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Medical records-based chronic kidney disease phenotype for
clinical care and “big data” observational and genetic studies
Ning Shang 1, Atlas Khan 2, Fernanda Polubriaginof1, Francesca Zanoni2, Karla Mehl2, David Fasel 1, Paul E. Drawz3,
Robert J. Carrol 4, Joshua C. Denny4,5, Matthew A. Hathcock6, Adelaide M. Arruda-Olson7, Peggy L. Peissig8, Richard A. Dart8,
Murray H. Brilliant8, Eric B. Larson9, David S. Carrell9, Sarah Pendergrass10, Shefali Setia Verma11, Marylyn D. Ritchie 11,
Barbara Benoit12, Vivian S. Gainer12, Elizabeth W. Karlson13, Adam S. Gordon14, Gail P. Jarvik15, Ian B. Stanaway 15,
David R. Crosslin15,16, Sumit Mohan2, Iuliana Ionita-Laza17, Nicholas P. Tatonetti1, Ali G. Gharavi2, George Hripcsak1,
Chunhua Weng1 and Krzysztof Kiryluk 2✉

Chronic Kidney Disease (CKD) represents a slowly progressive disorder that is typically silent until late stages, but early intervention
can significantly delay its progression. We designed a portable and scalable electronic CKD phenotype to facilitate early disease
recognition and empower large-scale observational and genetic studies of kidney traits. The algorithm uses a combination of rule-
based and machine-learning methods to automatically place patients on the staging grid of albuminuria by glomerular filtration
rate (“A-by-G” grid). We manually validated the algorithm by 451 chart reviews across three medical systems, demonstrating overall
positive predictive value of 95% for CKD cases and 97% for healthy controls. Independent case-control validation using 2350
patient records demonstrated diagnostic specificity of 97% and sensitivity of 87%. Application of the phenotype to 1.3 million
patients demonstrated that over 80% of CKD cases are undetected using ICD codes alone. We also demonstrated several large-scale
applications of the phenotype, including identifying stage-specific kidney disease comorbidities, in silico estimation of kidney trait
heritability in thousands of pedigrees reconstructed from medical records, and biobank-based multicenter genome-wide and
phenome-wide association studies.
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INTRODUCTION
Chronic Kidney Disease (CKD) is associated with a high burden of
comorbidities and increased mortality1,2. Due to the increasing
prevalence, and high costs of renal replacement therapies, CKD
already represents one of the most expensive health problems in
developed countries3. In the United States, an estimated 13.6% of
adults have CKD1 and more than 726,331 Americans have end-
stage kidney disease (ESKD), being dialysis-dependent or having
received a kidney transplant4. ESKD prevalence is about 3.7 times
greater in African Americans, 1.4 times greater in Native
Americans, and 1.5 times greater in Asian Americans than in
Whites/Europeans. Inherited factors, such as APOL1 polymorph-
isms5,6 and other genetic factors7,8, are likely contributing to these
disparities.
CKD is defined as an abnormality of kidney structure or function

present for longer than 90 days and can occur due to many
heterogeneous disorders affecting the kidney9,10. Unlike most
other disease states, the onset of kidney disease is often
asymptomatic, and the diagnosis is based solely on blood and/
or urine tests. As a result, early CKD is frequently under-recognized
and under-treated11. While several measures, such as dietary
interventions, hyperlipidemia management with statins12, blood

pressure control13, glycemic control14, and use of angiotensin
system blockade15 or sodium-glucose cotransporter-2 inhibi-
tors16,17 can slow down the progression of early disease or reduce
complications, advanced CKD is irreversible and associated with
accelerated cardiovascular disease and increased mortality18.
Thus, early detection and improved awareness of CKD is of
paramount importance.
Electronic health records (EHR) provide a rich source of clinical

data that can be used reliably to establish a CKD diagnosis. With
increased reliance on the EHR for pragmatic implementation of
clinical and genetic studies, there is an unmet need for a
standardized portable electronic definition of CKD and its severity.
To address this need, we designed a comprehensive electronic
CKD phenotype that combines expert domain knowledge and the
consensus definitions of the National Kidney Foundation’s (NKF)
Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines19

and the Kidney Disease: Improving Global Outcomes (KDIGO)
Clinical Practice Guideline for the Evaluation and Management of
CKD9,10. We designed our algorithm to detect CKD in its earliest
stages by calculating two orthogonal measures of CKD severity:
albuminuria (used for A-staging of CKD) and estimated glomerular
filtration rate (eGFR, used for G-staging of CKD).
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Our electronic phenotyping approach provides pragmatic
means to enhance broad and proactive CKD screening, risk
stratification, and timely initiation of treatment to reduce the
global burden of kidney disease, as recommended by the 2019
consensus statement of the KDIGO Conference on “Early
Identification and Intervention in CKD”20. To assure transferability
across different EHR systems, our algorithm was developed using
training and validation datasets across several institutions,
including Columbia University (CU), University of Minnesota
(UMN), Vanderbilt University (VU), and Mayo Clinic (MC). To show
scalability and portability, the algorithm was applied to the
Columbia Clinical Data Warehouse (CDW) of over 1.3 million
patients, as well as across the entire Electronic Medical Records
and Genomics-III (eMERGE-III) network of eight centers with
genetic and EHR data for 105,108 individuals21.
We demonstrated several powerful applications of the algo-

rithm. First, we performed large scale observational analyses of
common comorbidities across the A-by-G grid to define indepen-
dent associations for A and G-stage, including several comorbidity
patterns that have not been previously recognized. Second, we
applied our recently published Relationship Inference From The
Electronic Health Record (RIFTEHR) method to computationally
infer familial relationships from EHR data and estimate pedigree-
based observational heritability of kidney disease22. Using
thousands of reconstructed pedigrees of diverse ancestries, we
demonstrated significant heritability of eGFR, albuminuria, and
CKD at a scale previously unobtainable for family-based studies.
Third, we performed genome-wide association studies for CKD
across the eMERGE network, demonstrating that our algorithmic
phenotype definition recovers known genome-wide significant
risk loci. Finally, we analyzed 19,853 distinct ICD codes mapped to
1804 phecodes in all 105,108 eMERGE participants to comprehen-
sively define pleiotropic associations of the top CKD risk loci using
phenome-wide association approach23.
In summary, we created an accurate, portable, and scalable

electronic phenotype for CKD diagnosis and staging. We
performed extensive validations of the algorithm and demon-
strated its broad clinical and research applications, from enabling
automated detection of patients that would benefit from
renoprotective therapies, to empowering “big data” genetic and
observational studies of CKD at a scale unobtainable using
traditional phenotyping methods.

RESULTS
Design and performance of electronic CKD phenotype
We describe the details of algorithm development and validation
in the Methods section. Briefly, we combined the NKF KDOQI
guidelines19, the KDIGO Clinical Practice Guideline for the
Evaluation and Management of CKD9,10, and domain expert
knowledge in nephrology to define CKD cases and controls using
laboratory measurements in combination with diagnosis and
procedure codes (Fig. 1). Any patient with relevant EHR data is
staged based on eGFR (G-stage) and albuminuria (A-stage). To
accomplish G-staging, we designed a rule-based “G-Stage
Classifier” that uses thresholding based on the most recent
qualifying eGFR. We performed A-staging using a set of “A-Stage
Classifiers”, which we based on the most recent urine protein or
albumin tests. We employed supervised machine-learning
approaches to harmonize A-stage classification across all com-
monly ordered urine tests.
We provide an overall flowchart summary of the CKD

phenotype in Fig. 1a. After using diagnostic and procedure codes
to first identify and categorize patients with ESRD on dialysis or
those with a kidney transplant, the algorithm uses rule-based
filters to eliminate lab values measured concurrently with acute
conditions known to impact the steady state of creatinine

clearance. We then use the most recent serum Cr value to
estimate GFR. The algorithm accounts for disease chronicity by
requiring either a pre-existing billing code consistent with a CKD
diagnosis or another qualifying eGFR or proteinuria value at least
90 days before to the value used for staging. The G-stage and A-
stage classifiers are then applied to accomplish the staging.
The G-stage classifier (Fig. 1b) requires several rule-based pre-

filtering steps followed by a simple threshold-based G-stage
classification using the latest qualifying eGFR. The A-stage
classification problem (Fig. 1c) needed a machine-learning
solution to harmonize classifications between different proteinuria
measurements. Using several real-life training datasets from three
major US medical centers, we developed an exhaustive set of
albuminuria classifiers that could accommodate all commonly
performed clinical urine protein quantification tests (see Methods
and Supplementary Tables 1–5). We then used cross-validation
studies to create a “preference ranking” of proteinuria tests based
their relative classification performance (Table 1). From high to
low, the preference rankings included UACR or 24-h urine
collection for albumin (direct measurement, “gold standard”),
UPCR or 24-h urine collection for protein (80–92% accuracy), to
DSP with urine specific gravity (76–95% accuracy). We incorpo-
rated the preference order into the algorithm’s workflow.
To further test our A-stage prediction, we compared the

performance of our classifiers to the alternative methods
developed more recently by the CKD Prognosis Consortium24

(Supplementary Table 6). Based on an independent testing
dataset, we demonstrated that the performance of the two
methods was generally comparable. While the UPCR-based
classifier developed by the CKD Prognosis Consortium performed
slightly better compared to the one developed in our study
(overall accuracy of 83% vs. 77%), our urinalysis-based classifiers
outperformed the ones developed by the CKD Prognosis
Consortium (overall accuracy of 71% vs. 65–67%, respectively).
Notably, the urinalysis-based equations developed by the CKD
Prognosis Consortium do not account for urine specific gravity, or
scale differences in protein dipstick tests, potentially explaining
poorer performance compared to our model.
To validate the performance of our CKD detection and staging

algorithm, we determined the overall and stage-specific positive
predictive values (PPV) of the algorithmic diagnoses by perform-
ing 451 blinded manual chart reviews of algorithm-derived
diagnostic labels across three major US medical centers (Table 2).
The overall diagnostic PPV was 95% (range 83–99%) for CKD cases
and 97% (range 95–100%) for healthy controls.
To perform additional testing of the algorithm and to enable

estimation of the overall diagnostic sensitivity and specificity, we
constructed a large case-control dataset of 2350 patients. We
defined 1136 cases as patients seen by a nephrologist in the
Columbia CKD clinic, and 1214 controls as healthy women without
a known CKD diagnosis undergoing a prenatal visit at Columbia
University during the same time interval as the cases. In this
dataset, the sensitivity, specificity, PPV and NPV of the algorithm
were 87%, 97%, 97%, and 89%, respectively (Supplementary Table
7). Notably, the algorithm identified no cases of CKD stage 3 or
greater among patients seen in the prenatal clinic and did not call
a single non-CKD control among the CKD clinic patients. While
high specificity of 97% reflects the fact that our algorithm uses a
stringent set of diagnostic criteria, lower sensitivity of 87% is
predominantly due to a small fraction of cases with insufficient
longitudinal data to meet the chronicity criteria.
We provide an open-source implementation of a parameterized

and modularized version of this algorithm through the publicly
accessible Phenotype Knowledgebase (https://phekb.org/phenotype/
chronic-kidney-disease)25. The PheKB documentation also includes a
detailed list of all ICD-9-CM, ICD-10-CM, SNOMED, lab LOINC, and
procedure CPT codes used by the algorithm.
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Table 1. Overall performance of the A-stage classifiers used in the algorithm.

Test UPCR-based
A-Stage Classifier

DSP-based (Scale 1)
A-Stage Classifier

DSP-based (Scale 2)
A-Stage Classifier

n= 19,099 paired measurements n= 12,185 paired measurements n= 43,486 paired measurements

Squared error 0.219 (0.213, 0.224) 0.256 (0.251, 0.261) 0.235 (0.23, 0.241)

Accuracy (95% CI)

A1 86.7% (86.4%, 87.0%) 80.9% (80.5%, 81.3%) 82.2% (81.8%, 82.5%)

A2 80.0% (79.7%, 80.3%) 76.0% (75.6%, 76.4%) 78.5% (78.1%, 79.0%)

A3 92.3% (92.0%, 92.6%) 94.3% (94.1%, 94.4%) 95.3% (95.1%, 95.5%)

Sensitivity (95% CI)

A1 86.2% (85.2%, 87.1%) 90.9% (89.9%, 91.9%) 93.2% (93.0%, 93.4%)

A2 63.5% (62.4%, 64.5%) 41.4% (40.1%, 42.8%) 35.7% (34.0%, 37.4%)

A3 86.7% (85.9%, 87.5%) 83.3% (82.1%, 84.4%) 81.0% (80.0%, 82.0%)

Specificity (95% CI)

A1 87.1% (86.4%, 87.7%) 69.6% (68.6%, 70.5%) 62.1% (61.1%, 63.1%)

A2 87.1% (86.6%, 87.5%) 89.5% (88.7%, 90.2%) 92.0% (91.9%, 92.2%)

A3 94.8% (94.5%, 95.1%) 96.8% (96.5%, 97.1%) 97.1% (97.0%, 97.3%)

The 95% confidence intervals were calculated based on 10-fold cross-validation; DSP Scale 1: reported as Negative, Trace, 1+ , 2+ , 3+ , 4+ ; DSP Scale 2:
reported as Negative, Trace, 10, 30, 100, 300, or ≥ 300; only the performance of the final pooled classifiers across Columbia University, University of Minnesota,
and Vanderbilt University are summarized, for detailed breakdown of site-specific performance see Tables S1–S5, and for additional validation studies and
comparisons with recently published methods by Sumida et al.24, see Table S6.

Fig. 1 Electronic CKD diagnosis and staging algorithm. a Flowchart of the National Kidney Foundation (NKF) criteria-based algorithm
composed of three parts: data pre-filtering, G-staging, and A-staging b G-Stage Classifier for staging of CKD based on estimated glomerular
filtration rate (eGFR), and c A-Stage Classifiers for staging of CKD based on albuminuria. UACR Urine Albumin-to-Creatinine Ratio, UPCR Urine
Protein-to-Creatinine Ratio, A24 24-h urine collection for albumin, P24 24-h urine collection for protein, UA Urinalysis, SG Specific Gravity.
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Medical records-based observational study of CKD
comorbidities
We applied our algorithm to 1,365,098 CUIMC patients with at
least one available serum Cr test in their EHR. The algorithm
successfully staged 672,858 individuals using the NKF criteria,
identifying 13,930 CKD stage I patients, 205,887 CKD stages II–V
(non-dialysis) patients, and 19,515 ESRD patients on dialysis or
after kidney transplant. Notably, only 45,405 (19%) of algorithm-
diagnosed CKD cases had a diagnostic or procedure code
compatible with CKD, demonstrating superior sensitivity of our
phenotyping approach. The counts by the NKF stage and KDIGO
A-by-G grid are provided in Supplementary Table 8.
Next, we calculated the prevalence of comorbidities for each NKF

stage (Supplementary Table 9), as well as for each cell on the KDIGO
A-by-G grid (Fig. 2). Consistent with the existing literature, we
detected increasing trends in age and sex-adjusted prevalence for
multiple comorbidities associated with each NKF stage (Supplemen-
tary Table 9). Our algorithm’s unique A-by-G staging feature allowed
us to test for independent effects of A and G stage on the overall
burden of comorbid conditions. We first assessed the average
number of unique ICD codes per patient. While non-CKD (A1G1)
individuals carry an average of 17 unique codes (Fig. 2, top left), this
number increased independently with a higher A and G stage. For
example, non-albuminuric patients with CKD stage 5 (A1G5) carried
an average of 40 unique ICD codes. In comparison, severely
albuminuric patients with preserved renal function (A3G1) had an
average count of 33 codes. Both A and G stages were independently
predictive of the ICD code burden when tested using Poisson
regression after controlling for age and sex.
Similarly, we tested for significant patterns in age and sex-

adjusted comorbidities defined by the AHRQ Elixhauser Comor-
bidity Index26,27. We observed that a higher A-stage was
associated with increased prevalence of the following comorbid
conditions, independently of G-stage: diabetes, hypertension,
obesity, congestive heart failure, peripheral vascular disease, liver
disease, deficiency anemias, weight loss, rheumatologic diseases,
lymphomas, solid tumors, metastatic tumors, HIV/AIDS, depres-
sion, and drug abuse (Fig. 2).
Many of these conditions represent either a risk factor for, or a

consequence of a kidney disease. For example, a strong association
of HIV/AIDS with higher A-stage may reflect greater risk of a
glomerular disease, such as HIV-associated nephropathy, or
exposure to potentially tubulo-toxic protease inhibitors. Similarly,
strong associations of solid and hematologic malignancies with

A-stage independently of G-stage may represent glomerular
complications of malignancies or chemotherapy-related side
effects.
We also observed several new or unexpected trends that

exceeded our Bonferroni-corrected significance threshold. For
example, valvular diseases were positively correlated with G-stage
(P < 1 × 10−16) as previously recognized28 but were also negatively
correlated with A-stage (P= 4.2 × 10−5) after accounting for G-
stage, highlighting a new protective association that should be
studied. Conversely, alcohol abuse was positively correlated with
A-stage (P < 1 × 10−16) but appeared progressively less common
with increasing G-stage (P= 9.2 × 10−5).
We also noted that several psychiatric comorbidities, including

depression, psychoses, and substance abuse (alcohol and drugs),
were considerably more prevalent among patients with mild CKD
(G2) than patients with normal renal function in age and sex-
independent manner. The relationship between CKD and neu-
ropsychiatric diseases has previously been observed in advanced
CKD29, but a higher risk at early stages has not been previously
reported. In summary, we provided a comprehensive landscape of
CKD comorbidities and demonstrated the utility of EHR in
uncovering new patterns and subpopulations that can be used
for targeted interventions.

Medical records-based observational heritability of CKD
Using emergency contact information, we have previously
inferred 3,244,380 unique familial relationships that were used
to reconstruct 223,307 pedigrees among patients with EHR
records at CUIMC22. We intersected these data with our CKD
algorithm’s output to estimate pedigree-based observational
heritability (ho

2) of renal function. We note that ho
2 is an estimate

of the narrow-sense heritability based on observational data.
Because observational data are subject to confounding by
physician and patient behaviors that may affect the probability
that a particular trait is ascertained, we used repeated subsam-
pling with SOLARStrap to produce heritability estimates that are
more robust to this bias, as previously described22. We also control
for age, sex, race/ethnicity, and household effects (see Methods).
Our analysis strongly supported significant genetic contribu-

tions to renal function (Fig. 3a). Based on 2623 pedigrees with
adequate phenotype data, we estimated the overall observational
heritability of eGFR at 0.214 (95% CI: 0.142–0.286, P= 4.3 × 10−5).
After stratifying by self-reported ancestry, the ho

2 was 0.244 (95%

Table 2. Manual validation of the CKD diagnosis and staging algorithm.

Group Columbia University Vanderbilt University Mayo Clinic Combined

N Reviewed PPV N Reviewed PPV N Reviewed PPV N Reviewed PPV

Controls 62 0.968 20 0.950 20 1.000 102 0.971

Cases 189 0.995 80 0.825 80 0.950 349 0.946

CKD Stage 1 20 0.900 10 0.600 10 1.000 40 0.850

CKD Stage 2 20 1.000 10 1.000 10 1.000 40 1.000

CKD Stage 3a 20 1.000 10 1.000 10 1.000 40 1.000

CKD Stage 3b 22 1.000 10 0.800 10 1.000 42 0.952

CKD Stage 4 23 0.913 10 1.000 10 1.000 43 0.953

CKD Stage 5 20 0.750 10 0.200 10 1.000 40 0.675

ESRD after transplant 24 0.792 10 1.000 10 0.800 44 0.818

ESRD on dialysis 40 0.700 10 1.000 10 0.900 60 0.783

The validations were performed by selecting 451 algorithm-defined cases and controls across all stages for blinded chart reviews by domain experts across the
three independent validation sites: Columbia University, Vanderbilt University, and Mayo Clinic. We derived positive predictive values (PPVs) for controls and
CKD cases combined and by disease stage. The overall diagnostic PPV was 95% (range 83–99%) for CKD cases and 97% (range 95–100%) for healthy controls.
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CI: 0.167–0.377, P= 0.013) for African Americans and 0.197 (95%
CI: 0.131–0.321, P= 0.0071) for White/Europeans. We also
estimated ho

2 for eGFR by restricting the pedigrees to those with
at least one member with CKD Stage 3 (moderate CKD or greater)
and those with at least one member with CKD Stage 4 (advanced
CKD or greater). With this ascertainment, the eGFR ho

2 increased
to 0.237 (95% CI: 0.189–0.377, P= 2.0 × 10−2) for moderate CKD,
and 0.455 (95% CI: 0.369–0.656, P= 9.6 × 10−3) for advanced CKD.
Using the liability threshold model30, we next analyzed a

dichotomous CKD phenotype (any stage) as defined by our
algorithm. In the analysis of 3460 pedigrees, we confirmed

significant CKD ho
2 at 0.290 (95% CI 0.211–0.410, P= 4.2 × 10−6).

Additional ho
2 estimates stratified by stage and race/ethnicity are

provided in Table 3, demonstrating that the heritability was
consistently higher for African Americans when compared to other
ancestral groups and increases with kidney disease severity.
The algorithmic A-staging also provided us with an opportunity

to estimate ho
2 of albuminuria (Fig. 3b). Based on the analysis of

1122 pedigrees, the ho
2 of any albuminuria (A2 or A3) was

estimated at 0.236 (95% CI: 0.180–0.366, P= 0.018). For a subset
with heavy albuminuria (A3), the ho

2 was 0.490 (95% CI:
0.364–0.864, P= 0.015). Because of a smaller number of A-

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

G1 17.3 30.3 32.8 G1 3.3 11.0 12.4 G1 6.2 15.9 18.4 G1 3.0 6.3 7.4

G2 30.0 32.4 36.1 G2 12.8 18.3 22.6 G2 34.9 39.1 43.0 G2 5.4 5.5 6.8

G3a 33.7 36.1 36.8 G3a 18.1 24.4 29.7 G3a 45.8 47.7 48.2 G3a 5.1 5.2 6.1

G3b 37.8 39.3 39.9 G3b 21.9 25.8 31.1 G3b 49.7 48.3 46.5 G3b 5.7 5.5 6.5

G4 40.2 38.1 38.9 G4 22.6 24.0 32.7 G4 44.6 43.9 44.6 G4 5.2 3.5 6.3

G5 40.0 30.2 27.6 G5 18.5 18.2 22.4 G5 38.6 33.6 28.0 G5 3.4 2.6 3.1

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

G1 0.5 2.4 3.7 G1 0.7 1.3 1.3 G1 0.4 1.1 1.4 G1 0.9 2.3 1.9

G2 4.3 7.8 9.6 G2 3.4 4.6 4.3 G2 2.2 3.5 5.0 G2 2.1 2.7 2.8

G3a 10.1 13.9 14.5 G3a 6.4 7.1 5.7 G3a 4.2 6.4 6.8 G3a 2.4 2.9 2.6

G3b 19.8 20.1 18.8 G3b 10.1 8.0 5.1 G3b 6.7 7.6 8.7 G3b 2.9 3.0 3.2

G4 29.7 26.3 21.2 G4 11.2 8.9 5.5 G4 7.7 8.5 9.4 G4 4.5 3.0 3.1

G5 32.6 23.0 16.0 G5 10.0 5.3 3.2 G5 6.0 6.1 7.0 G5 9.4 4.2 2.6

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

G1 2.1 6.2 7.6 G1 0.5 2.6 3.0 G1 0.9 2.0 2.3 G1 0.8 2.9 3.9

G2 4.9 7.3 7.3 G2 1.2 2.3 2.9 G2 4.6 4.7 4.0 G2 1.7 2.0 2.1

G3a 7.0 9.5 8.8 G3a 1.7 2.7 3.2 G3a 6.2 5.2 3.9 G3a 2.0 2.0 2.2

G3b 10.6 13.4 12.2 G3b 2.2 2.7 2.6 G3b 7.3 6.4 5.9 G3b 2.0 2.0 2.3

G4 15.8 16.2 16.9 G4 3.0 2.8 2.5 G4 6.6 5.7 4.6 G4 2.6 1.7 2.4

G5 15.4 15.3 13.6 G5 4.7 2.2 1.6 G5 6.3 3.7 3.0 G5 2.2 0.7 0.9
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Fig. 2 Comorbidity heatmaps for 239,332 CUIMC patients algorithmically placed on the A-by-G grid. The prevalence of a comorbidity
within each cell is provided, with the shaded color scale varying from red (highest prevalence) to green (lowest prevalence). The arrows
correspond to the direction of effect and P values the statistical tests of comorbidity gradients across the grid. The analysis excludes
individuals with missing urine tests and those with ESRD on dialysis or after transplant. Models based on logistic regression was used for
binary traits and Poisson regression for ICD counts. All models were adjusted for age and sex and P value <6.25 × 10−4 is considered as
significant after Bonferroni correction. NS not significant.
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staged pedigrees, we could not further sub-stratify this analysis by
ancestry.
Taken together, these analyses provide the largest and most

comprehensive pedigree-based analysis of heritability for kidney
function, albuminuria, and CKD presently. They are based on a
multiethnic urban cohort of the size that was previously
unobtainable for family-based analyses. The results are generally
consistent with prior estimates based on much smaller pedigree-
based studies8,31–35, but we also observed higher heritability of
kidney disease in African Americans, potentially contributing to
the known racial disparities in CKD risk.

Genome-wide and phenome-wide association studies
All sites participating in eMERGE-III network implemented our CKD
phenotype, enabling genome-wide association studies (GWAS)
stratified by ancestry. To define GWAS cases, we selected CKD
Stage 3 or greater (G3-5 and ESRD) based on the observation that
moderate CKD had higher ho

2 compared to milder disease. From
these, we derived a cohort of 25,377 European participants,
consisting of 7536 CKD cases and 17,841 controls matched by
platform and genetic ancestry. We performed GWAS under
additive genotype coding with adjustment for age, sex, site/
platform, and six significant principal components of ancestry
(Fig. 4a). We achieved adequate control of genomic inflation
(lambda= 1.04). Our analysis detected a genome-wide significant
signal at the UMOD locus (rs28544423, OR= 1.16, 95% CI:
1.10–1.22, P= 1.2 × 10−8), a known GWAS risk locus in Europeans
(Fig. 4c).
We performed a similar analysis among African ancestry, with

2731 algorithmically defined participants (702 cases and 2029
controls). GWAS was performed under an additive model with
adjustment for age, sex, site/platform, and three significant
principal components of ancestry, with adequate control of
genomic inflation (lambda= 1.03). We detected a genome-wide
significant signal at the known APOL1 locus (rs2016708, OR= 1.64,
95% CI: 1.41–1.92, P= 2.9 × 10−10) (Fig. 4b, d). The top SNP was in
linkage disequilibrium with two known APOL1 kidney disease risk
variants (G1 r2= 0.47 and G2 r2= 0.12 based on the African
populations of the 1000 Genomes Project). Neither G1 nor G2
variants were imputed at high confidence in the eMERGE dataset.
We next performed phenome-wide association studies (Phe-

WAS) for both UMOD and APOL1 loci. The PheWAS for UMOD was
performed in all 78,638 available European-ancestry eMERGE
participants (Fig. 4e) and clearly recovered the association with
the phecode “CKD stage III” (OR= 1.14, P= 3.1 × 10−7). Moreover,
we have recovered the previously reported protective associations
of the CKD risk variant with nephrolithiasis, including “calculus of
kidney” (OR= 0.86, P= 4.7 × 10−7), “urinary calculus” (OR= 0.88,
P= 2.5 × 10−6), as well as a suggestive protective association for
“acute cystitis” (OR= 0.81, P= 1.3 × 10−4) (Supplementary Data 1).
The mechanisms underlying these protective effects are currently
not known.
The PheWAS for APOL1 risk variants was performed in 16,976

individuals of genetically-defined African ancestry and uncovered a

broad spectrum of effects with relatively large effect sizes despite
simple additive coding used in PheWAS. These associations
included kidney transplantation (OR= 2.04, P= 4.1 × 10−23), end-
stage renal disease (OR= 1.60, P= 3.4 × 10−18), dialysis (OR= 1.70,
P= 6.2 × 10−17), glomerulonephritis (OR= 2.16, P= 6.5 × 10−14), as
well as numerous complications of kidney disease, including
anemia (OR= 1.59, P= 9.8 × 10−14), renal osteodystrophy (OR=
1.66, P= 6.9 × 10−8) and transplant comorbidities (OR= 1.83, P=
1.5 × 10−14, Supplementary Data 2).
Lastly, we performed genome-wide estimates of SNP-based

heritability for renal function and CKD based on our GWAS, as well
as recent studies reported by the CKDGen Consortium8,36 (Table 4).
Overall, the SNP-based heritability of CKD was consistently low,
ranging from 0.4% to 1.5% in Europeans depending on the GWAS
study. The estimates were higher for eGFR, ranging from 5.6% to
8.1% in Europeans. The studies of African Americans were of
insufficient sample size to derive reliable estimates of SNP-based
heritability, and there are no large-scale GWAS available for CKD in
other ancestral groups.

DISCUSSION
The eMERGE consortium has pioneered standardized electronic
phenotyping algorithms based on EHR data37. Such electronic
phenotypes can be used to efficiently identify and recruit patients
into cohort studies and pragmatic clinical trials38,39 and for large-
scale population health research or precision medicine studies40–43.
Additional uses include determining clinical outcomes44, identify-
ing novel genotype-phenotype associations43, and implementing
clinical decision support systems within EHRs38,45.
CKD is generally underdiagnosed and represents a growing

public health problem worldwide20. Because its diagnosis relies
almost entirely on blood and urine tests, CKD is ideal for
developing a computable EHR-based definition. Our proposed
modular CKD algorithm’s unique feature is that it performs an
automated diagnosis and staging across the entire KDIGO grid,
allowing for risk stratification at a higher resolution than the
previously proposed simpler phenotyping methods46,47. More-
over, in our analyses, we demonstrate that our electronic
phenotype is accurate, portable, and scalable to large EHR
datasets involving over a million of individuals. In addition to
extensive manual validations, we provide evidence for genetic
validity by in silico replication of known genetic associations
for CKD.
Although conceptually simple, our algorithm overcomes several

important practical challenges stemming from real-life limitations
of EHR data. Any CKD diagnostic algorithm based on serum Cr
measurements needs to overcome potential misclassification due
to physiologic (e.g. volume depletion) or disease-related (e.g.
acute kidney injury) fluctuations of single time point serum Cr
values. Our algorithm includes a judicious criterion for chronicity,
requiring CKD duration for over 90 days as documented by repeat
blood or urine tests, or documentation by a prior diagnostic code.
We also carefully define qualifying eGFR as the one that does not
co-occur with acute kidney injury, volume depletion, or critical
illness.
One of the greatest obstacles for developing our algorithm was

the fact that the A-staging requires accurate estimation of daily
urine albumin excretion. Estimating albuminuria using EHR data is
not straightforward, mainly because an array of urine protein tests
is used in clinical practice. Current guidelines recommend spot
UACR as an optimal method to quantify albuminuria. However,
recent studies using EHR have shown that even patients at high
risk for CKD frequently receive only DSP tests48,49. We used a
supervised machine-learning approach to design accurate classi-
fiers translating the most commonly used urinalysis tests to the
KDIGO-defined A-stages. We also demonstrated that our
urinalysis-based A-stage classifier outperforms the alternative

Observational Heritability (95%CI)

Any CKD

Moderate CKD

Severe CKD

ba

Observational Heritability (95%CI)

Any
Albuminuria

Severe
Albuminuria

Fig. 3 EHR-based observational heritability (ho
2) of renal function

and albuminuria. a ho
2 of eGFR (quantitative trait) in families with

any CKD, moderate CKD (G-stage 3 or greater) and advanced CKD
(G-stage 4 or greater) b ho

2 of albuminuria (A2 and A3,
dichotomous) and severe albuminuria (A3, dichotomous). Bars
correspond to 95% confidence intervals around the point estimates.
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methods published while our study was under review24. This
improved performance is most likely due to the fact that our
classifiers include urine specific gravity in addition to DSP,
reducing misclassification due to variations in urine concentration.
Our convenient classifiers are fully automated and can be used to
improve phenotype definitions in large scale genetic, epidemio-
logic, and interventional studies of CKD.
Several limitations of our approach should be noted. First, the

successful detection and staging of CKD using our approach is
dependent on the availability of relevant blood and urine tests in
medical records. Because serum Cr is usually determined as part of
routine health screening tests, most patients have serum Cr
available for G-staging. However, urine tests are performed less
frequently, and the A-staging could therefore be incomplete due
to missing data. Second, our algorithm performs G-staging using
the CKD-EPI formula for GFR estimation in adults50. The CKD-EPI
formula utilizes age, sex, and race in addition to serum Cr to
determine eGFR. The race information is problematic, since it is
based on self-report and this information is frequently inaccurate
in medical records51. Additionally, Cr-based GFR estimation in
individuals of diverse or admixed ancestries may be inaccurate,
since CKD-EPI was derived on a cohort composed of only White
and Black Americans. Although CKD-EPI equation presently
provides the most accurate means for GFR estimation, it could
be easily replaced by any future equations that replace the race

variable without other major changes to the algorithm52. Similarly,
estimation of GFR in pediatric patients may be less accurate
compared to adults, but the formula used by the algorithm could
be updated once more accurate equations become available.
Third, our algorithm is currently designed for detection and
staging of all cause CKD along the two axes of A-by-G grid. Adding
the third axis of CKD subtype (i.e. primary disease subtype) could
substantially enhance our phenotyping. However, automated
determination of primary kidney diagnoses using medical records
proves to be challenging for a number of reasons, including large
etiologic heterogeneity, long time period of CKD progression that
may not be well covered by EHRs, inadequate classification of
kidney disease subtypes by older billing codes (e.g. ICD-9-CM), and
the fact that a kidney biopsy (the gold standard for primary kidney
disease diagnosis) is underutilized in clinical practice53. As a result,
the primary cause of kidney disease is often difficult to establish
with certainty, even by manual review of medical records.
Despite these limitations, we demonstrate that our electronic

phenotype provides effective means for clinical detection and
staging of CKD. There are several ways in which automated
diagnosis of CKD could substantially enhance clinical care. First,
algorithmic diagnosis could enhance physician and patient
awareness of the disease. Recent studies show that less than
10% of patients with early CKD (stages 1–3), and only half (52%) of
those with severe CKD (stage 4) are aware of having a kidney

Table 3. EHR-based observational heritability (ho
2) of eGFR, CKD, and albuminuria.

Number families ho
2 95L 95U SE P Number attempts Number converged Number significant POSA

Estimated GFR

Any CKD 2623 0.214 0.142 0.286 0.054 4.3E-05 200 200 200 1.00

Any CKD White 919 0.197 0.131 0.321 0.080 7.1E-03 200 197 152 0.77

Any CKD Black 459 0.244 0.167 0.377 0.109 1.3E-02 200 196 152 0.78

Moderate CKD 456 0.237 0.189 0.377 0.115 2.0E-02 200 139 16 0.12

Advanced CKD 131 0.455 0.369 0.656 0.186 9.6E-03 200 107 10 0.09

Albuminuria

Any albuminuria 1122 0.236 0.180 0.366 0.439 1.8E-02 200 181 53 0.29

Severe albuminuria 417 0.490 0.364 0.864 0.313 1.5E-02 200 171 73 0.43

Any CKD

All 3460 0.290 0.211 0.410 0.064 4.2E-06 200 5 5 1.00

Hispanic 3136 0.251 0.185 0.296 0.091 3.1E-05 200 15 15 1.00

White 977 0.323 0.234 0.515 0.114 7.8E-03 200 197 137 0.70

Black 433 0.435 0.291 0.657 0.187 1.3E-02 200 195 128 0.66

Moderate CKD

All 1529 0.618 0.418 0.822 0.089 1.1E-08 200 197 197 1.00

White 310 0.555 0.315 0.845 0.411 9.1E-03 200 199 174 0.87

Hispanic 1024 0.513 0.298 0.781 0.251 6.3E-05 200 199 197 0.99

Black 174 0.777 0.544 0.988 0.351 3.4E-02 200 142 87 0.61

Advanced CKD

All 537 0.761 0.512 0.964 0.086 7.0E-07 200 186 186 1.00

White 112 0.639 0.398 0.928 0.263 3.7E-02 200 186 128 0.69

Hispanic 344 0.727 0.434 0.979 0.322 2.3E-03 200 175 170 0.97

Black 70 0.815 0.540 0.993 0.226 1.0E-02 200 79 30 0.38

The estimates were based on the pedigrees built with RIFTEHR (Relationship Inference From The Electronic Health Record). Estimated GFR was modeled as a
quantitative trait, while albuminuria and CKD as dichotomous traits. The numbers of families with available phenotypes is provided, race/ethnicity was determined
by self-report for >50% relatives per pedigree. All estimates are adjusted for age, sex, race/ethnicity, and common environment. The SOLARStrap algorithm was run
200 times, subsampling 15-30% of families per run. We used the proportion of significant attempts (POSA) as a quality score for the heritability estimates generated
by SOLARStrap as described by Polubriaginof et al. (Cell, 2018). ho

2: estimated observational heritability; 95L: lower bound of 95% confidence interval for ho
2; 95U:

upper bound of 95% confidence interval for ho
2; SE: standard error. Race/ethnicity is defined by self-report and determined by the majority of family members.
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problem11. Given that CKD progression is often irreversible and
early interventions are considered to be most effective, our
algorithm could address this issue by flagging CKD diagnoses in
medical records, alerting both clinicians and patients. The clinical
benefit may be greatest for the detection of mild (G1A2-3) disease
that may benefit most from early therapeutic interventions, such
as renin-angiotensin system blockade15 or the use of sodium-
glucose cotransporter-2 inhibitors16.

We recommend a confirmation of A-staging by UACR, which
represents the gold standard underutilized in clinical screening for
CKD54. Once confirmed, additional tests may be needed to define
the cause of renal damage, including renal imaging, diabetes
screening, blood pressure monitoring, and possibly a renal biopsy.
Second, our algorithm also enables the implementation of stage-
specific recommendations for the management of common
complications of more advanced CKD. For example, the

Fig. 4 Combined GWAS-PheWAS approach for moderate CKD (G3 or greater). Manhattan plots for a eMERGE Europeans (7536 cases, 17,841
controls) with a genome wide-significant signal at the UMOD locus (red); b eMERGE African-Americans (702 cases, 2029 controls) with a
genome wide-significant signal at the APOL1 locus (red); regional plots for the c UMOD and d APOL1 loci; eMERGE-based PheWAS plot for the
top SNPs at the e UMOD (n= 78,638 Europeans) and f APOL1 (n= 16,976 African Americans) loci; upward triangles refer to increased risk;
downward triangles indicate reduced risk; horizontal doted lines refer to Bonferroni-corrected significance thresholds.
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management of CKD-associated anemia and renal osteodystrophy
are complex, stage-specific, and expensive55. Our staging algo-
rithm could be easily incorporated into a clinical decision support
system that helps treating physicians to achieve target levels of
hemoglobin or parathyroid hormone by suggesting appropriate
stage-specific use of oral and injectable medications56.
To assure the algorithm’s interoperability and portability, we

used a parameterized and modularized implementation which can
be easily customized to different data models (e.g. i2b2, OMOP),
commonly used data elements available in different EHR systems
(person id, event type, event time), and data dictionaries which are
fully compatible with commonly used coding schemes (e.g. ICD-9-
CM, ICD-10-CM, SNOMED for diagnosis). We provide open-source
software on PheKB website (https://phekb.org/phenotype/
chronic-kidney-disease) for a straightforward local implementation
of the CKD phenotype, indicating parts of the code that require
local customization. This code can be used as a starting point for
building CKD alert systems or related clinical decision support
applications.
In addition to clinical utility, we demonstrate that our algorithm

has multiple research applications, from observational inference to
genetics and any other population health research based on EHR,
as demonstrated by our large-scale comorbidity, heritability, and
GWAS analyses. Our GWAS involving 25,377 Europeans recapitu-
lates genome-wide significant CKD associations at the UMOD
locus originally discovered at comparable significance in the
analysis of 19,877 Europeans ascertained using traditional
methods57. This suggests that our algorithm’s applications to
large biobanks with genetic data linked to medical records could
empower new genetic discoveries for CKD.
The studies using our electronic phenotype have already

provided valuable insights into the genetic architecture of CKD.
Our pedigree-based analyses support a substantial hereditary
component to CKD and highlight ancestral disparities in genetic
susceptibility to kidney diseases. Despite high heritability in
pedigree-based analyses, the SNP-based heritability of CKD was
estimated at only ~1% based on the largest available studies
performed predominantly in European-ancestry cohorts. Although
SNP-based heritability of eGFR is higher (estimated at up to 8%)
compared to CKD, this estimate is more likely to be confounded
by inherited differences in muscle mass, Cr production, and Cr
metabolism in population-based studies, and thus may be less
reflective of the true heritability of CKD as defined by reduced Cr
clearance. The low estimates of SNP-based heritability of CKD (and
their relatively wide 95% confidence intervals) are likely due to the
etiologic heterogeneity of CKD, and the fact that the existing

GWAS for CKD are still of limited sample size. Widespread
application of our algorithm to big biobanks should empower
larger GWAS for CKD, providing more accurate estimates.
The wide gap between pedigree-based and SNP-based herit-

ability is not unique to CKD, and has been reported for other
complex traits58. There are several potential explanations for this
observation. First, the estimates of pedigree-based heritability
could be partially inflated by shared environment and epigenetic
effects. Although we make an attempt to control for shared
household in our heritability estimates, environmental effects are
generally difficult to adjust for in family-based studies. Second, the
heritability gap may be due to additive modeling not accounting
for non-additive SNP effects, such as recessive, dominant, gene-
gene, or gene-environment interaction effects. For example,
APOL1 risk genotype effects are contributing to family-based
heritability in African Americans, but are not captured by SNP-
based heritability, because the genetic risk model is recessive and
APOL1 locus is missed in GWAS dominated by Europeans. Third,
the heritability gap could be explained by rare Mendelian or
structural variants that are not accounted for in the estimation of
SNP-based heritability. This may indeed represent the most likely
explanation given that recent exome sequencing studies in CKD
demonstrate that up to 1 in 10 adult cases may be attributable to
a monogenic disease variant59. Moreover, up to 7% of pediatric
CKD and up to 6% of congenital kidney defects could be
attributable to genomic disorders60–62.
Taken together, the applications of our electronic phenotype

to GWAS and pedigree-based analysis provide support for a
strong genetic predisposition to CKD, but low SNP-based
heritability. Our findings are consistent with the notion that
CKD may not represent a single phenotype but rather a
collection of genetically and phenotypically heterogeneous
diseases encompassing multiple Mendelian subtypes, as well as
disorders of more complex genetic determination. These
observations have important implications for the implementa-
tion of kidney precision medicine. For example, the approaches
that combine diagnostic sequencing with polygenic risk scores
for specific subtypes of kidney diseases may be better suited for
clinical risk stratification compared to polygenic risk scores
based on GWAS for eGFR alone63. Future improvements of e-
phenotyping for CKD are likely to involve automated CKD
subtype determination, and more accurate methods for
estimation of GFR in adult and pediatric patients of diverse
ancestral backgrounds.

Table 4. SNP-based Heritability Estimates for CKD and renal function.

Phenotype Cohort-Ethnicity Study Ncases /Ncontrols LD Reference Method SNP-based Heritability (SE)

CKD eMERGE-European Present study 7,536/17,841 1KG-Europeans LDSC 0.015 (0.010)

eMERGE-AA Present study 702/2,029 1KG-Africans LDSC 0.092 (0.217)

eMERGE-Transethnic Present study 8,238/19,870 1KG-All LDSC 0.044 (0.029)

CKD CKDGen-European Wuttke et al. 41,395/439,303 1KG-Europeans LDSC 0.005 (0.0009)
CKDGen-Transethnic Wuttke et al. 64,164/561,055 1KG-All LDSC 0.004 (0.0008)

CKDGen-Transethnic Pattaro et al. 12,385/104,780 1KG-All LDSC 0.013 (0.004)

eGFR CKDGen-European Wuttke et al. 480,698 1KG-Europeans LDSC 0.056 (0.003)
CKDGen-Transethnic Wuttke et al. 765,348 1KG-All LDSC 0.043 (0.002)

CKDGen-European Pattaro et al. 133,814 1KG-Europeans LDSC 0.081 (0.007)

CKDGen-AA Pattaro et al. 16,474 1KG-Africans LDSC 0.035 (0.045)

We estimated SNP-based heritability of CKD and eGFR from the available genome-wide summary statistics using LDSC method and ancestry-matched linkage
disequilibrium reference panels from 1000 Genomes Project (1KG). In addition to present study, we used GWAS summary statistics from the largest published
studies of CKD and renal function, including Wuttke et al. (Nature Genetics, 2019) and Pattaro et al. (Nature Communications, 2016). The summary statistics were
downloaded from the CKDGen website (https://ckdgen.imbi.uni-freiburg.de).

N. Shang et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)    70 

https://ckdgen.imbi.uni-freiburg.de


METHODS
Algorithm development
We used (1) the NKF’s KDOQI guidelines19, (2) the KDIGO Clinical Practice
Guideline for the Evaluation and Management of CKD9,10, and (3) domain
expert knowledge in nephrology to define CKD cases and controls using
lab measurements in combination with diagnosis and procedure codes
(Fig. 1). Subjects who required kidney transplant or dialysis were defined as
having reached ESRD. To define CKD in subjects with a native kidney
function, we used (1) the most recent eGFR, (2) the eGFR measured at least
3 months before the most recent eGFR, (3) CKD and relevant kidney
disease diagnosis codes, and (4) any of the five commonly used urine tests
that detect albuminuria or proteinuria, including semi-quantitative urine
dipstick tests. To accomplish the G-staging, we designed a “G-Stage
Classifier” that uses the most recent eGFR. To distinguish CKD from the
abnormal kidney function that is caused by acute kidney injury or other
acute physiological states. Any eGFR measures that co-occur with such
conditions within 1-month, including value(s) measured during a period of
critical illness were excluded. The A-staging was performed using an “A-
Stage Classifier” based on the most recent urine protein or albumin test.
We define subjects with normal renal function and no albuminuria (G1A1
controls) as individuals whose most recent eGFR is within normal range,
and who lack any diagnostic or procedure codes related to CKD and have
no evidence of albuminuria on most recent urine test. We define subjects
with normal renal function (G1 controls) as individuals whose most recent
eGFR is within normal range and who lack any diagnostic or procedure
codes related to CKD, but who have no available urine tests precluding the
determination of A-stage.

G-Stage Classifier
We use most recent eGFR values to perform G-staging. The eGFR is
estimated using CKD-EPI formula in adults50 and Bedside Schwartz
equation in pediatric patients (age < 18 years old)64,65. Since the Bedside
Schwartz equation requires height concurrent with serum Cr, and the
height data do not always coincide with Cr data, we used a simple height
extrapolation method (Eq. 1). The precise G-stage is determined using
simple threshold-based rules, as depicted in Fig. 1b.

Ht ¼ Ht pre þ ðHt pre � Ht postÞðHtDateInDays pre � HtDateInDaysÞ
HtDateInDays pre � HtDateInDays post

(1)

A-Stage Classifier
In order to utilize all of the available urine tests for A-staging, we leveraged
“real life” EHR data and implemented a simple machine-learning-based
approach based on ordinal regression. Our method aimed to harmonize
commonly used urine tests that quantify proteinuria to predict albuminuria
stage for each patient (Fig. 1c).
We considered the following predictors of A-stage: Urine Albumin-to-Cr-

Ratio (UACR, guideline-recommended gold standard), 24-h urine collection
for albumin (A24), Urine Protein-to-Cr-Ratio (UPCR), 24-h urine collection
for protein (P24) and urine dipstick protein test (DSP). For the purpose of
our algorithm, we assume that P24 [mg/24 h] and UPCR [mg/g Cr] are
numerically equivalent. While A-stages can be derived directly from UACR
and A24 using KDIGO-recommended cut-offs, our algorithm aimed to
perform A-staging using UPCR, P24, or DSP. For this purpose, we designed
two separate supervised machine-learning approaches.

UPCR-based A-Stage classification
The first approach aimed to build an ordinal classifier which maps UPCR or
P24 values to individual A-stages. For our training set, we identified all
same day paired urine tests for UPCR and UACR within the Columbia EHR
(n= 4641 paired measurements). We used UACR as the gold standard to
define the A-stage (A1, A2, and A3). Using this training set, we next applied
an ordinal regression-based approach to construct the A-stage classifier.
Feature selection was performed with a goal to minimize mean squatted
error of the model. The features tested included log-transformed UPCR,
age, sex, diabetes, race, ethnicity. For each model, we estimated model
coefficients, used them to compute probabilities of A1, A2, and A3, and
maximized over these probabilities to predict the most likely stage for any
given set of predictor values. We then used a 10-fold cross-validation
approach, enabling calculation of mean squared error (MSE) for our ordinal
classifier (Eq. 2), as well as accuracy, sensitivity, and specificity with their
95% confidence intervals. In this analysis, log-transformed UPCR alone

represented the strongest predictor of A-stage, and the addition of age,
sex, diabetes, race, or ethnicity provided no additional improvements in
model performance.

MSE ¼
P10

i¼1 error rate
10

± 1:96 ´
sdðerror rateÞ

sqrtð10Þ (2)

To validate our model, we tested two external datasets of paired UPCR-
UACR measurements from medical records of the UMN (n= 8688) and VU
(n= 5770). The MSE, accuracy, sensitivity, and specificity metrics were
remarkably similar between internal and external validation datasets, thus
we build a final predictive model that was derived from the entire dataset
of 19,099 paired observations across all three institutions (Supplementary
Tables 1–2). This final model was used in our algorithm. This classifier had
86.7%, 80.0%, and 92.3% accuracy for A1, A2, and A3, respectively. The
specificity was high for all A-stages (87.1–94.8%), but the sensitivity was
lower for A2 (63.5%) compared to A1 and A3 (86.2–86.7%). This is
consistent with the UPCR method being less accurate at a lower level of
albuminuria.
In the second approach, we built an A-stage predictor using DSP from

routine urinalyses. There are two major challenges that we aimed to
address. First, the semi-quantitative DSP grade is dependent on the
concentration of urine, which is affected by a number of confounding
factors, such as fluid intake, volume status, or use of diuretics. Second,
different institutions use different semi-quantitative scales to report DSP
grade. To address the first problem, we again used a supervised machine-
learning approach, but now we incorporated urine specific gravity (SG)
measured at the same time as DSP as an additional input feature. For the
second problem, we identified two most common urinalysis scales and
developed an A-stage classifier using two separate training sets for these
scales: Scale 1 (negative, trace, 1+, 2+, 3+, 4+) and Scale 2 (negative,
trace, 10, 30, 100, 300, >=300).
To develop a Scale 1-based classifier, we used 12,185 simultaneous DSP

and UACR measurements from the CUIMC EHR system (Supplementary
Table 3). The final Scale 1 classifier had the accuracy of 80.9%, 76.0%, and
94.3% for A1, A2, and A3, respectively, by 10-fold cross-validation. For Scale
2-based classifiers we used a similar dataset of 35,891 paired measure-
ments identified within the UMN and additional 7595 paired DSP-UACR
measurements from VU (Supplementary Table 4). Each classifier was built
using ordinal regression with DSP, SG, age and sex as independent
predictors of the A-stage. For each training dataset, we used 10-fold cross-
validation approach, derived MSE, accuracy, sensitivity, and specificity with
95% confidence intervals. Similar to our first approach, neither age nor sex
increased our predictive ability and these predictors were subsequently
excluded from the model. However, the addition of urine specific gravity to
DSP grade significantly improved the model performance regardless of the
scale. We also explored more complex machine-learning methods and
several other features, including diabetes, race, ethnicity, and other
urinalysis variables, such as urine glucose, ketones, pH, blood, leukocyte
esterase, nitrates, and bilirubin, however, none of these complex models
outperformed a simple ordinal classifier based on combined DSP and SG.
Because the models based on UMN and VU datasets had comparable

performance in cross-validation, we decided to pool these datasets
(n= 43,486 paired measurements) to derive the final classifier. The
performance of the Stage 2-classifier was tested by 10-fold cross-validation
(Supplementary Table 5). The final Scale 2 classifier had the accuracy of
82.2%, 78.5%, and 95.3% for A1, A2, and A3, respectively, by 10-fold cross-
validation. The summary of predicted probabilities of A-stages across a
range of individual predictors are illustrated in Supplementary Fig. 1 for all
three (UPCR, DSP1, and DSP2) final classifiers.
While this work was under review, alternative methods of UACR

estimation from UPCR and DSP have been proposed by the CKD Prognosis
Consortium24. Therefore, we performed additional tests of our ordinal
classifiers with performance comparisons to the newly proposed crude and
adjusted linear regression-based models. In two independent datasets
(13,134 paired UPCR-UACR measurements and 6695 paired UA-UACR
measurements) we demonstrated that the performance of our A-stage
classifiers was consistent between the testing and discovery datasets, and
generally comparable to the newly published methods. Similar to our
study, the CKD Prognosis Consortium models additionally adjusted for sex,
diabetes, and hypertension did not perform better over simple models
based on UPCR or DSP alone (Supplementary Table 6).
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Algorithm implementation
To enable portable implementation, a parameterized and modularized
algorithm query was developed66. This query template has two major
features. First, complex query logic is built from several simple query block
modules, each serving a single function. In the modularized query, the first
query block is to retrieve all phenotype-related variables from the source
data and store them in a temporary table for later query blocks use. This
way, the data retrieval and algorithm logic parts can be separated. This
logical separation has been explored by the Arden syntax, which is
designed to share task-specific knowledge implementations across
institutions67. Another feature of our query template is to encapsulate
source database schema and coding dictionary into parameters, which can
be replaced at the execution. Both features make the query template easily
adaptable to different data environments. To ensure compatible imple-
mentation across sites, we also use national standard terminologies to
define diagnosis, procedure and laboratory tests. We define diagnosis
codes using ICD-9-CM and ICD-10-CM, procedure codes using CPT-4, ICD-
9-PCS, and ICD-10-PCS. For laboratory tests, we identified all relevant
LOINC codes. Since different institutions may use local coding for
laboratory tests, institution-specific coding review is required before
implementation at each site. The algorithm and all associated data
dictionaries have been deposited in the public Phenotype Knowledge
Base25 (https://phekb.org/phenotype/chronic-kidney-disease).

Algorithm validations
We determined the PPV of the algorithm by conducting 451 blinded
manual chart reviews as a gold standard across three large US institutions.
For internal validation at CUIMC, we selected 251 charts (189 CKD cases
evenly distributed across all disease stages and 62 healthy non-CKD
controls) with adequate data within the EHR. Two blinded nephrologists
were asked to make the CKD diagnosis and stage the disease based on the
latest lab values and clinical chart data; a third expert blinded to the
algorithm results resolved any discrepancies. For external validation, we
performed manual review of additional 200 charts (160 CKD cases evenly
distributed across all disease stages and 40 healthy non-CKD controls)
within the VU and Mayo Clinic EHR system. We calculated overall PPVs as
well as PPVs by case/control status, by institution, and by CKD stage (Table 2).
For secondary validation, and to calculate diagnostic sensitivity and

specificity, we used an independent case-control dataset consisting of
1136 cases (defined as patients with an outpatient visit to the Columbia
CKD clinic and carrying at least one ICD code consistent with CKD as
determined by a nephrologist) and 1214 controls (defined as women
attending a prenatal screening visit at Columbia during the same time
period that do not have any billing code consistent with CKD in their
medical record). The algorithm had specificity of 97%, sensitivity of 87%,
PPV of 97%, NPV of 89%, and F1 measure of 92% for discriminating CKD
patients from healthy controls (Supplementary Table 7).

CKD comorbidities
We applied our algorithm to the entire Columbia CDW covering data
from 1997 to 2017. Among 1,365,098 patients with at least one serum
creatinine value available, the algorithm had sufficient data to stage
672,858 individuals. We used the AHRQ Elixhauser Comorbidity Index
that defines 40 comorbidity measures from ICD-9-CM and ICD-10-CM
codes for comorbidity analysis26,27. The prevalence of CKD by A and G
stage, along with the prevalence of related comorbidities were
calculated and adjusted for age and sex using U.S. 2000 Standard
Population (https://seer.cancer.gov/stdpopulations). The association
screen for CKD comorbidities was performed by evaluating co-
occurrence of CKD with all other diagnostic and procedure codes by A
and G stage. We tested for significant additive patterns in age and sex-
adjusted comorbidities across the A-by-G grid using logistic regression;
each comorbidity was used as an outcome, and A and G stages were
used as ordinal predictors with age and sex as covariates in the model.
Using these models, we tested for an independent additive effect of A
and G stages on each comorbid condition using Wald test. Given a total
of 40 independent comorbidities tested with two tests per each
comorbidity, we used a Bonferroni-adjusted alpha of 0.05/80= 6.25 ×
10−4 to declare statistical significance.

Observational heritability
We used the RIFTEHR algorithm22 to infer familial relationships among
individuals with inpatient EHR records at CUIMC. Briefly, a total of 3,244,380
unique relationships have been identified at Columbia based on
emergency contact information combined with relationship inference as
described previously22. We grouped individuals into families by identifying
disconnected relationship sub-graphs and found 223,307 families ranging
from 2 to 134 members per family. We next intersected the pedigree
dataset with the output of the CKD algorithm applied to the CUIMC EHR.
This allowed us to estimate observational heritability for our electronic CKD
phenotypes, including eGFR, any albuminuria (A2 or A3), heavy
albuminuria (A3), the diagnosis of any CKD, moderate CKD (stage 3 or
greater), and advanced CKD (stage 4 or greater). We modeled heritability
under additive genetic model with phenotype adjusted for age, sex, race/
ethnicity, and common environment (approximated by a term that used
the mother ID as the household ID). We used SOLARStrap, a repeated
subsampling procedure in which each subsampled set of families is used
to estimate heritability using SOLAR30. These estimates are then averaged
to produce a robust heritability estimate that is less prone to ascertain-
ment bias22.

Genome-wide association studies
For the purpose of genetic studies, we implemented the CKD phenotype
across the entire eMERGE-III network. The network provides access to EHR
information linked to GWAS data for 105,108 individuals. Detailed pre-
imputation quality control pipelines for genetic data of the eMERGE-III
consortium have previously been described21. Briefly, GWAS datasets were
imputed using the latest multiethnic Haplotype Reference Consortium
(HRC) panel. The imputation was performed in 81 individual batches across
the 12 contributing medical centers participating in eMERGE-I, II, and III. For
post-imputation analyses, we included only markers with MAF ≥ 0.01 and
R2 ≥ 0.8 in ≥75% of batches. These quality control analyses were performed
using a combination of VCFtools, PLINK, and custom scripts in PYTHON and
R68–70. To assess population stratification and remove population outliers,
we applied a principal component analysis using FlashPCA71. We applied k-
means clustering algorithm to the PCA data to split the overall cohort into
the three major ancestral clusters based on similarity to reference
populations from the 1000 Genomes Project (European, African and East
Asian). All genome-wide association analyses were subsequently per-
formed within each major ancestral group, after adjustment for age, sex,
site, and significant principal components re-derived for each ancestral
cluster (the significance of principal components was determined using
the Tracy–Widom test). Each site participating in eMERGE-III implemented
our electronic phenotype and provided the algorithm output for linkage
with the genetic data. The association analyses of binary traits (CKD vs.
control) were performed using logistic regression. We used a dosage
method under additive genotype coding to account for imputation
uncertainty. For each SNP, we derived pooled effect estimates, their
standard errors, and 95% confidence intervals. Genome-wide distributions
of P values were examined visually using quantile-quantile plots and we
estimated genomic inflation factors for each genome-wide scan72. We
used the generally accepted alpha= 5 × 10−8 to declare genome-wide
significance73. To estimate the fraction of additive genetic variance
contributed by genome-wide SNP data and to derive pairwise genetic
correlations between phenotypes, we used the linkage disequilibrium
score regression (LDSC) method74.

Phenome-wide association studies
We used the latest release of eMERGE-III data for PheWAS. The phenotype
data consisted of 19,853 distinct ICD-9-CM codes for 105,108 individuals
with genotype data. The ICD-9-CM codes were mapped to phecodes and
PheWAS was performed using the PheWAS R package23. The package uses
pre-defined “control” groups for each phecode “case” grouping. In total
1804 phecodes were tested using age, sex, center, and principal
component-adjusted logistic regression model with each phecode case-
control status as an outcome. The genotype predictors were coded under
additive model for risk alleles. We set the Bonferroni-corrected statistical
significance threshold at 2 × 10−5 (0.05/1804) to control for the number of
phecodes tested.
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Ethics
The study was approved by the Columbia University Institutional Review
Board (IRB protocol numbers IRB-AAAP7926 and IRB-AAAO4154) and
individual IRBs at all eMERGE-III network sites contributing human
genetic and clinical data. Our large scale heritability and comorbidity
analyses based on the Columbia Data Warehouse were performed under
an approved waiver of consent. BioVU operated on an opt-out basis until
January 2015 and on an opt-in basis since. The phenotypic data in BioVU
are all de-identified and the study was designated “non-human subjects”
research by the Vanderbilt Institutional Review Board. All other eMERGE
participants provided informed consent to participate in genetic studies.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.

DATA AVAILABILITY
The software and documentation of the Electronic CKD Phenotype can be found on
the Phenotype Knowledge Database (PheKB) website (https://phekb.org/phenotype/
chronic-kidney-disease). The PheKB documentation also includes a detailed list of all
ICD-9-CM, ICD-10-CM, SNOMED, lab LOINC and procedure CPT codes used by the
algorithm. The eMERGE-III genetic datasets with linked phenotypes are accessible
through dbGAP (accession number: phs001584.v1.p1).
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