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Abstract: Pluripotent stem cells, having long been considered the fountain of youth, have caught
the attention of many researchers from diverse backgrounds due to their capacity for unlimited
self-renewal and potential to differentiate into all cell types. Over the past 15 years, the advanced
development of induced pluripotent stem cells (iPSCs) has displayed an unparalleled potential for
regenerative medicine, cell-based therapies, modeling human diseases in culture, and drug discovery.
The transcription factor quartet (Oct4, Sox2, Klf4, and c-Myc) reprograms highly differentiated
somatic cells back to a pluripotent state recapitulated embryonic stem cells (ESCs) in different
aspects, including gene expression profile, epigenetic signature, and functional pluripotency. With
the prior fruitful studies in SCNT and cell fusion experiments, iPSC finds its place and implicates
that the differentiated somatic epigenome retains plasticity for re-gaining the pluripotency and
further stretchability to reach a totipotency-like state. These achievements have revolutionized the
concept and created a new avenue in biomedical sciences for clinical applications. With the advent of
15 years’ progress-making after iPSC discovery, this review is focused on how the current concept is
established by revisiting those essential landmark studies and summarizing its current biomedical
applications status to facilitate the new era entry of regenerative therapy.

Keywords: induced pluripotent stem cell (iPSC); somatic reprogramming; Col1a1 4F2A Oct4-GFP
reprogrammable mouse; stochastic and deterministic model; expanded potential stem cell (EPSC);
expanded potential stem cell medium (EPSCM)

1. Introduction

The discovery of induced pluripotent stem cells, a monumental breakthrough, rewrote
the conceptual foundation in biology. It endowed an unprecedented opportunity to unravel
the process of cell identity establishment and potentiate cell regenerative therapy in clinical
settings. Concomitantly with the union of gametes, a fertilized egg gradually specifies
lineages at the expense of differentiation potency during developmental processes. By
contrast, a highly differentiated cell can re-acquire its differentiation potency during the
cellular reprogramming process. As maintaining a differentiated state is imperative to
engage the proper function of the cell, it needs mechanisms to “lock on” the status of differ-
entiation to warrant its cell identity. Such mechanisms of the differentiated state assurance
are presumably an essential barrier for cellular reprogramming [1]. As a cell’s identity
comes from its unique epigenome configuration, erasing and writing the epigenome for
resetting its landscape leads to changing the cell fate. One of the main ways to reconfigure
the epigenetic landscape is through DNA replication during cell division. Thus, cycle
re-entry is an essential step of somatic reprogramming of the post-mitotic cell. In contrast,
nuclear reprogramming through SCNT (somatic cell nuclear transfer) does not require cell
cycle progression. Accordingly, the reprogramming process can be achieved in different
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routes through which a coordinated multifactorial and multistep process for sequentially
re-gains the state of pluripotency, although it may not be necessary to reverse the same
path as that taken by the differentiation process [2–5].

A considerable amount of effort has been put into investing these reprogramming
mechanisms in the past half-century. Figure 1 shows the timeline of significant scientific
advances in the history of nuclear and somatic reprogramming research. As a result, we
have gained fruitful insights that further enlighten and set new stages for stem biology,
permitting researchers to dive deeper into the dynamic translation process of genome
plasticity and its corresponding cell state. In the present review, we revisited these essential
studies established in the last 15 years and mainly focused on somatic reprogramming (an
excellent review on SCNT can be found elsewhere by Matoba et al.). Here, we introduce the
conceptualization of somatic reprogramming from the aspects of cell potency acquisition,
route choice, and network-relaying in order to unfold its potential mechanisms. Further-
more, revisiting progress-making in the directed modifications of genome configuration,
either in the direction of differentiation or de-differentiation, by acting through the nature
of a cell’s genome plasticity, will help tackle emergent issues in future biology and their
potential applications in clinical settings.
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Figure 1. The timeline of significant scientific advances in the history of nuclear and somatic repro-
gramming research. The phenomenon of nuclear reprogramming was observed in the early 1960s
via SCNT and heterokaryon experiments. In 1997, the cloning of Dolly served as a monument of
mammalian cloning and addressed the plasticity characteristic in mammals’ genomes. Furthermore,
the cloning of the Macaque monkey counted as a recent breakthrough in the nuclear reprogramming
field. Along with the advances of stem cell biology, the unraveling of pluripotent network formation
and new culture approaches (e.g., 2i medium and feeder-free) accelerated iPSC development and
further allowed for capturing and maintaining EPS cells (expanded potential stem cells) in vitro. An-
other crucial breakthrough was the production of the hiPSC-derived RA-responsive FGC formation.
All of these advances contributed to the first clinical trials of hiPSC-derived retinal cell transplants.

2. Genome Plasticity Endows Cell Fate Change

A multicellular organism’s development is a continuous process in diversifying cell
functions from a single cell (i.e., zygote). The resultant differentiated cells are formed
through a progressive procedure by restricting their developmental potential and, in turn,
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specifying their cell fates during cell proliferation. Such a developmental approach re-
sults in increasingly committed cells with defined functions to allow for communication
and, therefore, maintain homeostasis in their surrounding environment. The underlying
molecular mechanism, recognized as the epigenetic machinery, governs such processes
in the genome to restrict developmental plasticity during development. The epigenetic
machinery manages epigenetic changes through DNA methylation, and chromatin modifi-
cation is imposed upon gene expression patterns in an inheritable manner. Such a potency
restriction in mammals’ differentiated cells has long been considered an irreversible process
in vivo. However, recent seminal findings have discovered that such a process could be
reversed and reprogrammed in vitro.

A differentiated cell can reacquire pluripotency via three approaches, namely: somatic
cell nuclear transplant (SCNT) [6–11], heterokaryon cell fusion [12,13] or transcription-
factor-induced reprogramming (iPSCs) [14–16]. Even though these three reprogramming
approaches may use different routes to gain pluripotency, the remodeling of epigenetic
configuration still relies on the common themes of re-establishing DNA methylation,
chromatin modifications, and transcriptional network formation.

2.1. DNA Methylation

As the determination of a cell’s identity relies on its unique epigenetic configuration,
faithfully passing down such an epigenetic memory to daughter cells is imperative in
order to maintain the cell lineage specification. Therefore, changing the cell fate has to
counteract these pre-deposit epigenetic memories. One of the robust epigenetic lock-ons is
the high level of CpG methylation constituting 70~80% of somatic tissues [17,18]. Thus,
DNA demethylation is one of the essential steps to remodel the epigenetic landscape.
Presently, the molecular mechanism of DNA demethylation is recognized to include a
passive or active process [19]. Under the condition of lacking functional DNA methylation
maintenance machinery, the newly synthesized DNA strand fails to maintain its methyla-
tion pattern, as seen in its complement template during DNA replication. Such a process is
known as passive DNA demethylation (Figure 2A).

In contrast, active DNA demethylation depends on demethylation enzymes without
DNA replication [19]. One of the DNA demethylases is AID (activation-induced cyti-
dine deaminase), found initially to deaminate C to U in the DNA of immunoglobulin
genes and to cause somatic mutations or class-switch recombinations. The AID-mediated
DNA demethylation process involves deamination of the methylated cytidine residue in
single-stranded DNA followed by base excision repair (BER) machinery to replace an un-
methylated one [20]. Another DNA demethylase is the Tet family member (Tet1, Tet2, and
Tet3), orderly converting 5-hydroxymethylcytosine (5mC) into 5-hydroxymethylcytosine
(5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) through a series of oxida-
tion processes (Figure 2B). The final step of removing these oxidative methylcytosines is
through the thymine DNA glycosylase (TDG)-mediated excision of 5fc and 5caC. Even-
tually, the base excision repair (BER) mechanism will participate in the demethylation
process (Figure 2B). The overexpression of both AID and Tet1 in highly differentiated cells
reshapes the epigenetic landscape [21–23]. Although demethylation of DNA is an essential
step to overcome the epigenetic barrier, it is of note that extreme demethylation may cause
detrimental effects due to genome instability [24,25].
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Figure 2. Diverse mechanisms coordinate genome plasticity. (A) The replication-mediated passive DNA demethylation
process results in cell fate change. The newly replicated strands do not share the same methylation pattern as seen
in their parental DNA molecule. To faithfully maintain the methylation pattern, the complex of UHRF1/DNMT1 is
recruited to perform the de novo methyl-transfer activity on the newly synthesized strands. This uncoupled methyl-transfer
reaction from DNA replication offers an opportunity to diversify the cell fate. In the scenario of an unsynchronized
event, the unmethylated daughter strand creating a hemimethylated pattern may allow its underlying regulatory elements
to be susceptible to the signal inputs from the surrounding environment. Therefore, cell division event creates two
daughter cells bearing different cell states, which is feasible for diversifying cell fates. (B) The Tet-mediated active DNA
demethylation mechanism. Tet1, Tet2, and Tet3 belong to the Tet family of DNA demethylase. These Tets catalyze 5-
hydroxymethylcytosine (5mC) through a series of oxidation processes, and generate a set of intermediated products,
including 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Furthermore, the
thymine DNA glycosylase (TDG) mediates the excision of 5fc and 5caC. Eventually, the base excision repair (BER) mechanism
restores the cytosine nucleotide in the demethylation process. (C) Chromatin-mediated cell fate change. In addition to
the DNA methylation pattern impacting the epigenetic configuration, chromatin modifications also play a pivotal role in
regulating the epigenetic landscape. A two-way relationship between transcription factor binding and chromatin structure
modification further shapes its epigenetic landscape. Hence, the transcriptional network, chromatin structure, and DNA
methylation pattern work together to establish a unique state of epigenomic configuration representing an individual cell
fate. TFs—transcription factors; CMs—chromatin modifiers.

2.2. Chromatin Modifications

In addition to depositing unique DNA methylation patterns, shaping the genome
during cell differentiation requires a gradual process to install repressive histone marks
and increase chromatin compaction [26–28]. To re-install a permissive chromatin state,
one will erase the repressive histone marks constituting the chromatin-mediated barrier,
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which is another primary process to gain pluripotency (Figure 2C). One of the prominent
repressive histone marks is H3K9me3 as it forms broad heterochromatin domains of
chromatin to inhibit transcription factor binding [29]. Thus, H3K9me3-marked regions are
considered to be chromatin-mediated epigenetic barriers guarding cell identity [29–31].
In this vein, repressing the Suv39H1 and 2 methyltransferases results in H3K9me3 level
reduction and facilitates in binding the reprogramming transcription factors [29,32]. In
addition to governing a genome-wide heterochromatin domain formation, H3K9me3 can
also specifically achieve the silencing of lineage-specific genes by partnering with Setdb1,
another H3K9me3 methyltransferase [33,34].

Another repressive histone mark is H3K27me3. Both H3K27me3 and the poly-
comb complex (PRC2) function together to keep silencing large bodies of development-
participated genes in a metazoan genome. Releasing the H3K27me3 marked histones
from chromatin leads to a more interactive chromatin state and yields a transient primed
chromatin state to facilitate cell fate change [35–37]. Utx is a JmjC domain-containing
enzyme that mediates the H3K27me2/3 demethylation process [38]. Consistent with its
role, the depletion of Utx significantly reduced the reprogramming efficiency in mouse
embryonic fibroblasts [39].

2.3. Transcriptional Network Formation

Early days’ studies demonstrated that cell lineage can be defined by transcription
factors; the expression of the master regulator can re-define a cell’s identity. For example,
the ectopic expression of MyoD alone in fibroblasts and adipoblasts is sufficient to change
into myoblasts [40]. Likewise, the overexpression of C/EBPa allows for lineage conversion
from B cells to macrophages [41]. Moreover, the Ngn3, Pdx1, and MafA gene cocktail
convert pancreatic exocrine cells into beta-cells [42]. Thus, master regulatory genes or gene
sets organize unique transcriptional network formation as a prerequisite for establishing
the corresponding cell identities. In this vein, the reprogramming process of the cell fate
will need to progressively cease the existed transcriptional networks, while being relayed
to other transcriptional programs for re-establishing a specific cell type of interest.

As mentioned previously, it is intriguing to know how several transcription factors
function together so as to define their unique cell identity. Graf and Enver proposed a tran-
scription factor cross-antagonism model to address cell fate determination and transition
during reprogramming, including the events of de- and trans-differentiation [43]. This
view was further supported after uncovering the mechanism of pluripotency acquisition
during somatic programming. The traditional core pluripotency factors, including Oct4,
Sox2, Tbx3, and Nanog, are recognized as members of the germ layer specifiers. They
function in a manner of precarious balance through antagonizing and cross-activating each
other to reach a pluripotent state. The antagonistic effect halts the pluripotent state from
falling into any germ layer lineages [44]. This idea was further fortified in the cell fate
change through the overexpression or knockdown of those lineage specifiers. For example,
the knockdown of Oct4 in ESC renders it incapabile of mesoderm formation [45]. Likewise,
compromised Nanog leads to the failure of mesendoderm differentiation [46]. Therefore,
one can surmise that Oct4, Nanog, Sox2, and Tbx3 dictate lineage differentiation in ESCs
and maintain ESC’s pluripotency through antagonizing each other.

2.4. A Two-Way Relationship between Transcription Factor and Chromatin Structure

It is neccessary to note whether epigenetic alternation is a prerequisite to layout an
adequate chromatin microenvironment for the newly established transcriptional networks
to work on. Alternatively, the transcriptional complex may actively modify the chromatin
configuration to build a permissive domain for the subsequent cell identity establishment.
Some transcription complexes contain chromatin modifiers and use their specific DNA
binding domain to bring the associated modifiers in order to achieve an active, repressive,
or bivalent chromatin configuration in their binding vicinity [47,48] (Figure 2C). There
is mounting evidence to support both views. Interestingly, the recent chemical repro-
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gramming approach without engaging an ectopic factor-driven force could also achieve
cell fate changes. These findings indicate that the transcription network and chromatin
modification are both effective for achieving a synergistic reprogramming effect [49–52].
Therefore, the current view of a two-way relationship between transcription factor binding
and the chromatin structure has been proposed during cell fate reprogramming.

2.5. Diverse Mechanisms Coordinating on Genome Plasticity

The epigenetic configuration defines cell fate, creates population heterogeneity, and
governs a differentiation-priming event. The initiation of epigenetic modifications may
derive from “symmetry-breaking”, and subsequently result in the differentiation prim-
ing [53]. The created hemimethylated sites in the newly synthesized daughter DNA strand
may not be synchronized and maintained by the UHRF1/DNMT1 complex during cell
proliferation. Thus, it creates a transient time window in order to allow other signals to
diversify the two daughter cells’ fates further. The heterogeneous pattern of DNA methyla-
tion generated within that brief moment enables an independent differentiation-priming
between two daughter cells before their commitment. Likewise, the dynamic bivalent
chromatin structure on the developmentally regulated genes potentially adds another
layer of “entropy” to create cell fate diversity. The cross-regulatory mechanism between
transcription factors acting together with the chromatin structure and DNA methylation
levels ensures that the precise signal interpretation from its dwelled surroundings guides
the stereotype developmental path within a species.

3. A Transgene-Based Pluripotency Acquisition

The initial observation of the cell fate change was mainly from one cell lineage to
another, indicating the plasticity property of the mammal genome. An observation of the
dramatic cell fate change was not made until performing somatic cell nuclear transplant
(SCNT) [6–8] and heterokaryon experiments [12,13], where a highly differentiated nucleus
was reprogrammed to a pluripotent state. Furthermore, a transgene-mediated approach,
namely the induced pluripotent stem cell (iPSC), was followed to achieve an ESC-like
pluripotent state from highly differentiated somatic cells [14,15,54]. Although SCNT and
heterokaryon experiments were performed much earlier than for iPSC, their pluripotency
re-acquisition process and the corresponding mechanisms were revealed from recent
studies [55]. Here, we only focused on the current progress in unraveling the transgene-
based reprogramming mechanism, even though it is very intriguing that for both SCNT
and heterokaryon, the change in chromatin assembling is independent of DNA replication.
An excellent review of the recent progress in SCNT can be found elsewhere [55].

In 2006, a pioneering work lead by Takahashi and Yamanaka demonstrated that a
highly differentiated somatic epigenome could be converted into an ESC-like pluripotent
epigenome with only four transcription factors, namely Oct4, Sox2, cMyc, and Klf4. This
groundbreaking work reified our current concept of genome plasticity. Regarding the effi-
ciency of reprogramming in the original Yamanaka study, it displayed only approximately
0.001~0.01%, which was close to the estimated abundance of the residing stem cells in a
tissue [14]. Because of the low frequency of iPSC formation in the first report, the central
question focused on what mechanism impeded epigenome remodeling. As reprogram-
ming turns the developmental clock backward, it is conceivable that the machinery of
the cell state maintenance will be the first encountered barricades regarding epigenome
landscape remodeling from a highly differentiated status to a pluripotent configuration.
Following this, Cheloufi et al. performed two RNAi screens, where the histone chaperone
CAF-1 was identified during transgene-mediated iPSC formation. Suppression of CAF-1
facilitates chromatin structure accessibility at enhancer elements by reducing heterochro-
matin domains during early reprogramming. In addition, RNAi CAF-1 enhances the direct
lineage-crossing of B cells into macrophages and that of fibroblasts into neurons. Thus, the
histone chaperone CAF-1 represents the safeguard of somatic cell identity [1].
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As most highly differentiated somatic cells exit the cell cycle, they encounter a power-
ful mechanism to “lock on” a differentiated epigenome, as gaining pluripotency during
iPSC formation requires cell cycle re-entry to restate the chromatin configuration in a
potentiated bivalent fashion. After Yamanaka’s seminal finding, several groups reported
that reduced or eliminated tumor suppressor genes, such as p53 and Ink4a/Arf, accelerated
cell division and led to a higher iPSC production. As the p53-p21 pathway guards cell cycle
progression, it represents a roadblock during cellular reprogramming [56–59]. Additional
factors like Glis1, SUV39H1, DOT1L, and YY1 were also shown to alter the iPSC production
efficacy [32,60]. Identifying the endogenous Essrb and Utf1 expression further served
as a predicter for successful reprogramming [61]. Collectively, these underlying mecha-
nisms of epigenome plasticity mentioned above (i.e., DNA methylation and chromatin
reorganization and transcriptional network formation) sketched the outline of the current
reprogramming concept. Although they may take diverse routes, reprogramming events
act in an ordered and concerted multiple-step manner. The following apparent questions
have been raised at each transit phase: How do highly differentiated cells decide to initiate
the reprogramming process? What is the roadblock impeding iPSC formation at each stage?
What are the players participating in the dynamic epigenome conversion at each step?
What is the safe and efficient way to generate iPSC for clinical uses? The following sections
may shed light on potential answers.

4. The Route Choice—Molecular Control of Induced Pluripotency Initiation

Even though the dynamic molecular profiling on different stages/phases of repro-
gramming has been uncovered in the past decade (discussed in the next section), the onset
of significant participants and its route-taking decision have remained elusive. Reprogram-
ming route choices are various depending on the cell types, fates, and the iPSC-generated
approaches. Several reprogramming modes of action have been observed, i.e., the stochas-
tic, deterministic, early stochastic, late deterministic, and biphasic models [62,63]. These
action modes can be distinguished by the timing of the phase progression and the analytic
approach adopted during the epigenetic landscape’s remodeling (Figure 3A). For exam-
ple, the stochastic model states that all candidate cells after certain cell divisions have an
equal chance of reprogramming. The acquisition of pluripotency, therefore, is a random
event. Such a reprogramming event is primarily described as using the mouse embryonic
fibroblast (MEF) as the initial cell source and is driven by the OSKM transgene for repro-
gramming [63]. Under the OSKM-mediated transgenesis, additional genetic manipulations
are amenable in order to accelerate the kinetics. For example, Hanna et al. observed kinetic
increment in the clonal analysis of single B cells by either enhancing cell proliferation or
the cell-intrinsic mechanisms [2].
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Figure 3. Models of epigenetic reprogramming and their potential mechanism in early route choice. (A) Somatic reprogram-
ming takes its action mode at the beginning of epigenetic remodeling. Two well-recognized patterns of reprogramming
kinetics, namely stochastic and deterministic models, are used to gain pluripotency-competent cells during somatic re-
programming. Latency in the X-axis indicates the required time or the number of cell divisions to acquire pluripotency,
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signals more on the EGFR/ErbB2 pathway endow a group of synchronized cells to surpass the reprogramming barrier.
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panels). Thus, different modes of operation can reversibly act on the same MEF cells through modulating the activity of
STAT3 and Erk.

Despite the prevalence of the stochastic action mode, the deterministic model has
also been observed in a subpopulation of fast-cycling bone marrow cells. Apart from
the stochastic model, only specific cells with a privileged state can overcome epigenetic
barriers during the deterministic process. Therefore, it is synchronized to surpass the
encountered barrier’s hurdle, e.g., the mesenchymal-to-epithelial transition (MET), while
adopting fibroblast as a reprogramming cell source [65,68]. Furthermore, to facilitate the de-
terministic route, C/EBPα can be overexpressed or Mbd3/NurD can be depleated through
genetic manipulations [65,66,68]. Although each mode of action has strong supportive
evidence, the molecular mechanisms regarding the process of each mode entry at the onset
of reprogramming and the subsequent route choice are still mostly unknown. Recently,
Liu and colleagues tackled this issue by observing a convertible stochastic and determin-
istic process while adopting the MEF from the Col1a1 4F2A Oct4-GFP triple transgenic
mouse system [67]. Importantly, they found that the crosstalk between the prior recog-
nized LIFR/GP130-STAT3 and EGFR/Erb2-Erk1/2 signal transduction pathways made
the route decision (Figure 3B). As they used the extracellular domain of E-cadherin (NTF1)
to serve as a signaling molecule for modulating both of the paths mentioned above, the
final route-to-be-taken decision depends on the candidate MEFs according to the output
of the LIFR/GP130-STAT3 and EGFR/Erb2-Erk1/2 pathways. Thus, under the scenario
of typical OSKM expression, the stochastic route will be taken preferentially. In contrast,
the deterministic process will be adopted in the presence of the extraneous E-cadherin
recombinant protein (NTF1).

Accordingly, the entry mode selection at the onset of somatic reprogramming mainly
depends on the differential outputs of pSTAT3 and pErk1/2 influenced by its residing
microenvironment, if they are not the only determinant factors. Intriguingly, this is the
same pathway functioning at the late reprogramming transition states [69–71]. Thus, by
manipulating both pathway outputs, one can leverage the action mode toward one or
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the other, the stochastic or the deterministic, and vice versa [67]. In this vein, the mode
choice will depend on that particular moment of cell state at the reprogramming onset,
which is affected mainly by the microenvironment. Thus, context-specific eliteness can
also be a deterministic element contributing to cellular reprogramming by dominating the
reprogramming niche. As Liu’s results depicted that neither route choice increases the
proliferation rate nor affects the reprogramming kinetic, different MEF subpopulations
may likely participate in different reprogramming modes. It would be interesting to see
whether the cells gaining pluripotency are the same subpopulation under different action
modes and whether other cell types besides MEFs warrant the same rule.

Recently, Shakiba et al. combined cell-barcoding and lineage-tracing strategies to
demonstrate that the resultant iPS clones arise from the poised MEF subpopulation with
a Wnt1-expression [72]. Moreover, such Wnt1-bearing cells, presumably representing
a neural crest population, dominate to gain the reprogramming niche [72]. Like MEF,
reprogramming human somatic cells to pluripotency remains inefficient due to the lack
of mechanistic understanding. It has been reported that a two-phase process is observed
in human somatic reprogramming, i.e., a prolonged stochastic phase followed by a rapid
deterministic phase. In this vein, the early stochastic process is the rate-limiting step
governing the success of gaining pluripotency. To unravel the early stochastic mechanism,
Chung and colleagues adopted the approach of single-cell transcript profiling along with
mathematical modeling to demonstrate that the stochastic phase is an ordered probabilistic
process with independent gene-specific dynamics [73]. Furthermore, their results indicated
that chromatin modifiers could be used to discern whether reprogramming cells are on a
successful reprogramming trajectory. Thus, human somatic reprogramming is consistent
with the notion above in mice, in that chromatin remodeling plays a pivotal role in somatic
reprogramming [73]. As the onset of the route choice serves as a significant factor in the
reprogramming efficiency, understanding such vital events and following reprogramming
phases will give better insight into the reprogramming process at the molecular level.

5. The Routes—Stepwise Phases of Reprogramming Mechanism
5.1. The Pros and Cons of Different Transgenesis Systems Used in iPSC Production

As the robust expression of Yamanaka factors warrants the success of pluripotency
acquisition, the retrovirus-mediated transgenesis system serves as a routine basis for iPSC
production in most laboratories due to its high infection rate and robust transgene expres-
sion. However, the action of retrovirus-based transgenesis results in transgene insertions,
which may create unwanted mutations and affect genome stability. Although episomal
vector-, chemical-, protein-, and mRNA-based reprogramming strategies alone avoid the
insertion of transgenes, the reprogramming efficiency is low and may require multiple
Yamanaka factor introductions during the process of induction [14,74–78]. Following the
awakening of Sleeping Beauty, this ignites the hope for advancing non-viral-based gene
therapy to routine clinical applications and using mammalian transgenesis for functional
genomics [79–82]. Our pioneering works have also demonstrated that piggyBac is a flexible
and highly active transposon compared to Sleeping Beauty, Tol2, and Mos1 in mammalian
cells [83,84]. Nagy’s lab first adopted piggyBac transposon and demonstrated the transgene-
free iPSC production in mice [85,86]. Furthermore, Vallier and colleagues adopted the
piggyBac traceless removal property to successfully correct alpha1-antitrypsin deficiency
in mouse iPSC [87]. To avoid the mutagenesis occurrence derived from transgene insertion,
several episomal plasmid and viral systems have developed; for example, the plasmid
carried a human Epstein−Barr virus (EBV)replication origin [88] or the Sendai virus [89,90].
Thus, one could have a sufficient Yamanaka factor expression and remove the transgene
after the cell acquires its pluripotency.

Another concern regarding the efficiency and completeness of reprogramming is the
dosage of each driving factor and their combinations. As the developmental potential
of iPSCs is greatly influenced by reprogramming factor selection, one major determinant
of iPSC quality relies on the variety of reprogramming factors used [91]. To avoid the
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complicated genetic background in humans, Churko and colleagues generated hiPSC
from the same human primary fibroblast using six different reprogramming methods as
mentioned above [92]. Although all of the hiPSC lines produced from different approaches
could proceed to differentiation, the resulting transcriptomes are displayed differently
due to various epigenetic signatures [92]. Further studies on other isogenic fetal organs as
reprogramming cell sources have demonstrated that all tissue-specific DNA methylation
patterns might confer a comparable DNA methylation configuration as the existing hiPSC
lines [93]. However, brain-specific DNA still preserved its epigenetic memory, leading
to a higher propensity to differentiate to its neural origin [93]. Thus, tissue-specific DNA
methylation patterns might affect the completeness of reprogramming [93].

Furthermore, the stoichiometry of reprogramming factors also played an essential role
in reprogramming [94]. For example, combining a higher expression of Oct4 and Klf4 with
a lower c-Myc and Sox2 generated all-iPSC mice efficiently because the imprinting at the
DLK1-Dio2 locus was typically maintained. Although the loss of imprint at the DLK1-Dio2
locus still produced iPSC, the all-iPSC mouse cannot be efficiently made [94]. Thus, the
stoichiometry of the reprogramming factors governed the quality of iPSC by preserving
its proper imprinting at the DLK1-Dio2 locus [94]. Despite the advances in assembling
the ideal factor set for obtaining high-quality iPSC, various studies have reported the
accumulation of abnormalities in the reprogrammed genome. These genetic and epigenetic
aberrations are well documented, including DNA methylation pattern alteration, parental
imprinting, and X chromosome inaction [95]. Therefore, advancing the transgenesis system
with adequate reprogramming factor combinations and cell sources are a future direction
for iPSC’s clinical applications.

5.2. The Transgene-Based Somatic Reprogramming

Most of the reprogramming experiments have done using the transgene-based strat-
egy. Herein, we focus on delineating the transgene-based mechanism of reprogramming in
a stepwise manner. Several efforts, including genome-wide analyses of the transcriptome,
proteomics, metabolism, and epigenetics, have focused and attempted to unravel the so-
matic reprogramming mechanism by identifying its stage-dependent landmarks [5,96–100].
The transcription profile of those tested transgene-based iPSC (tgiPSC) lines displays a high
similarity to ESC and a considerable contrast to its tissue origin. However, Daley and col-
leagues found different tissue-derived iPSCs harbor residual DNA methylation signatures
resembling the pattern of their somatic tissue origin [101]. Such an iPSC with a residual
epigenetic memory of the donor tissue facilitates its differentiation to the original cell type
rather than the other unrelated lineages. In contrast, SCNT displays pluripotency ground
state establishment more readily than factor-based iPSC reprogramming [101]. Hence,
the phenomenon of epigenetic memory is mainly due to the incompleteness of somatic
reprogramming. To explore potential markers indicating a complete epigenetic memory
erasure, Hochedlinger and colleagues verified that the imprinted Gtl2 gene expression
should ensure all-iPSC mouse production via tetraploid complementation. Such findings
are consistent with the developmental roles of the Dlk1–Dio3 gene cluster [99]. Further-
more, ascorbic acid was shown to preserve the imprinting status of the Dlk1-Dio3 locus
and to improve iPSC efficiency, while it was supplemented in a culture medium [102,103].
Altogether, a tissue’s origin can strongly influence the epigenetic status and biological
properties of the resultant iPSCs. The presence of vitamin C during the reprogramming
process substantially improves both the efficiency and quality. The effect of vitamin C is
thought to act as TET’s cofactor modulating its enzyme activity through promoting TET
folding and FE(II) recycling [104–106].

As reprogramming is an asynchronous process containing a heterogeneous population,
the bulk population-based approaches impeded the sequential and timely dissection. Such
an asynchronous and heterogeneous nature mainly derives from the Yamanaka factors’
expression dosage or the early reprogramming route choice, which are not mutually
exclusive [2,62]. Therefore, gaining temporal control of the transgenes’ expression and
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generating a “reprogrammable system” for iPS-transgenics will vastly ameliorate such
issues [99,107,108]. Two labs applied this regulatable iPS-transgenic mouse and reported an
in-depth analysis on dynamic profiling of proteome and transcriptome of reprogramming
MEFs into iPSCs [5,109]. After analyzing approximately 8000 proteins, Hansson and
colleagues uncovered a two-step resetting of the proteome during the first and last three
days of reprogramming over a two-week interval, while more subtle changes occurred in
the intermediate phase [5].

Furthermore, the biphasic protein expression profile derived from the ontology anal-
ysis displays a highly coordinated fashion with functionally related proteins [5]. Coinci-
dentally, Hochedlinger and colleagues applied the same system to perform genome-wide
transcriptome analysis, and witnessed that two transcriptional waves were concomitantly
expressed along with the Yamanaka factors during reprogramming [109]. Apart from the
observations from the sing-cell expression analyses, their data suggest that iPSC formation
follows an early and late deterministic phase separated by a more probabilistic phase [61].
The action mode inconsistency observed in cellular reprogramming may reflect the nature
difference in population- vs. single cell-based analyses. Nevertheless, the point of agree-
ment from those studies demonstrated that reprogramming is a stepwise event through
tightly temporal control of those functionally related molecular networks.

Identifying the different factors that participate in the various stages will improve
the efficiency and completeness of the somatic reprogramming. In addition, an orderly
reprogramming process helps identify distinct hierarchy regulatory networks governing
each different reprogramming phase [61,110–112]. Most of the reprogramming studies
adopted MEFs as the initial cell source. Based on the MEF-mediated iPSC formation,
the current consensus of the primarily reprogramming process constitutes three essential
phases: initiation, maturation, and stabilization (Figure 4, left panel). The molecular event
at each stage was addressed as follows.
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iPSC (tgiPSC) formation, including the initiation, maturation, and stabilization phases. In this case, the first encountered
obstacle is unlocking the fibroblast fate for MET. By contrast, chemical-based reprogramming adopts a different route
(CiPSC; right panel). Instead of proceeding to MET, it first adopts the XEN-like cell fate by expressing the XEN-subnetwork
genes. Subsequently, the network relays to the 2C-like program before acquiring the pluripotency circuitry. Although
several recent reports have observed transient 2C-like programs during the process of tgiPSC, more evidence is needed
in order to support whether such a 2C-like transit state is mandatory for tgiPSC formation [113–115]. Nevertheless, the
common theme for both approaches shows that stepwise cell fate transitions are achieved through relaying to different
regulatory networks during its progression. Essential markers and specific hallmarks of each phase of reprogramming
are indicated.

5.3. The Initiation Phase

Based on the extensive transcriptome profiling of those reprogramming fibroblasts in
the bulk culture, the loss of fibroblast identity (e.g., a highly expressed surface antigen Thy1
in fibroblasts) accompanied with cell morphology alternation was observed at this stage by
engaging the mesenchymal-to-epithelial transition (MET). Such a signature is characterized
by losing the expression of Snail1/2 and Zeb1/2 and gaining the epithelial makers [3]. The
induction of miRNA-200 family members, Epcam, and Cdh1 indicates a cell fate change
through waning the TGFbeta pathway [110,116,117]. One of the critical events underscores
the needs of the Tet1, 2, and 3 activities during the initiation phase of chromatin remodeling
as activation of the miR-200 family requires Tets [118]. After overcoming the barrier of
MET, reprogramming cells acquire proliferation capability and refuted apoptosis, allowing
for replication-mediated epigenetic modification [56,58,59]. During the MET process, the
loss of Thy1 and CD44, accompanying the gain of alkaline phosphatase and SSEA1, are
typical changes observed in MEF-based reprogramming [3,109,110]. As various routes may
take place at the beginning of reprogramming, gaining the expression of SSEA1 does not
guarantee the SSEA1+ cells will eventually become iPSCs at this stage. In general, upregu-
lation of the genes related to cell proliferation, metabolism, and cytoskeletal organization
is observed at this stage, whereas development-related genes are mainly downregulated
through histone modifications. Intriguingly, DNA methylation rearrangement does not
occur at this moment until a later phase of reprogramming [109]. Although this initial
process may follows various routes, it does not seem to hurt the process as long as it meets
all the initiation phase’s modifications [61].

5.4. The Maturation Phase

The onset of the maturation phase is characterized by the pluripotency genes’ ex-
pression, especially Oct4, Fbxo15, Nanog, and Sall4 [5,109,110]. Most importantly, only a
subset of pluripotency genes, but not all, is associated with the maturation phase. This
phenomenon indicates that a sequential event must be strictly followed during the progres-
sion of this phase. However, again, the appearance of the pluripotent markers mentioned
above has not yet assured the completeness of somatic reprogramming [61,109].

Another essential feature of the late reprogramming event is transgenes’ silence. Such
a phenomenon indicates the cells are situated in a transit-competent state and are ready to
enter the next stabilization phase [110]. A crucial regulatory network has been identified to
survive these reprogramming candidates after transgene suppression. Again, at this stage,
even the presence of Oct4 or Nanog, assuring self-renewal independent from transgenes,
does not warrant successful reprogramming. The function of such a regulatory network
mainly engages a subset of pluripotency-associated factors from a suppressive state to a
poised manner via alternation of the DNA methylation pattern [109]. Thus, the maturation
phase involves a time-consuming molecular reactivation event. The recruitment of poly-
comb group and NuRD complex may partially explain such a stepwise factor-activating
event at this unique stage [30,39,68,119]. However, how such a sequentially activating
process compensates for the loss of the Yamanaka factors to stabilize the maturation state
remains elusive.
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5.5. The Stabilization Phase

The transit from the maturation to the stabilization phase will acquire additional
pluripotent factors, such as Utf1, Lin28a, Dppa2, and Dppa4, to relay the pluripotent state
after losing the transgene [3,96,120–122]. Meanwhile, numerous epigenetic alternations
are concomitantly accomplished. These changes, including restoring telomere length,
reactivating the X chromosome, and resetting the cell type-dependent residual epigenetic
memory, are primarily achieved through DNA methylation rearrangement [3,56,123]. This
progressive DNA methylation reconfiguration starts from the late onset of maturation
and spreads throughout the entire stabilization phase. Several participants, for example,
AID, TET family, and DMNTs, are responsible for epigenetic landscape remodeling at this
stage [109].

5.6. The Chemical-Based Somatic Reprogramming

The reprogramming mechanism mentioned above is seen from the transgene-based
somatic reprogramming. Recently, Deng’s group successfully developed a chemical-based
reprogramming approach to produce an integration-free and oncogene-free pluripotent cell
in humans and mice, namely chemically induced pluripotent stem cells (CiPSC) [49,124].
As can be expected, alternative approaches may result in different route choices during
reprogramming (Figure 4, right panel). For example, a sequential XEN-like intermediate
(i.e., Gata4, Gata6, Sall4, and Sox17) followed by the two-cell-like state (2C-like) (i.e.,
Zscan4, Tcstv1, Dppa, and Oct4) was reported before reaching the bona fide pluripotency in
CiPSC [50,52,124–126]. However, CiPSC takes somewhat different routes from the OSKM
transgene-mediated reprogramming process, transiently expressing the 2C-like gene set, of
note, which is the most intriguing part of this reprogramming process. Several transgene-
based studies also observed a transient entry of the 2C-like state [113–115]. The progression
of reprogramming creates high heterogeneity, impeding the identification of a small fraction
of cells in the iPSC-forming course through the traditional bulk RNA-profiling. Dissecting
such sophisticated biological processes will need a single-cell resolution to capture such
rare events. Perhaps for this reason, the earlier engagement of bulk transcriptome analyses
failed to identify the subpopulation situated in such a state (Figure 4, right panel).

Alternatively, trespassing the 2C-like state may reflect a nonspecific event created by
an unstable epigenome during the genome-wide demethylation process at the late stage of
reprogramming. Regarding this issue, Deng’s group adopted a high-resolution scRNA-seq
to dissect the process of CiPSC from MEF. The reprogramming process was arranged
through a pseudo-timing analysis into three stages (i.e., stage I, II, and III). The 2C-like
program falls into stage II, accompanying the occurrence of global hypomethylation. Those
upregulated genes in the 2C-like stage, including Dppa2, Dppa4, Klf2, Zscan4, Gm13154,
and Tcstv, were reminiscent of a two-cell embryo’s expression profile. Furthermore, sub-
stantially enhancing the 2C-like program accelerates CiPSC formation, verifying that the
2C-like program indeed serves as a driving factor of the late transition [52].

Recently, the observed metastable states of ESC shuttles reversibly between the 2C-
like and pluripotent state, providing a unique mechanism in maintaining the genome
integrity of ESC in vitro [127]. Because of the 2C stage-specific expression of Eif1a inhibiting
DNMT protein synthesis, the resultant genome-wide hypomethylation at the 2C-like stage
may facilitate epigenome-resetting and, in turn, endow the following naïve pluripotency
establishment [128,129]. Although a pluripotent state can be achieved by different route
choices (tgiPSC vs. CiPSC), the ordered phases during each reprogramming progression
can be unambiguously discerned. The agreement point of the alternative route-taken,
as mentioned above, is that relaying a unique transcript circuitry to another designated
transcript network is the way to accomplish cell fate transition.

5.7. The Distinctive and Common Phases between tgiPSC and CiPSC

The formation of both tgiPSC and CiPSC are all temporally organized multistep
processes, where the sequential epigenome conversion results from linking the distinct
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molecular networks [111]. In the sense of tgiPSC, an existing single master regulatory
gene, like MyoD for myogenesis, is unlikely to be the case at each step of stemness-
gaining. More likely, each step (i.e., initiation (MEF), MET, pre-iPSC, maturation, and
stabilization (iPSC)) may contain molecular circuitry to stabilize that individual cell state
with a corresponding epigenomic configuration. The transit between phases will coordinate
the changes of each stage-specific molecular network along with its epigenome conversion.
Hence, the progressive relay in each step toward pluripotency is expected to encounter
the stage-specific barrier and needs to be rewired from one molecular network to another
state-specific circuitry. Accordingly, leveraging each stage-specific molecular network by
overexpressing its primary player(s) will uplift the molecular network in a transit phase
for the subsequent network re-arrangement, while proceeding toward pluripotency.

In the case of CiPSC, the transit of cell states is not driven by the ectopic expression
of the transcription factor set. Instead, it promotes or represses specific pathways at each
step through different small molecular cocktails in order to create a permissive chromatin
configuration. Consistent with the two-way relationship, exerting a mutual effect to
promote reprogramming by transcription factors and chromatin modifiers, a 16–24 day
prolonged process is required for CiPSC formation [52]. A distinctive difference between
tgiPSC and CiPSC is the route choice, where CiPSC first passes the XEN-like state but
not MET. The subsequent occurrence of global DNA hypomethylation resulting from the
Ci2C-like state entry is required in order to achieve its final pluripotent state. Although
some tgiPSC studies have reported that the 2C-like state is also needed, as mentioned
above, the disagreement is still unsettled [113–115]. Nevertheless, Dppa2 and Klf2, the
significant components in the 2C-like state, appear in the tgiPSC stabilization phase and
may correspond with this possibility. Of note, the Ci2C-like state, 2C-like state, and 2C
embryo all share similar expression profiles, but neither are identical. Understanding
molecular network rewiring during each transitional stage in different approaches will
shed light on how the plasticity of the genome is established and how efficient, precise
reprogramming can be achieved.

6. Reprogramming beyond Pluripotency
6.1. The 2C-like State

While unraveling the pluripotency acquisition mechanisms and route choices, several
attempts have concomitantly focused on further surpassing the pluripotency boundary
to reach a totipotency-like summit state of a differentiation capability. In 2012, Macfarlan
and colleagues reported a rare transient population within ESC clones presenting two-
cell-like (2CLC) features in the serum/LIF culture system. As 2CLC was named after its
shared features with the two-cell stage embryo, such an expended ESC’s plasticity can
readily serve as an in vitro totipotency model [130,131]. More supporting evidence from
the in vivo reprogramming experiment observed that the generated iPSCs acquire their
totipotency features besides producing a three-germ layer in the derived teratomas [132].
These cells, however, cannot be stably maintained in an in vitro culture system, as it failed
to test their developmental potential as totipotent cells. Thus, such an oscillating transit of
cell fate between the 2CLC totipotent-like to the pluripotent state reflects the failure of the
current culture system to capture such a unique 2CLC state.

6.2. Expanded Potential Stem Cell—An In Vitro Captured 2C-like State

In 2017, two groups independently established chemical cocktails for those extended/
expanded pluripotent stem cells (collectively known as EPS cells (EPSCs)), which allowed
for their stable long-term maintenance and conferred a totipotency-like competency in
mESC, hESC, and the human fibroblast-derived iPSC [133,134]. Interestingly, even though
those EPSCs displayed an increased developmental potential, their global gene expression
pattern varied from two- to four-cell morula stage embryos. Therefore, those EPS cells
have a unique cell state similar to, but distinct from, 2CLCs and 2C embryos. Of interest, al-
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though both 2CLCs and EPSCs can form extraembryonic tissues in chimeras, as their names
suggest, 2CLCs, in contrast to EPSCs, do not express extraembryonic markers [135,136].

As mentioned above, hiPSC can be used to advance to the totipotent state under those
unique cultural conditions. However, it has not been shown that is can reach totipotency
directly from a highly differentiated fibroblast cell in one step. Further modifying the
transgene combinations may be possible as it has been demonstrated that overexpressing
a single Axin gene in mESC can obtain mEPSC in EPSCM (the medium containing the
cocktail of inhibitors and LIF for the expanded potential stem cell) [133]. Despite these
mice and human EPSCs contributing to the extraembryonic structure in chimeric mouse
embryos, individual EPSC is unlikely to produce an animal independently. Thus, the above-
defined “extended” or “expanded” potency only displays certain traits of totipotency, apart
from the traditional definition of totipotency in development. In line with pluripotency’s
historical term, Redó Riveiro et al. have suggested the term “experimental totipotency” to
address a cell’s differentiation capacity, contributing to both embryonic and extraembryonic
tissues in a chimera experiment [137].

7. Reprogramming to Generate Germ Cell

A zygote, the fertilized egg, is a genuine totipotent cell capable of forming an en-
tire organism independently [138]. After fertilization, the sperm pronucleus is triggered
to reprogram through the maternal factors in the ooplasm. Similarly, both SCNT and
heterokaryon exposed their differentiated nuclei in the ooplasm or ESC’s cytosol, where
plasma factors initiated the process of reprogramming. However, somatic reprogramming
to reach such zygotic totipotency may have difficulties, because the reprogrammed cell
hardly gets the cell size, epigenomic landscape, and maternal contents as seen in a zygote
or a blastomere of the pre-implantation embryo. Reprogramming to generate the male and
female gametes is thus an alternative way to reach totipotency.

As germ cells play a role in linking generations and are a mediator of evolutionary
forces in natural selection, their epigenetic organization plays an essential role in per-
petuating an organism’s life cycle and representing its adaptive outcome. During early
development, primordial germ cells (PGCs), the founder cells of the sperm and egg, are
specified and relocated to the gonad to acquire further maturation instructions. Despite the
existing differences between mouse and human germlines regarding their origin, genetic
networks, and maturation phases, the process of mouse gametogenesis still serves as a valu-
able, informative model to compliment the unavailability of human counterparts [139,140].

Understanding the timing of the primordial germ cell’s (PGC) presence and the
surrounding microenvironment inputs during embryogenesis will help reconstitute germ
cell development in vitro using PSCs as the starting materials. As such, both male and
female mouse primordial germ cell-like cells (mPGCLCs) were induced from Epiblast-like
cells (EpiLCs) and gave rise to fertile offspring after transplanting into the testis and under
the ovarian bursa, respectively, of an immunodeficient mouse [141,142]. Furthermore,
mPGCLCs were successfully differentiated into primary oocytes at the secondary follicle
stage while co-cultured with embryonic ovarian somatic cells (the reconstituted ovaries
(rOvaries)) [143]. Similarly, in vitro spermatogenesis was generated from reconstituted
testis (rTestis) from mPGCLCs [144]. Those reconstituted gonad culture systems further
provide adequate niche support to produce fertile offspring.

Recently, a xenogeneic rOvary was established by aggregating hiPSC-derived hPG-
CLCs with mouse embryonic ovarian somatic cells. Over 3~4 months of co-culture, hPG-
CLCs underwent genome-wide DNA demethylation and were differentiated into retinoic
acid-responsive human fetal germ cells (FGCs). FGC is an immediately precursory state
for meiotic oocytes, equivalent to the 12th week of human development. However, FGCs
failed to enter meiosis to complete their differentiation further [145]. The most recent
study showed that hPGCLC co-cultured with the mouse embryonic xenogeneic rTestis
and was differentiated into prospermatogonia [146]. Nonetheless, it is critical to scrutinize
the potential genome mutations and epigenetic abnormalities during each in vitro process
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of amplification and differentiation [143,144]. Thus, following the developmental track
of fertilization through the iPSC-derived sperm and egg, one can now reach a bona fide
totipotency in the mouse embryo, which can be expected in humans soon.

8. The iPSC-Based Disease Modelling and iPSC Therapy in Clinical Trials

Since iPSC provides an unprecedented opportunity to model diseases, reprogramming
technology has been adopted to study the etiology of previously inaccessible diseases. Due
to the incomplete removal of residual epigenetic memory, it tends to differentiate toward
its original cell type. The iPSC-derived phenotypic cell often exhibits immature functional
characteristics, a reminiscence of its respective embryonic or fetal phenotypic cells, and
accompanies a heterogeneous population. Thus, iPSC-mediated disease modeling has been
applied more adequately for those early-onset diseases, but less successfully in late-onset
ones due to lacking the adult maturation characteristics. For example, both the early-onset
disease modeling of long QT syndrome and spinal muscular atrophy have been successfully
established [147,148].

Of note, the process of somatic reprogramming may accumulate genetic aberrant, in-
cluding chromosomal abnormalities, copy number variants, and genetic instability during
a prolonged culture time, which is needed for epigenetic re-configuration and expansion.
Furthermore, avoiding the potential tumorigenicity resulting from incomplete differentia-
tion induction as well as heterogeneity, one, therefore, will need to seriously consider if the
cells will be used for cellular transplantation; iPSCs are capable of forming teratomas and
malignant tumors, such as neuroblastoma and follicular carcinoma, if the undifferentiated
pluripotent state was introduced into the patient [121] (Okita et al., 2007). Thus, strict
guidelines will need to define the acceptable quality of iPSCs and their differentiated
derivatives for safe and effective clinical applications.

Another practical concern will be the cost of the customized iPSC-mediated therapy,
as it has been estimated to cost approximately USD 800,000 to have a tailored clinical-grade
iPSC [149–151]. To use iPSC-mediated cell therapy, one may consider using allogeneic iPSC-
derived cell sources via cell banking instead of adopting an autologous iPSC therapeutic
strategy. It will be much approachable to establish a limited number of approved iPSC
lines with various human leukocyte antigen (HLA)-homozygous donors. These lines
can be subject to regulatory clearance via vigorous tests on their genome stability, viral
contamination, differentiation capability, and tumorigenicity [149,150]. Thus, the idea
of haplobanking of HLA-homozygous iPSCs was spawned [152–154]. Notably, the first
clinical trial led by Dr. Masayo Takahashi used autologous iPSC for treating neovascular
age-related macular degeneration (AMD). This novel therapeutic modality transplanted
the iPSC-derived retinal pigment epithelial (RPE) cells [155]. Two patients were admitted
to this first-ever iPSC clinical trial. However, the second patient did not obtain the cell
replacement trial due to the identification of genetic alternations in both iPSCs and iPSC-
derived RPE cells. One year after surgery, the visual acuity had not improved or worsened
in the first patient, even though the transplanted sheet remained intact. Although the trial
did not display a beneficial effect, it demonstrated the introduction of iPSC-derived RPE
cells did not raise a deterioration effect.

9. Conclusions

Along with unraveling reprogramming’s mechanism and advancing versatile iPSC
technologies, the potency of the reprogrammed cell has been further extended in recent
years. Besides being a three-germ-layer differentiation capacitating cell, one can reprogram
somatic cells beyond pluripotency by generating the EPS cell types to reach the experi-
mental totipotency state [133,134]. Although the experimental totipotency can generate
the extraembryonic cell types, those cells (i.e., 2CLC and EPSC) cannot form an organism
independently as a zygote. Germ cells and the followed early preimplantation embryos
after fertilization are the genuine totipotent cells bridging the generations for species prop-
agation. The recent excitement on coaxing mESC and miPSC generates female and male
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gametes in vitro, and subsequently, producing fertile offspring is a pivotal breakthrough in
stem cell and reproductive biology. Although the xenogeneic rOvary system made human
FGCs from the hiPSC-derived hPGCLC, FGCs failed to enter meiosis to get maturation
further [145]. One could expect such a problem will be solved shortly. In that aspect,
the related ethical issues and regulations will have to catch up with the fast pace of such
scientific advances.

Since 2014, a burgeoning number of iPSC clinical trials have been launched to test
their therapeutic effects in different diseases. The first clinical trial, led by Dr. Masayo
Takahashi, RIKEN center in Kobe, Japan, involved transplanting iPSC-derived RPE cell
sheets into macular degeneration patients. Following the trial, several BioTech companies
also initiated trials for their iPSC-derived therapeutic products across multiple therapeutic
areas, including CAR-T, COVID-19, Parkinson’s disease, etc. (Global induced pluripotent
stem cell (iPS Cell) industry report 2021). Although the expected therapeutic effect has not
been reported after reaching clinical trials’ endpoint, regenerative medicine is believed to be
the future trend at the bedside. Furthermore, as somatic reprogramming is one of the rapid-
pacing fields in modern biology, understanding the current concepts and correspondingly
supported evidence in this field will be instrumental in tackling the emergent issues or
difficulties encountered in the future.
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