

issue for de novo identification of RREs that would

give deeper insights into RBP’s modes of action. The

consideration of further information such as second-

ary structure accessibility or the binding affinity of a

given RNA sequence are also useful for validating

newly found RREs. Possibly, the currently most

suitable tools are RNAcontext and cERMIT [77],

as they provide most of the desired functionalities

for RRE identification.

Developing a functional analysis/
annotation tool
Functional analysis is highly complex and can best be

improved by consideration of multiple sources of infor-

mation, such as existing gene annotations, gene expres-

sion profiles and physical binding information [85]. To

improve the annotation of candidate target genes iden-

tified by PAR-CLIP analysis, databases for gene disease

correlations or metabolic pathways can be analyzed. This

determines whether multiple genes regulated by the

analyzed RBP are part of the same disease or pathway.

Clustering algorithms can be used for grouping target

genes based on the similarities of, for instance, disease

relevance or pathway affiliations. Multidimensional

clustering methods, such as biclustering or subspace clus-

tering [86], can be used to integrate multiple heteroge-

neous data types into the analysis. Such approaches result

in a powerful tool when trying to assess the physiological

functions of any given RBP.

Key points

� CLIP experiments reveal insights into the posttranscriptional
regulation networkmediated by particular RBPs.

� Many roles of RBPs in disease-relevant pathways can sometimes
bepostulatedor even confirmedbyCLIP, but standard computa-
tional methods for the analysis of CLIP data have not yet been
established.

� Algorithmic improvements of different analysis stages, such as
read alignment or functional annotation and analysis, may allow
us to more fully assess the outcomes of a CLIP experiment.
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