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ABSTRACT

Human DNA polymerase theta (pol 6 or POLQ) is a
proofreading-deficient family A enzyme implicated in
translesion synthesis (TLS) and perhaps in somatic
hypermutation (SHM) of immunoglobulin genes.
These proposed functions and kinetic studies imply
that pol 6 may synthesize DNA with low fidelity. Here,
we show that when copying undamaged DNA, pol 0
generates single base errors at rates 10- to more
than 100-fold higher than for other family A mem-
bers. Pol 0 adds single nucleotides to homopoly-
meric runs at particularly high rates, exceeding 1% in
certain sequence contexts, and generates single
base substitutions at an average rate of 2.4 x 103,
comparable to inaccurate family Y human pol x
(5.8 x 10~3) also implicated in TLS. Like pol k, pol 0 is
processive, implying that it may be tightly regulated
to avoid deleterious mutagenesis. Pol 0 also gen-
erates certain base substitutions at high rates within
sequence contexts similar to those inferred to be
copied by pol 0 during SHM of immunoglobulin
genes in mice. Thus, pol 0 is an exception among
family A polymerases, and its low fidelity is consis-
tent with its proposed roles in TLS and SHM.

INTRODUCTION

The human genome encodes numerous DNA polymerases
that have key roles in DNA replication and the repair and
recombination reactions needed to maintain the integrity
of genetic information (1-4). These polymerases are clas-
sified by sequence homology into families A, B, X and Y.
Family A members include human DNA polymerase y
(pol ), pol v and pol 6, the subject of this study. Pol 0 is
encoded by the POLQ gene that was initially described (5)

as an open reading frame in humans with homology to
the founding member of family A polymerases,
Escherichia coli DNA polymerase 1. Subsequent studies
(6,7) demonstrated that POLQ encodes a 290-kDa protein
with template-dependent DNA polymerase activity. The
amino terminus contains seven motifs characteristic of
DNA and RNA helicases, although no helicase activity
has been reported. The carboxy-terminal half contains
the residues required for polymerase activity (6).
Recombinant pol 6 lacks detectable 3’ exonuclease
activity, rendering it incapable of exonucleolytically
proofreading any errors that it may make during DNA
synthesis. Also, steady-state kinetic studies demonstrate
that recombinant human pol 6 misinserts incorrect dANTPs
at rates that are higher than those of several other family
A polymerases (7). Pol 0 can also efficiently insert a
nucleotide opposite an abasic site or a thymine glycol
lesion (7-9), and it can extend the resulting primer
terminus. In addition, pol 6 can extend a primer terminus
generated after another polymerase has inserted a nucleo-
tide opposite a 6—4 photoproduct, a lesion that pol 6 itself
cannot bypass (7,8). Mice with a T to C base substitution
(the chaosl mouse) or a deletion in the Polg gene (10) have
elevated levels of spontaneous and radiation-induced
micronuclei in erythrocytes (10). When the chaosl
mutant mouse was crossed with an Arm-deficient mouse,
the number of the double homozygous mice was lower
than expected (11), indicating that pol 6 is important for
survival in the absence of ATM-dependent checkpoint
signaling. Additional studies suggest that pol 6 may
participate in cellular responses to DNA damage, possibly
including TLS (10,12).

Pol 0 has also been suggested to be involved in somatic
hypermutation of immunoglobulin genes, although a con-
sistent model for a possible role has not yet emerged. It is
highly expressed in lymphoid tissues and regulated in the
germinal centers of B cells where SHM takes place (12).
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In one study, mice expressing catalytically inactive pol 0
had reduced SHM at C:G base pairs (13); in another
study, pol 0 null mice showed a reduction in SHM at both
C:G and A:T base pairs accompanied by an increase of G
to C transversions (14) and in a third study, pol 6 was
proposed to be responsible for the residual A: T mutations
observed in the absence of pol n (15).

Previous work has shown that mammalian polymerases
implicated in TLS and/or SHM, such as the family Y
members pol n, pol k and pol 1, and the family B member
pol {, all have relatively high error rates when copying
undamaged DNA templates (16). Analysis of the error
specificity of DNA polymerases can provide insights into
the mechanisms by which they avoid or generate errors,
and clues about their biological functions. For these
reasons, we analyzed the single base deletion, insertion
and substitution error rates and specificity of recombinant
human pol 6 during copying of undamaged DNA.

MATERIALS AND METHODS
Enzymes, reagents and strains

Recombinant full-length human DNA pol 6 was purified
to near homogeneity as described (6,8). Materials for
the M13mp2 fidelity assay were from sources described
previously (17). The exonuclease-deficient, large Klenow
fragment of E. coli DNA pol I and T4 polynucleotide
kinase were purchased from New England BioLabs,
Ipswich, MA, USA. [y-**PJATP (4500 Ci/mmol) and
unlabeled deoxyribonucleotide-triphosphates were from
GE Healthcare Biosciences, Piscataway, NJ, USA.
Materials for processivity analysis were described pre-
viously (18).

M13mp?2 fidelity assay

Gap-filling reactions for pol 6 (25ul) contained 20 mM
Tris—=HCI (pH 7.5), 8mM MgCl,, 0.1 mM EDTA, 4%
glycerol, 80 pg/ml bovine serum albumin and 1 mM each
dATP, dCTP, dGTP and dTTP and 0.2nM M13mp2
(407-nt gap) DNA substrate (from nucleotide -216
through +191 of lacZ gene). Polymerization reactions
were initiated by the addition of pol 6 (27 nM), incubated
at 37°C for 1h and terminated by adding EDTA to
20mM. Ten microliters of the reaction mixture were
mixed 1:1 with SDS buffer 20mM Tris pH 8.0, SmM
EDTA, 5% SDS, 0.5% bromophenol blue and 25%
glycerol) and complete gap filling was monitored by
agarose gel electrophoresis. Errors were scored as light
blue or colorless mutant plaques, while correct synthesis
yielded plaques that are dark blue. DNA from indepen-
dent mutants was sequenced in order to identify the errors
made during gap-filling synthesis reactions. For sequence
changes that yield light blue and colorless plaques, error
rates were calculated by dividing the number of observed
mutations of a particular type by the total number of
nucleotides synthesized in the lacZ clones, a calculation
used previously for particularly inaccurate polymerases
(19). As described in the figure legend for Table 1, error
rates were also calculated per detectable nucleotide
incorporated as described (17).

Table 1. Error Rate for pol 6

a,b

Total changes Error rate (x107%)

Frameshifts (—1) 112 1.4
Frameshifts (+ 1) 270 33
Base substitutions 194 2.4
Other® 29 -

+ >1 bases! 16 -

“Error rates are calculated from all observed changes (see Materials and
Methods section). As mentioned in the text, mutant frequencies were
calculated for two experiments. Experiment 1: mutant frequency was
27.0% (267 mutant plaques from a total of 997). Experiment 2: mutant
frequency was 31.0% (873 mutant plaques from a total of 2835). Error
rates are calculated from Experiment 1.

®Error rates calculated for detectable changes are: frameshifts (—1)
0.9 x 1073, frameshifts (+1) 1.9 x 1073, base substitutions 1.4 x 107>.
“These errors are further discussed in the text and Table 2.

9YAmong the 200 clones sequenced, several clones (13) contained
deletions of two or more bases, while three clones contained insertions
of two or more bases.

Processivity analysis

Processivity was monitored using single-stranded
M13mp2 DNA primed with a [y>’PJATP 5-end labeled
DNA oligonucleotide complementary to positions + 146
to + 164 of the lacZa coding sequence. Reaction mixtures
(30 ul) for pol 6 contained 20mM Tris—HCI (pH 7.5),
8mM MgCl,, 0.1mM EDTA, 4% glycerol, 80 pg/ml
bovine serum albumin and 100 uM each dATP, dCTP,
dGTP and dTTP. Reaction mixtures for Klenow fragment
exo pol were as described above for pol 6 except 8 mM
magnesium acetate was used. Both reaction mixtures
contained primed M13mp2 ssDNA substrate in excess
(6.6nM) of pol 6 (2.8nM) or Klenow fragment exo-pol
(5.3x 107 nM). Reaction mixtures were incubated at
37°C and 10 pl aliquots were removed at 2, 5, 10, 15 and
30min for pol 6 and at 1, 3, 4 and Smin for Klenow
fragment exo pol. Samples were mixed in a 1:1 ratio with
stop buffer (99% formamide, SmM EDTA, 0.1% xylene
cyanol, 0.1% bromophenol blue) and DNA products were
analyzed by electrophoresis on a 12% denaturing poly-
acrylamide gel. Products were quantified by phosphor-
imagery using a Molecular Dynamics Typhoon 9400 and
the ImageQuant software. The termination probability for
each template position is defined as the ratio of products
of a given length to the sum of that product plus all longer
DNA products.

RESULTS
Fidelity of human pol 0 in the M 13mp2 forward mutation assay

The fidelity of human pol 6 was determined during
synthesis to fill a 407-nt single-stranded gap within a
circular duplex M13mp2 DNA substrate. The gap
contains the lacZ o-complementation sequence that
serves as the target for detecting polymerization errors.
From the independent lacZ mutants sequenced, error
rates have been calculated for the 12 single base—base
mismatches and for addition and deletion errors, all in a
variety of sequence contexts (17). This comprehensive



description of pol 0 error rates and error specificity can
then be compared to results obtained with other DNA
polymerases using the same approach.

The DNA products of complete gap filling by human
pol 0 [data not shown, but for example see Figure 3 in ref.
(17)] yielded a /lacZ mutant frequency of 27% in the first
experiment and 31% in a second experiment. These
frequencies are much higher than those generated by
most other exonuclease-deficient family A polymerases,
e.g. 0.57% for exonuclease-deficient Klenow fragment
polymerase (20), 0.75% for Thermus aquaticus (Taq)
polymerase (21), 1.6% for exonuclease-deficient T7 poly-
merase (20,21) and 0.62% for exonuclease-deficient pol y
(22). The least accurate family A member studied pre-
viously was human pol v (23), which generated a lacZ
mutant frequency of 18%. That value was obtained from
reactions conducted at pH 8.8, the pH initially used to
study its TLS capacity (24). Here, we decided to perform a
pol v fidelity measurement at pH 7.5, to permit direct
comparison to pol 8 and the other family A polymerases,
all of which were analyzed at neutral pH. Consistent
with previous studies showing that Klenow fragment
polymerase (25) and Taq pol (21) have higher fidelity at
neutral compared to alkaline pH, the products of a pol v
reaction conducted at pH 7.5 yielded a lacZ mutant
frequency of 2.3%. Thus, the lacZ mutant frequencies
generated by pol 6 are more than 10-fold higher than for
pol v or any other exonuclease-deficient family A
polymerase examined in this assay, i.e. pol 0 is error-
prone.

Error rates and error specificity

To determine the types and positions of errors made by
pol , the sequence of the 407 template bases within the gap
was determined for 200 independent /acZ mutants. A total
of 621 sequence changes were detected, yielding an
average of 3.1 sequence changes per lacZ mutant.
Among these were 112 single base deletions, 270 single
base additions and 194 single base substitutions (Table 1),
29 other, more complex changes (Table 2) plus 16
deletions or additions of two or more bases (Table 1).
The single base changes were distributed throughout the
407 base target sequence and included changes known to
result in a colorless or light blue phenotype (Figure 1,
mutations in red) and changes that are known to be, or
may be, phenotypically silent (Figure 1, mutations in
black). When error rates were calculated from these data
(as described in Materials and Methods section), overall
average rates were 1.4 x 10 for single base deletions and
3.3 x 10 for single base additions (Table 1). Error rates
for single base deletions and additions were sequence
context-dependent, increasing as the number of bases
within homopolymeric runs increased from one [i.e. a
noniterated sequence to two and then three bases
(Figure 2)]. There was little or no further increase in
error rates in runs of four or five of the iterated bases. The
overall average single base substitution error rate was
2.4 x 10 and error rates for the 12 individual mismatches
varied over at least a 100-fold range, from <0.4 x 104
for C-dCTP to 42x10* for the T-dGTP (Table 3).
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Table 2. Pol 0 errors involving more than one base

# From nt nt To
10 127 CACAT CCCCCTIT CGCCA 144
CCCCCCTTTT
2 127 CACAT CCCCCTTT CGCCA 144
CCCTTTT
2 -202 ACTGG TG ADAAG -190
A
1k -217 GCTGT TGGCCCGT CTCAC -201
cccceceae
1 -212 TGCCC GTCTC ACTGG -198
CGTC
il -189 AAARA CCA CCCTG -178
RO
1. -118 ACAGG T TTCCC ~105
CA
L -38 GCTTT ACAC TTTAT =25
TACT
1 -34 TACAC TTTATGCTTCC GGCTC -14
ACCCTTCCT
q: 94 CTGGC GTT ACCCA 113
TGTC
1 116 TCGCC T GCAGC 127
CTC
ik 121 TTGCA GCACATCCCCCTTT CGCCA 140
ACACCCCCCTT
1 125 AGCAC AT cceee 136
C
ik 148 GCGTA ATAGC GAAGA 163
AATAGT
1: 162 CCCGC ACCGATC GCCCT 186
GCCGGTT
i 173 CGATC GCCCTTCCC ARACAG 191
ceceTTeCe
I 176 TCGCC erT CCcCrA 188
TE

For each single event listed, the top sequence shows the original
template sequence (Figure 1) including the five nucleotides on the 5
and 3’ sides of the sequence that was changed. The bottom sequence
shows the observed changes highlighted in red. For example, among
200 independent clones, 10 contained an insertion of a C at position
132-136 and a T at position 137-139.

Base substitution errors were also generated at higher than
average rates in certain sequence contexts (arrows in
Figure 1, and see Discussion section).

Processivity

We next determined the processivity of synthesis by pol 0
when copying the LacZ template sequence starting at
nucleotide number 145 (where +1 is the first transcribed
base of LacZ), which is adjacent to hot spots for two
different single base additions and two different single base
substitutions (arrows in Figure 1). Reactions were
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Figure 1. Spectrum of errors generated by human pol 0. The 407 template nucleotides within the single-strand gap of the M13mp2 substrate are
shown as five lines of the template sequence. Letters above the target sequence indicate base substitutions. Deletion of a base is depicted by an open
triangle, whereas addition of a base is represented by a closed inverted triangle above the target sequence. ‘Red’ characters represent phenotypically
detectable changes in the gap region while ‘black’ characters represent phenotypically undetectable changes found in association with detectable
changes. ‘Gray’ arrows indicate hot spots of template A or T base substitutions (=36, +19, +113 and +131) and base substitution hot spots
(+131 and +136) +1 represents the first transcribed nucleotide of the /acZa-complementation region.

performed under conditions of primer-template excess,
such that only a small proportion of primers are extended
and DNA products therefore primarily reflect one cycle of
synthesis (see Materials and methods section). Under
these conditions, pol 6 generates chains that vary in length
from one to more than ~75nt (Figure 3A). When
individual band intensities were quantified to calculate
the probability of termination of processive synthesis at
multiple positions, termination probabilities for pol 6
ranged from 2% to 7%. At each of these positions, pol 0
is less likely to terminate processive synthesis than is
exonuclease-deficient Klenow fragment polymerase
(Figure 3B), i.e. pol 0 is slightly more processive.
Termination probabilities at the hot spots for additions
(CCCCC at positions 132-136 and TTT at positions 137—
139) and substitutions (T to C at position 131 and Cto T
at position 136) were similar to those observed at other
positions. The implications of these results are discussed
subsequently.

Pol 0 base substitution specificity and a possible role in SHM

During somatic hypermutation of immunoglobulin genes,
mammalian pol 1 is responsible for a large proportion of

141

- o -1 deletions
m +1 additions

-
o
1

Error rate (x 10'3}

O '_- i
1 2 3 4/5
Homopolymeric Run

Figure 2. Pol 0 indel error rates as a function of homopolymeric run
length. Error rates are the number of all observed single-base deletions and
single base-additions (Table 1 and Figure 1) divided by the total number of
template nucleotides present in runs of the indicated length indicated in
the figure among 200 sequenced /acZ clones generated by pol 6.

mutations occurring at A-T base pairs (26-28). Even so,
SHM spectra in XPV patients or mice lacking functional
pol n still retain a small fraction (5-15%) of mutations
at A-T bases (26,28-30) implicating another polymerase



Table 3. Base substitution error rates for pol 0

Base = Mutation Mispair All Error
From— To  Template-dNMP  observed  rate (x10~%*
A A—G A -dCMP 11 5.6
A—T A -dAMP 9 4.5
A—C A-dGMP 7 3.5
T T—C T-dGMP 77 42.0
T—A T-dTMP 24 13.0
T—>G T.-dCMP 4 22
G G—>A G-dTMP 16 8.4
G—-C G-dGMP 4 2.1
G->T G-dAMP 5 2.6
C C—>T C-dAMP 35 14.0
C—>G C-dCMP 0 <04
C—A C-dTMP 2 0.8

“Base substitution error
Experiment 1 (Table 1).
assay. Error rates for all

calculated as previously described (20).
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in SHM at A-T bases. This is interesting in light of the fact
that 132 of 194 single base substitutions (68%) made by
pol 0 in vitro were generated when copying a template A or
T (Table 4), including substitutions at several hot spots
(arrows in Figure 1). This specificity prompted the search
for a signature mutable motif for pol m-independent
substitutions at A-T pairs. Using the largest available
spectrum of unselected somatic mutations located in the
Jh intronic region from XP-V patients (30), the sequences
ADK/MHT and AA/TT (D = A/G/T; K = G/T; M = A/
C; H= A/C/T; mutable positions are underlined) were
found to be the most likely mutable motifs (Table 4) (31).
When these motifs were compared with the distribution
of base substitution errors made by pol 0, three hot
spots in the pol O error spectrum significantly correlated
with the AA and ADK motifs (Table 4), consistent with
a possible contribution of pol 6 to somatic mutations
in immunoglobulin genes in vivo (13,14). This result is
further supported by the absence of correlation between

1

CIKf-
H W Theta

130A_;| H

1317
132C
133C
134 C
135C

136 C

137 T
138 T
139 T
140C
141G
142 C
143 C

Error Rate at 132-136
Theta: 2x10-2
Kf : <0.8x10-°

H
_‘ Error Rate at 137-139

Theta: 7x10-2

E" Kf: <1.4x10-5

-I_—._|

0 5 10 15 20 25
Termination Probabiltiy

Figure 3. Processive synthesis by Klenow exo~ and pol 6. Reactions were performed as described in Materials and Methods section.
(A) Representative phosphor image of the reaction products of processive DNA synthesis resolved on a 12% denaturing polyacrylamide gel. Lanes
2-5 represent primer extension products by Klenow exo™ at 1, 3, 4 and 5min. Lanes 7-11, primer extension products by pol 6 at 2, 5, 10, 15 and
30min. Lanes 1 and 6 represent negative control reactions. The numbers on the right indicate the positions along the lacZ gene. (B) Termination
probability per nucleotide at each template position, 144 to 127. Numbers along the Y-axis indicate nucleotide positions along the /acZ gene. The
termination probability is defined as the amount of product of a given length divided by the sum of products of that length plus all greater length
products. The values plotted are the average of three values for pol 6 (for time points 5, 10, and 15min for pol 8:DNA at one ratio) and an average
of three values for Klenow exo™ (time points 3, 4 and 5min at one ratio) and the error bars represent the standard deviation. Error rates for certain
sequence contexts (CCCCC at positions 132-136 and TTT at positions 137-139) are shown for both pol 6 and Klenow exo™ (21).
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Table 4. Mutations in different mutable motifs

Increase in mutations” (Pw<wrandom Value)

Pol 6 hot spot

Motifs XP-V® Mouse n /¢ Pol 0 in vitro
ADK / MHT 4.3 (<0.01) 2.3 (0.02) 0.3 (0.80)
2.5 (0.02)
AA | TT 3.7 (<0.01) 2.8 (0.01) 0.5 (0.22)
3.3 (<0.01)

Mouse n~/707/~¢ GCITT® CAATT CATCC
(5 at -36) (6 at 19) (117t 131)

1.0 (0.45) NO YES YES

0.8 (0.71) YES YES NO

“Number of mutations in mutable motifs was calculated for the underlined bases (mutable sites). Values listed represent the fold increase in
mutations at mutable sites compared with mutations at other sites. Bold italicized numbers represent a significant increase in mutations at mutable
motifs (Pw wrandom 0.05), as revealed by using a Monte Carlo procedure (60).

®Mutation spectra from Mayorov ef al. (31).
“Combined spectra from Martomo et al. and Delbos et al. (61,62).
9Mutation spectra from Masuda et al. (16).

“Mutable motifs were compared with the distribution of base substitution error rates made by pol theta, three hotspots on the pol theta error

spectrum (Figure 1) significantly correlated with the AA and ADK motifs.

the mutable motifs and spectra of somatic mutations in
N/ 0/ mice (Table 4).

DISCUSSION

The results presented here demonstrate that human pol 0
synthesizes DNA with moderate processivity and very low
fidelity, and that it has a unique error specificity. This
combination of properties is unusual, and can be
considered in light of mechanisms by which polymerases
generate errors and in light of pol 8’s proposed biological
functions.

Insertion/deletion errors

The most unusual and unanticipated aspect of pol 0’s
error specificity is the high rate at which single base
insertion and deletion errors (indels) are generated. In the
M13 forward mutation assay, most DNA polymerases
have higher error rates for base substitutions than for
single base insertions and deletions, whereas pol 6
generates all three types of errors at similar rates
(Table 1). In fact, pol 6 is among the least accurate
polymerases for indels, with an average deletion rate
rivaling that of the notoriously inaccurate Y family
polymerases pol n and pol k (Figure 4A), and an average
addition rate exceeding that of any DNA polymerase
examined in the M 13 fidelity assay (Figure 4B).

What might account for such high indel error rates by
pol 6?7 Family Y polymerases have active sites large
enough to simultaneously accommodate two template
bases, one of which can be unpaired (32). Because pol 6
has indel error rates as high as those of family Y members,
it is formally possible that pol 0 also has an active site
capable of accommodating an unpaired base that is simply
skipped (33). The available crystal structures for family
A polymerases reveal nascent base pair-binding pockets
that snugly accommodate only one template. However,
considering the high level of conservation between pol 6
and other family A polymerases, the possibility that pol 0
can accommodate two bases simultaneously in its active

site is not the most likely explanation for its propensity for
very high indel error rates.

Our results indicate that the majority of indels
generated by pol 6 occur within homonucleotide runs
(Figure 1). Furthermore, addition and deletion error rates
are higher for runs of three to five bases than for two-base
runs or noniterated bases (Figure 2). This is a signature for
misaligned primer templates (34) containing an extra base
in the template strand (for deletions) or in the primer
strand (for additions) that is not at the active site but is
rather several correct base pairs upstream of the active site
(33). It is, therefore, interesting that error rates for
additions exceed those for deletions (Figure 2, black
versus open bars), and that the error rate for additions is
highest for runs of three identical bases and does not
increase in longer runs (Figure 2). This pattern suggests
that pol 6 may preferentially stabilize an extra base in the
primer strand located two correct base pairs upstream of
the active site.

It is entirely possible that particular residues of pol 0
may contribute to stabilizing misaligned intermediates,
allowing pol 0 to generate single base indels at unusually
high rates. Sequence alignments reveal that pol 0 contains
extra amino acids, designated Inserts 1, 2 and 3 [see
Figures 5 and 6 in ref. (7)], that are not found in other
family A polymerases. While Insert 3 is unlikely to be near
enough to interact with the DNA [see Figure 6 in ref. (7)],
Inserts 1 and 2 may be at locations relevant to indel errors.
Insert 1 is predicted to be near the tip of the polymerase
thumb subdomain that in other family A members
interacts with the primer template. This is interesting
because deleting the tip of the thumb of Klenow fragment
pol increases the error rate for indels, especially single
base additions (35). Also, when T7 DNA polymerase lacks
thioredoxin, its accessory subunit that interacts with the
thumb, it is error-prone for single base indels, especially
additions (36). An insert at this position is also found
in a plant plastid A-family DNA polymerase (37). Insert 2
is located between conserved amino acids that are known
to form secondary structural elements in T7 pol and Tag
pol. It is interesting to note that some of these residues
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Family Y: hPol k and hPol n error rates are taken from (20). Family
X: hPol B and hPol % error rates are taken from (57). Family B: hPol o
error rates are unpublished results from Kokoska, R.J. and Kunkel,
T.A., yPol 8 (Exo-) error rates are taken from (58), yPol ¢ (Exo-) error
rates are taken from (59) and yPol { error rates are taken from (50).
Family A: hPol 6 and hPol v data are from this study. For hPol v, at
neutral pH, a mutation frequency of 2.6% was obtained (64 mutant
plaques from a total of 6432). Of these, 22 clones were sequenced and
as with the previous study (24), these clones show a preference for G to
A base substitutions. hPol y (Exo—) (+pl40 and p55) error rates are
from (23) and Kf (Exo—) error rates are taken from (21).

interact with the primer strand upstream of the polymer-
ase active site, where the extra base in a misaligned
addition intermediate may reside. Interestingly, Inserts 1
and 2 are unique to pol 0 in comparison to its closest
homolog, whose indel error rates are much lower
(Figure 4). Thus, it is conceivable that residues in Insert
1 or 2 of pol 0 stabilize misaligned intermediates, allowing
pol 6 to generate single base indels at unusually high rates.
Precedent for this comes from structural studies of family
X pol A (38) showing that specific amino acid side chains
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interact with an extrahelical template strand base just
upstream of the active site, in a manner suggested to
preferentially contribute to single base deletions in two-
base runs.

The rate and specificity of indel errors are also relevant
to how misalignments may form during synthesis by pol 0.
As mentioned above, one perhaps unlikely possibility is
that the misalignment arises within the polymerase active
site, with the unpaired intermediate possibly stabilized by
pairing of a correct incoming dNTP with the next template
base (39,40). Another possibility is that misalignment
initiates with dNTP misinsertion, followed by primer
relocation to generate a misaligned intermediate with a
correctly paired primer terminus (33). Although these
possibilities cannot be excluded, they seem less likely
because pol 0 indel error rates in certain sequence contexts
(Figure 1) are extraordinarily high (e.g. 2-7%, Figure 3B)
and often exceed base substitution error rates (Table 3).
A third possibility, suggested by earlier studies of other
polymerases (33), is that DNA misalignments arise as the
polymerase dissociates and/or re-associates with the
primer template. In order to test this possibility we
examined the processivity of DNA synthesis by pol 0 as it
copied the lacZ template nucleotides that were hot spots
for single base additions at a CCCCC run (position 132—
136) and a TTT run (position 137-139). Site-specific
termination probabilities at these two hot spots are
between 1% and 4% (Figure 3B), similar to the respective
2% and 7% error rates for additions within these runs
(Figure 3B). This implies that essentially all cycles of
dissociation—reassociation would need to result in mis-
alignments that were ultimately extended, in order to
account for the extraordinary pol 0 addition rates. This
could be so, but would be unprecedented, because
previous studies of other polymerases showed that at
least 100 dissociation—reassociation cycles were observed
for each addition error generated (41). Thus there may
be additional opportunities for misalignments to form
even during processive synthesis by pol 6. One possibility
is suggested by the fact that forming an addition
intermediate within a homonucleotide run requires
(on average) disruption of one more correct base pair
than does formation of a deletion intermediate (42).
This energetic difference is consistent with the observation
that addition rates of numerous DNA polymerases are
consistently lower than are deletion rates [Figure 4 and
(33)]. Here, we observe that pol 0 is an exception; it is
the only polymerase that generates additions at a higher
average rate than deletions. One possible explanation is
that during synthesis by pol 0, fraying at the primer
terminus may involve multiple bases, such that sub-
sequent re-annealing could provide a similar opportunity
for forming either an addition or a deletion intermediate.
Fraying of multiple base pairs might occur during
movement of the primer strand between two separate
DNA binding sites. This was previously proposed to
account for the difference in indel error rates between
the large Klenow fragment of E. coli DNA polymerase I,
which can partition the primer strand between the
polymerase active site and the exonuclease active site,
and a derivative containing the polymerase domain alone,
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i.e. one completely lacking the 3’ exonuclease domain (20).
The idea is nicely articulated in the melting-misalignment
model of Maki and colleagues (43,44), who proposed that
the tendency of E. coli DNA polymerase 111 to generate
single base additions (albeit at much lower rates than seen
here), results from misalignments that arise during
partitioning of the primer strand between the polymerase
and proofreading exonuclease active sites. Unlike E. coli
pol 111, recombinant pol 6 lacks a detectable proofreading
exonuclease activity (6), but the enzyme purified from
human HelLa cells has been reported to have an associated
3" exonuclease (9). It is also possible that the pol 0 catalytic
subunit itself could have a second DNA-binding site
encoded by residues in its large open reading frame, which
contains helicase motifs that are unique to pol 0 in
comparison to other polymerases, including its closest but
more accurate homolog, pol v.

Base substitution errors

The observation that the average base substitution error
rate of human pol 0 is high (Figure 4C) is consistent
with low nucleotide selectivity (7) and promiscuoity in
extending mismatched primer termini (8). Pol 6’s closest
homolog, pol v, also generates base substitutions at
unusually high rates in polymerization reactions con-
ducted at pH 8.8 (23), a condition where the enzyme
has maximum activity (24). Here we compared the fidelity
of the two enzymes in reaction mixtures at pH 7.5, and
pol 6 was about 10-fold less accurate than pol v
(240 x 107 versus 24 x 107>, Figure 4). This difference is
seen despite the strong conservation of key residues in and
around the putative nascent base pair-binding pockets of
pol 0 and pol v (see Figure 7 in Supplementary Data
in ref. 45). Pol 0’s remarkable infidelity among family
A members is further highlighted by comparison to the
exonuclease-deficient derivative of Klenow fragment
polymerase, which is fully 100-fold more accurate
(Figure 4, substitution error rate of 2.5x 107°). It is
particularly interesting that pol 0 is almost as inaccurate
as pol x (Figure 4), a family Y polymerase whose members
are characterized by open, solvent accessible active sites.
Pol 0 generates many of the 12 possible base-base mis-
matches at high rates (Table 3), including three pyrimi-
dine—pyrimidine mismatches that may be solvated (46).
These facts imply that the active site of pol 6 may be more
solvent accessible than is typical of accurate family
A polymerases known to have closed, relatively solvent
inaccessible active sites.

Biological implications

The low fidelity of pol 8 when copying undamaged DNA
is generally consistent with its proposed role in lesion
bypass [e.g. of AP sites, (7)], similar to several other DNA
polymerases (e.g. pol n) that are implicated in bypass of
lesions that perturb DNA helix geometry, which also syn-
thesize undamaged DNA with low fidelity. The high-base
substitution error rates of human pol 0 and its error
specificity in comparison to the SHM specificity at A-T
base pairs in humans and mice lacking functional pol n
(Table 4) are also consistent with previous reports

implicating pol 6 in SHM of immunoglobulin genes
(13,14,47).

As is typical of family A members, human pol 0 is more
processive than are certain other polymerases (pol n, pol 1,
some bacterial pols) implicated in TLS. In fact, at all
template positions examined here (Figure 3B), pol 0 is
slightly more processive than Klenow fragment polymer-
ase, and can even generate chains exceeding 71 nt in length
during a single cycle of processive synthesis. The
combination of low fidelity and moderate processivity by
human pol 6 is shared by both pol « (48) and by pol {
(49,50). The latter two enzymes have been implicated in
TLS, reputedly as promiscuous mismatch extenders (51).
Perhaps relevant to their moderate processivity, pol k and
pol £ are implicated in DNA transactions that may require
filling of gaps of about 30nt. For example, pol x has
recently been implicated in nucleotide excision repair of
UV photoproducts (52) and pol { is reported to have a role
in gap filling associated with repair of interstrand cross-
links (53,54). In like manner, the processivity of pol 0
would make it well suited for specialized transactions
requiring more extensive DNA synthesis, ¢.g. SHM down-
stream of the initiating deamination event, during a sub-
pathway of base excision repair (55) or nucleotide excision
repair, or perhaps during reactions involving the helicase
motifs of pol 0. The very low fidelity but moderate
processivity of pol 6 may also be relevant to the recovery
of lacZ mutants containing multiple single base changes
within a few nucleotides of each other (Table 2). Such
‘complex’ events are also generated by pol  (49) which,
as mentioned earlier, shares with pol 6 the properties of
processive but inaccurate synthesis.

Although the low fidelity and moderate processivity of
human pol 0 is potentially beneficial for certain specialized
DNA transactions, this combination could be adversely
mutagenic if pol 0 synthesized DNA at the wrong time or
place. For example, one study reports that expression of
pol 8 mRNA is upregulated in human cancers, and that
patients expressing high levels of pol 6 have poorer clinical
prognoses than do patients expressing lower levels of pol 6
(12). Given its low fidelity and moderate processivity, pol 0
activity may be tightly regulated, which could occur at any
of several levels. For example, pol 6 is most highly
expressed in the germinal centers of splenic B cells where
antibody maturation takes place (6,11,12). By analogy to
an elegant recent study demonstrating that UmuD and
RecA proteins modulate the mutagenic potential and the
fidelity of the bacterial family Y DNA polymerase DinB
(56), accessory proteins may exist that interact with and
regulate pol 0, perhaps decreasing its potential for indel
mutagenesis.
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