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Simple Summary: The tumor microenvironment (TME) is a complicated network, and several
promising TME-targeted therapies, such as immunotherapy and targeted therapies, are now facing
problems over low response rates and drug resistance. Vitamin C (VitC) has been extensively studied
as a dietary nutrient and multi-targeted natural drug for fighting against tumor cells. The focus
has been recently on its crucial functions in the TME. Here, we discuss the potential mechanisms of
VitC in several specialized microenvironments, characterize the current status of its preclinical and
clinical applications, and offer suggestions for future studies. This article is intended to provide basic
researchers and clinicians with a detailed picture of VitC targeting the tumor microenvironment.

Abstract: Based on the enhanced knowledge on the tumor microenvironment (TME), a more compre-
hensive treatment landscape for targeting the TME has emerged. This microenvironment provides
multiple therapeutic targets due to its diverse characteristics, leading to numerous TME-targeted
strategies. With multifaced activities targeting tumors and the TME, vitamin C is renown as a promis-
ing candidate for combination therapy. In this review, we present new advances in how vitamin C
reshapes the TME in the immune, hypoxic, metabolic, acidic, neurological, mechanical, and microbial
dimensions. These findings will open new possibilities for multiple therapeutic avenues in the fight
against cancer. We also review the available preclinical and clinical evidence of vitamin C combined
with established therapies, highlighting vitamin C as an adjuvant that can be exploited for novel
therapeutics. Finally, we discuss unresolved questions and directions that merit further investigation.

Keywords: vitamin C; anti-immunity; dietary intervention; drug repurposing; tumor microenvironment

1. Introduction

Cancer is a complex systemic disease, and current strategies for cancer treatment
combine surgery, radiotherapy, chemotherapy, and other modalities. The tumor microen-
vironment (TME) is a highly heterogeneous micro-ecosystem composed of surrounding
immune cells, fibroblasts, vessels, and the extracellular matrix (ECM). It provides con-
stant growth-stimulating signals and nutritional support to the cancer cells embedded [1].
Therefore, the TME is considered as a new therapeutic target to inhibit tumor growth,
metastasis, and drug resistance. At present, the pattern for cancer treatment has gradually
switched from a cancer-centric model to a TME-centric one. Of these, immunotherapy and
targeted therapies have achieved impressive success, but are also obstructed by various
barriers. Immunosuppression is one of the most important hallmarks of TME. Tregs, tumor-
associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) infiltrate
into the TME and secrete large amounts of immunosuppressive mediators. This process
contributes to the tumor effector cell depletion and M1-to-M2 phenotype conversion. In
addition, poor angiogenesis is often related to intratumoral hypoxia, low pH, and high
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pressure. Based on the characteristics of the TME, our laboratory has recently divided the
whole complex TME into six specialized microenvironments, namely, immune microen-
vironment, metabolic microenvironment, hypoxic niche, acidic niche, innervated niche,
and mechanical microenvironment [2]. Classifying the TME according to its characteristics
paves the way for further designs of targeted therapeutic strategies. Growing evidence
suggests that the gut and tumor microbiota and their metabolites play complex roles in
tumorigenesis and treatment responsiveness, both directly and indirectly. Thus, the mi-
crobial microenvironment is emerging as a seventh specialized TME that determines the
direction of cancer progression [3]. These specialized microenvironments crosstalk with
each other and interact with the whole organism to form a cancer ecosystem (Figure 1).
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Figure 1. Sources of tumor microenvironment (TME). The TME has been divided into seven special-
ized microenvironments to investigate the tumor–stroma interactions: metabolic microenvironment,
immune microenvironment, hypoxic microenvironment, acidic microenvironment, innervated niche,
mechanical microenvironment, and microbial microenvironment (containing gut and intra-tumor
microbiota). These specialized microenvironments engage in crosstalk to work together on the tumor
and the entire organism. Adapted from reference [2]. MDSC, myeloid-derived suppressor cell;
CAF, cancer-associated fibroblast; TAM, tumor-associated macrophage; DC, dendritic cell; ECM,
extracellular matrix; PNI, perineural invasion.

Vitamin C (VitC) (or ascorbic acid (AA)) is not only an essential dietary nutrient, but
a natural agent with multiple therapeutic properties. However, the debate over whether
VitC can combat cancer has been going on for decades, although results remain uncertain
and controversial [4,5]. In recent years, preclinical studies have uncovered the novel
mechanisms of VitC in epigenetic, immunomodulatory, and selective cytotoxicity. Hence,
VitC is back to the forefront as an adjuvant to assist various cancer treatments. Repurposing
VitC is an effective and promising combination option to target the TME.

In this review, we briefly describe the anticancer potential of VitC as a repurposed
drug and then we explain the novel mechanisms of how VitC targets the specialized
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microenvironments. Finally, we summarize and discuss the most recent advances in its
monotherapy and adjuvant therapy.

2. VitC Is an Example of Repurposed Drugs with Anticancer Activity

Drug repurposing has become an attractive concept due to its low cost and high safety
profile. VitC shows outstanding anticancer potential among related conventional drugs.
Chen et al. recently implemented an umbrella review to assess the association between VitC
intake and cancer incidence and prognosis. This study of 3562 articles (from systematic
reviews and meta-analyses) on 22 tumors has demonstrated that VitC intake was negatively
associated with the incidence of 11 tumors in multiple organ systems, along with better
cancer outcomes in breast cancer patients when supplemented with VitC [6]. Consistent
with this conclusion, another umbrella study that included 76 meta-analyses has shown
that VitC supplementation resulted in dose-dependent reductions in all-cause mortality
and the risk of various cancers [7]. However, two Nurses’ Health Studies conducted over
32 and 22 years, respectively, showed no association between VitC intake and risk of breast
cancer. This finding is consistent with most previous prospective studies [8]. The current
epidemiological evidence for VitC preventing or treating tumors is inconsistent, requiring
additional support from laboratory and clinical studies.

A large and gradually increasing number of cell lines, animal, and clinical studies
have reported positive results (Table 1). In various cancer cell lines, especially lymphoma,
the pharmacological dose of VitC acts as an H2O2 pro-drug in tissues, selectively inducing
apoptosis or necrosis in cancer cells without impairing normal cells [9]. In KRAS and BRAF
mutant colorectal cancer cells, Yun et al. elucidated that dehydroascorbic acid (DHA) enters
the cell via GLUT1 and is then reduced to AA at the expense of GSH oxidation and GAPDH
inactivation. This phenomenon leads to lethal oxidative damage and energy crisis [10]. For
the hematologic tumors and some solid tumors, such as melanoma, VitC inhibits tumor
growth and even reverses malignant transformation through epigenetic regulation of gene
expression profiles [11,12]. Melanoma and breast cancer in VitC-deficient mice exhibited
a higher propensity for invasiveness and metastasis, while restored VitC inhibited those
malignant behaviors [13]. In ovarian cancer, the combination of VitC with carboplatin
and paclitaxel suppresses xenograft growth and possesses considerably stronger efficiency
than chemotherapy alone. Intravenous VitC (IVC) also alleviates chemotherapy-related
adverse effects in clinical patients [14]. In addition, many completed and ongoing ran-
domized controlled trials have been designed to explore the impact of IVC or oral VitC on
cancer treatment and prognosis (Available online: https://clinicaltrials.gov (accessed on
20 May 2022)).

https://clinicaltrials.gov
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Table 1. Selected studies on the effects of different doses of VitC to target cancer cells and TME.

Category Study Type(s) VitC Dose and Administration Main Mechanism Findings Reference

cancer cells

Multiple cancers cell line 0–20 mM pro-oxidant
Pharmacologic VitC selectively kills multiple
cancer cells by initiating the production of
extracellular H2O2

[9]

KRAS or BRAF mutant CRC cell line and animal 0–3 mM (in vitro); 4 g/kg, i.p.
(in vivo) pro-oxidant

DHA, the oxidized form of VitC, exhibits
selective toxicity by elevating ROS to disrupt
cancer cell metabolism

[10]

Breast cancer cell line 0–10 mM pro-oxidant

VitC dose-dependently regulates the
p66Shc/Rac1 pathway, which in turn induces
apoptosis through ROS overexpression in
cancer cells

[15]

Melanoma cell line 0–2 mM DNA demethylation

Physiological concentrations of VitC inhibit
melanoma migration and malignant
transformation by increasing 5hmC levels
without damaging normal melanocytes

[12]

Melanoma, Breast cancer animal 500 ppm pVitC, 150 mg/L VitC,
oral hydroxylase cofactor

Oral VitC promotes tumor collagen
encapsulation and reduces mMP-9, IL-6, and
VEGF levels, thereby inhibiting tumor growth
and metastasis

[13]

VHL-deficient ccRCC animal 2 g/kg, i.p.
expression of HIF target genes
is suppressed by enhanced
TET2 activity

VitC inhibits HIF1/2α-mediated tumor
metabolic reprogramming in a TET2-dependent
manner, and increases the efficiency of
glycolysis inhibitor (2-DG) to suppress ccRCC

[16]

TET2 and TP53 mutant
Leukemia cell line 0–500 µM DNA demethylation

VitC inhibits the proliferation of SKM-1 cells
and promotes their differentiation to monocytes
by restoring 5hmC levels

[17]

Leukemia cell line and animal 250 µM (in vitro); 4 g/kg, i.p.
(in vivo) DNA demethylation

VitC reverses aberrant AML self-renewal and
promotes myeloid differentiation through the
restoration of TET2 and TET3

[11]

tumor stromal cells

T Lymphocytes animal 4 g/kg, i.p. -

IVC promotes T cell differentiation, maturation,
and immune memory formation, thereby
increasing intra-tumor infiltration and immune
responsiveness

[18]

CD4+ Tregs cells cell line and animal 100 µg/mL (in vitro) DNA demethylation

VitC was shown to enhance the expression and
stability of Foxp3+ markers in a
TET2/3-dependent manner during iTregs cell
differentiation

[19]

γδ T cells cell line 0–200 µg/mL pVitC DNA demethylation
The derivative pVitC regulates TGF-β-induced
γδ T cell expansion and promotes conversion
to Foxp3+ Tregs cells

[20]
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Table 1. Cont.

Category Study Type(s) VitC Dose and Administration Main Mechanism Findings Reference

γδ T cells cell line 12.5 µg/mL VitC, 50 µg/mL
pVitC -

High concentrations of VitC and pVitC promote
restimulated Vγ9Vδ2 T cell expansion through
an accelerated cell cycle and affect Th1/Th2
cytokine secretion

[21]

Th17 cells cell line 10 µg/mL histone demethylation
In vitro, VitC reduces H3K9me3 levels and
upregulates IL17 expression in a
JMJD2-dependent manner

[22]

B cells cell line and animal 0–20 µM (in vitro); 4 g/kg, i.p.
(in vivo) DNA demethylation

VitC promotes B-cell differentiation and
humoral immunity via enhancing the enzymatic
activity of TET2/3 in vitro and in vivo

[23]

NK cells cell line 50 ng/mL DNA demethylation
Low-dose VitC promotes KIR promoter
demethylation and KIR expression,
representing the maturation of NK cells

[24]

Monocytes cell line 0–500 µM -

VitC induces alterations in monocyte surface
markers, gene expression and protein secretion
in a mimicked hypoxic microenvironment (1%
O2) in vitro

[25]

Macrophages cell line and animal 0–4 mM (in vitro); 2 g/kg,
4 g/kg, i.p. (in vivo) -

High-dose VitC induces apoptosis of M2
macrophages in TME and dose-dependently
inhibits EMT and metastasis in ovarian cancer

[26]

Neutrophils animal 0.33 g/L, oral; 200 mg/kg, i.p. multi-pathways
Oral VitC attenuates NETs formation and
autophagic gene expression as well as inhibits
NF-κB activation

[27]

Neutrophils animal 4 g/kg, oral -
Oral high-dose VitC prevents melanoma
invasion and increases neutrophil infiltration
within the tumor

[28]

DCs cell line and animal 0–2 mM (in vitro); 0.08 mM
vcDC (in vivo) signal molecules modulation VitC increases IL-12 and IFN-γ secretion from

DC cells, which in turn drives Th1 immunity [29]

Fibroblasts cell line 0–20 µM -
VitC regulates the expression of genes related to
ECM remodeling and cell adhesion, thereby
affecting the phenotype of immortalized MEF

[30]

Endothelial cells cell line 0–200 µM multi-pathways
VitC improves endothelial cell dysfunction
through multiple molecules, involving NO,
ROS, RNS, biopterins, and GSH

[31]

Neurons cell line 200 µM signal molecules modulation VitC oxidation induces necrotic apoptosis of
neurons in a ROS-independent manner [32]

Abbreviations: CRC, colorectal cancer; VHL tumor suppressor protein; ccRCC, clear cell renal cell carcinoma; AML, acute myeloid leukemia; NK cells, natural killer cells; DCs, dendritic
cells; EMT, epithelial–mesenchymal transition; NETs, neutrophil extracellular traps; ECM, extracellular matrix; 2-DG, 2-deoxy-glucose; i.p., intraperitoneal injection; VitC, vitamin C;
pVC, phospho-modified vitamin C; IVC, intravenous vitamin C; vcDC, vitamin C-treated DCs vaccination.
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These results suggest that the biological effects of VitC are apparently dose-dependent,
with different concentrations achieved by oral or parenteral administration, exerting mul-
tifaceted anticancer effects. In terms of transport mechanisms, the transmembrane trans-
porters SVCTs and GLUTs transport ascorbic acid and DHA, respectively, and promote
intracellular accumulation in tumor cells and other normal cells. The expression levels of
these two transporters vary by organ and correspond to plasma concentrations, metabolic
needs, and some specific gene mutations [33]. The mechanism underlies the functions as
a cofactor to potentiate HIF, TET, JHMDs, and other hydroxylases, thereby involving a
variety of enzymatic reactions (Figure 2).
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Figure 2. Vitamin C is a multifunctional natural nutrient that exhibits dose-dependent effects. Vita-
min C (VitC) at the physiological dose (µM) is known to exhibit antioxidant properties. However,
it functions as a prooxidant at the pharmacological dose (mM) achieved by intravenous adminis-
tration. VitC also enhances a range of intracellular enzymatic reactions by serving as a cofactor of
monooxygenases (e.g., dopamine β hydroxylase) and Fe (II)- and 2-oxoglutarate (2-OG)-dependent
dioxygenases (e.g., HIF, TET, JHDMs, P-3-H, and P-4-H). Possible anticancer mechanisms include
triggering oxidative damage, regulating epigenetics, blunting adaptive responses to hypoxia, and
synthesizing collagen and neurotransmitters. AFR, ascorbate free radical; DHA, dehydroascor-
bic acid; mMPs, matrix metalloproteinases; GSH, glutathione; GSSG, glutathione disulfide; P-3-H,
prolyl-4-hydroxylases; P-4-H, prolyl-4-hydroxylases; JHDMs, Jumonji-C domain-containing histone
demethylases; TET, ten-eleven translocation; Kme3, trimethyl lysine; Kme2, dimethyl lysine; 5mc,
5-methylcytosine; 5hmc, 5-hydroxymethylcytosine; FIH, factor inhibiting HIF; HIF-PHD, HIF-prolyl
hydroxylase; pVHL, VHL tumor suppressor protein; UPP, ubiquitin–proteasome pathway.
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3. VitC Targets Not Only Cancers but also the TME to Exert Anticancer Activity

Most previous studies have focused on the role of VitC in targeting tumor cells in
isolation. As the effects on neighboring non-tumor cells and their secretions emerge, studies
on the mechanisms underlying the specialized tumor microenvironment will contribute to
a deeper understanding of the impact of VitC in the complex microenvironment (Figure 3).
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Figure 3. Underlying mechanisms of Vitamin C targeting the specialized tumor microenvironments.
The interplay between tumor cells and the TME promotes an aggressive phenotype in various
ways, including immune tolerance, metabolic reprogramming, angiogenesis, and tumor innervation.
Vitamin C (VitC) with multi-targeted effects may reverse the tumor-promoting microenvironments,
displaying a wide range of anticancer activities.

3.1. VitC and Immune Microenvironment

VitC regulates epigenetic processes and signaling pathways to further reprogram
the tumor immune microenvironment (TIME). Numerous studies have investigated the
potential of VitC in modulating immunoreactive and immunosuppressive cells and their
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secretion. Hence, VitC is considered as a promising drug to turn cold cancer (immunosup-
pressive) into hot ones (immunoreactive).

VitC may reverse the immunosuppressive TME at the cellular and molecular levels.
VitC increases the infiltration of T cells in TME and promotes immune memory formation.
Further studies have found that the infiltrated T lymphocytes have an elevated CD8+/CD4+

ratio, reflecting a significant improvement in the antitumor effect [18,34]. During early NK
cell differentiation, VitC increases the frequency of KIR gene expression, a mature NK cell
marker, by enhancing the demethylation of the KIR promoter [24]. High-dose VitC is also
observed to enhance the secretion of perforin and granzyme B by activated NK cells [35].
TAMs are converted to an M2 phenotype in response to immunosuppressive cytokines
within the TME, thereby promoting cancer to overcome immune surveillance. Xu et al.
demonstrated that VitC induces apoptosis of infiltrating M2-type TAM in tumor nodules
and inhibits the epithelial–mesenchymal transition (EMT) in a murine epithelial ovarian
cancer model [26]. Recent findings by Ang et al. suggest that monocyte phenotype-related
gene and protein expression is influenced by intracellular VitC availability. Although
the exact effects are yet to be determined, the authors find some alterations in the M2-
associated gene expression and protein secretion when VitC is added [25]. Tregs cells are
regarded as the primary cells that maintain a state of immune tolerance. Someya et al.
reported that VitC decreases the methylation of CNS2 to promote Foxp3+ expression,
which implies a robust immunosuppressive capacity [36]. Interestingly, the derivative
pVitC induces the expression of the Tregs cell marker Foxp3+ in Vγ9Vδ2 T cells, which
is also epigenetically regulated by TET and in the presence of TGF-β [20]. These results
show the complexity of VitC targeting TIME. VitC also affects the function of other innate
immune cells (e.g., DCs and neutrophils), such as attenuating neutrophil extracellular
trap formation (Table 1). Moreover, immunosuppressive cell products (e.g., IL6, IL17, and
lactate) in the microenvironment are also subjected to VitC, and these products play an
essential role in the TIME remodeling [13,22,37].

3.2. VitC and Metabolic Microenvironment

Under the nutrient-limited microenvironment, cancer cells and stromal cells have a
fierce competition for limited energy sources of glucose and glutamine. Aerobic glycolysis
(Warburg effect) and glutamine addiction confer a selective growth advantage to cancer
cells, whereby inhibiting surrounding stromal cell activity. VitC antagonizes the HIF-
driven glucose metabolic reprogramming from OXPHOS to glycolysis in various cancer
cells. Meanwhile, VitC promotes glutamine synthetase degradation by inducing redox
imbalance, thus attenuating endogenous glutamate-dependent tumor growth in vitro and
in vivo [38,39]. Therefore, VitC may influence the nutrient partitioning in TME, whereas
the effect on other TME cells in a tumor context needs to be further explored.

Beyond energy metabolism, the precise regulation of intracellular and extracellular
ROS levels also decides the fate of tumor cells. Although the oxidative defense system
within tumor cells can precisely regulate ROS levels within the appropriate range, high-dose
VitC uses multiple mechanisms to disrupt the system and destroy the tumor. Accumulation
of ROS in fibroblasts contributes to the conversion to a cancer-associated fibroblast pheno-
type, which pushes the tumor toward invasiveness and progression [40]. The physiological
dose of VitC prevents radiation-induced myofibroblast phenotype by scavenging the ROS
in the fibroblast [41]. The ECM is also under constant oxidative stress due to the chronic
inflammatory stimulation in cancer. Cells, such as Tregs and MDSCs, can release ROS into
the microenvironment, while elevated ROS promotes tumor growth and angiogenesis and
stimulates immunosuppressive cell proliferation in turn [42]. ROS also plays a critical role
in reshaping the ECM and modulating the ECM-tumor cell interface, especially during
the ECM detachment [43]. Using the antioxidant properties of VitC to fight tumors is
controversial because studies have found that some tumors can upregulate antioxidants to
neutralize the ROS and alleviate oxidative stress.
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3.3. VitC and Hypoxic Microenvironment

Hypoxia is commonly observed in solid tumors due to a mismatch between vascular-
ization and tumor growth. Tumor angiogenesis tends to be leaky and discontinuous under
the hypoxic microenvironment. This phenomenon promotes distant tumor metastasis
while hindering immune cell infiltration and drug delivery [44]. VitC has been shown to
both inhibit abnormal angiogenesis and promote vessel normalization. Orally administered
high-dose VitC suppressed tumor angiogenesis in colon cancer-bearing mice by downreg-
ulating the expression and secretion of VEGF-A and VEGF-D [45]. VitC impairs COX-2
activity and inhibits VEGF mRNA expression in melanoma cells in a time-dependent
manner [46]. In terms of vascular architecture, VitC attenuates vascular permeability by
inducing endothelial cell retraction and epigenetically preventing apoptosis of endothelial
cells [37,47].

The hypoxic microenvironment also provides unique opportunities for IVC therapy.
Hypoxia-stimulated high HIF expression increases the sensitivity of cancer cells to VitC [48].
For example, abnormal tumor vascularization prolongs the residence time of VitC inside
the tumor. GLUT1 induced by HIF increases intracellular DHA accumulation and renders
cancer cells more sensitive to VitC treatment. HIF-independent hypoxic adaptation of
cancer cells also increases cancer vulnerability. The unfolded protein response (UPR)
is activated to relieve the endoplasmic reticulum stress (ER) in response to severe and
persistent hypoxia. If UPR is insufficient to alleviate excessive ER stress effectively, it
will induce cancer cells to undergo apoptosis. VitC increases the ER stress-mediated
breast cancer apoptosis via activation of the IRE-JNK-CHOP signaling pathway, an effect
independent of ROS [49]. Accordingly, the overexpression of HIF, GLUTs, and the elevated
ER stress may serve as biomarkers to predict the efficacy of VitC treatment.

3.4. VitC and Acidic Microenvironment

Depending on the intracellular buffering system and exocytosis system, tumors can
maintain stable intracellular pH (pHi ≥ 7.4) and lower extracellular pH (pHe = 6.7–7.1)
under metabolic stress conditions. This phenomenon is known as the pH inversion [50].
Dysregulated pH affects almost every aspect of malignancy, including immunosuppression,
stromal degradation, metastatic spread, and drug resistance.

VitC acts as a glycolysis inhibitor to reduce endogenous acidic metabolic products,
mainly lactate and H+. On the one hand, VitC directly inhibits HIF-1α-mediated glycolysis-
related genes expression and the downstream acidic metabolites [51]. On the other hand, the
ROS generated by VitC treatment exerts a synergistic effect with other glycolysis inhibitors,
providing a combined therapeutic strategy [15,52]. Hypoxia-induced carbonic anhydrase
9 (CAIX) and monocarboxylate transporter (MCT) are also two crucial downstream factors
of HIF, which catalyze CO2 hydration to produce protons and drive H+ and lactate export.
A retrospective analysis of patient-derived breast cancer tissues showed that the low-dose
VitC group expressed higher levels of HIF and CA-IX than the high-dose group, implying
a higher malignancy grade and poor prognosis [53]. The proton pump inhibitor (PPI) as
a repurposing drug can inhibit V-ATPase, which in turn regulates the intracellular and
extracellular pH gradient and resists acidic microenvironment-induced drug resistance. PPI
has also been reported to reduce the release of exosomes from melanoma cells in response
to low pH stimulation [54]. Li et al. demonstrated that VitC synergizes with pantoprazole
to overcome drug resistance in prostate cancer and inhibit exosome secretion [55].

The acidic microenvironment has recently been found to act in turn on VitC home-
ostasis. Some factors, such as pH gradient and local potential, may affect the passive
diffusive transport of VitC and regulate intracellular concentrations [56]. This pattern of
transcellular transport, although not the dominant one, provides a plausible explanation
for the cancer-selective toxicity of VitC.
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3.5. VitC and Innerved Niche

Evidence to support the effect of VitC on the innerved niche is currently lacking, but
one possible mechanism is as a neuromodulator. The protumor effect of norepinephrine
is one of the relatively explicit findings in this under-studied field [57]. Biosynthesis of
the nerve cell norepinephrine is dependent on dopamine β hydroxylase, and VitC can
act as a cofactor for the enzyme to improve activity [58]. Furthermore, VitC modulates
synaptic plasticity and facilitates the storage and release of other neurotransmitters, such
as dopamine, acetylcholine, glutamate, neuropeptides [59–61].

In addition to neurons, glial cells, such as Schwann cells and oligodendrocytes, play a
non-negligible role in neuro-tumor communications. A recent example in pancreatic cancer
indicates that the autophagy of Schwann cells is activated and promotes perineural invasion
(PNI) [62]. Collagen synthesis induced by proline hydroxylase was previously inferred to
be the primary mechanism of VitC promotion of myelin formation. Until recently, Huff
et al. reported that VitC increases DNA demethylation of genes involved in the myelination
of Schwann cell and the formation of ECM [63].

VitC is highly enriched in the neurons, suggesting its crucial role in neurobiology.
VitC can promote neural development, promote neurite growth, and mediate the metabolic
coupling between glial cells and neurons through the AA cycle [64,65]. Contrary to previous
results, Ferrada et al. demonstrated in an in vitro study that physiological doses of VitC
(200 µM) induced necrotizing apoptosis in neurons [32]. Collectively, these existing studies
at least indicate that VitC is necessary for the neurobiological function in the TME.

3.6. VitC and Mechanical Microenvironment

Cancer metastasis is a complex and multistep process involving a series of malignant
events. During the early stages of metastasis, cancer cells can sense changes in the stiffness
of ECM and transmit mechanical signals into the cell, triggering cytoskeletal rearrangement.
VitC plays an important role in the mechanical microenvironment, regulating from stromal
cells and ECM to cellular mechanical signaling.

The stiffness of the ECM depends mainly on the balance between collagen production
and protease-mediated degradation, which affects the matrix integrity and coordinates
cancer metastasis [66]. VitC enhances the hydroxylation at the proline and lysine residues as
a cofactor of collagen prolyl and lysyl hydroxylase to form the correct triple-helical confor-
mation [30]. VitC inhibits a variety of metalloproteinases (MMPs) mRNA, which degrade
ECM and release growth factors that drive tumor metastasis [13,67]. Cancer-associated
fibroblasts (CAFs), the primary stromal cells to constitute the ECM, are prominent in the
ECM remodeling by secreting multiple types of collagen and mMPs. Compared with
the normal fibroblasts, CAFs often obtain immortalized features and enhanced secretory
capacity to promote tumor invasion. VitC treatment altered the gene expression profile
in immortalized mouse embryonic fibroblasts, where genes associated with collagen syn-
thesis, cell adhesion, and extracellular matrix were significantly downregulated. More
importantly, VitC exhibited a dose-dependent dual effect on immortalized MEF, similar to
cancer cells [68]. VitC also inhibits EMT by controlling integrin and YAP/TAZ mechanistic
signaling. Collagen proline hydroxylation has been shown to enhance affinity with inte-
grins directly or indirectly [69]. VitC derivatives increase the phosphorylation of ERK1/2,
which may be involved in integrin-mediated signaling pathways during cell stretch [70].
SYNPO-2 has been reported to inhibit the activity of YAP/TAZ in the Hippo signaling
pathway [71]. Gan et al. demonstrated that VitC treatment reduces YAP1 expression
while upregulating SYNPO-2; therefore, inhibiting metastasis of TNBC via actin dynamics
modulation [72]. Overall, the biomechanics and mechanical signals of ECM may be a target
for VitC to hamper malignant invasion and metastasis.

3.7. VitC and Microbial Microenvironment

The microbial microenvironment is an ecological network consisting of the intestinal
microbiota and the intratumor microbiota, as well as their metabolites. In particular, the
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immune-oncology-microbiota axis (IOM) is one of the most promising directions and a
therapeutic target.

VitC regulates the intestinal microbial homeostasis. Pham and Otten et al. indepen-
dently conducted two pilot studies exploring the effects of vitamin-targeted administration
on the flora composition and metabolism. Pham et al. utilized macrogenome sequencing
and found that the diversity of microbiota α and the relative abundance of fecal Collinsella
were increased compared with pretreatment, accompanied by increased short-chain fatty
acids (SCFAs), butyrate metabolites, and decreased pH [73]. Unlike the above, Otten et al.
did not directly assay gut metabolites, but they found a significant increase (p < 0.05) in the
relative abundance of Lachnospiraceae in the flora, a microbe that also produces SCFAs [74].
The proportion of strictly anaerobic bacteria has been linked to the intestinal redox poten-
tial, and this finding may help to explain the microbiota alterations. Given that bacterial
metabolites, such as SCFAs, can enhance the immunogenicity of situ and a variety of distant
cancers, the results open new possibilities for VitC to enhance anticancer immunity [75].

VitC is also a parameter that influences microbes within the tumor. First, VitC plays a
crucial role in preserving the integrity of the physical barrier against microbial spreading
and colonization [31]. Moreover, increased retroviral transcription in tumor cells by VitC
appears to amplify the efficacy of anti-PD-1 immune checkpoint therapy (ICT) and epige-
netic therapy [35,76]. Oncolytic virus-induced immunogenic cell death (ICD) is anticancer
immunotherapy that stimulates tumor-specific immune responses by releasing immunore-
active substances from dying tumor cells. Ma et al. reported that ROS derived from high
doses of VitC enhances OVs-mediated ICD and somewhat reverses the suppressive immune
microenvironment [77].

These direct and indirect results also yield an appealing scenario: dietary or VitC
supplements may target intestinal microecology to synergize with antitumor therapy.

3.8. The Interplay between VitC and the Complicated Metastatic TME

To be precise, the TMEs are more like a complex whole with distinct organ features
rather than separated compartments. Metastatic tumor foci retain the characteristics of the
primary tumor, while also evolving to accommodate inefficient metastatic processes and
new target organs. For instance, bone is one of the most common sites of metastasis for
multiple advanced tumors, exhibiting complex and unique features in immunosuppression,
hypoxia, and ECM remodeling. There has been considerable evidence to support the role of
VitC in bone metabolism, thus it is worth exploring whether VitC affects bone metastases.

During bone metastases, cellular compounds produced by the primary tumor enter
the bloodstream and act at distant sites, stimulating angiogenesis and infiltration of Tregs,
MDSCs, and other immune cells to generate a pre-metastatic niche. The colonized tumor
cells then continuously interact with microenvironments to promote skeletal remodeling
and immunosuppression, culminating in overt bone metastases [78]. In addition, hypoxia
and ECM remodeling are engaged in the process. By epigenetic mechanisms, VitC sig-
nificantly improves bone metabolism and bone formation. VitC modulates stromal cell
differentiation, promoting osteoblast development while suppressing osteoclasts, possibly
alleviating tumor-induced aggressive osteolysis [79,80]. The synthesis of type I collagen
is enhanced by VitC, which not only improves the stability of the bone matrix but also
contributes to osteoblasts differentiation [81]. Furthermore, Kolke et al. demonstrated that
higher doses of VitC (100 µM) altered miRNA expression to up- or down-regulate signaling
pathways associated with cell adhesion, differentiation, and cell stemness in BMSCs [82].
RANKL/NFκB in osteoclasts is an essential signaling pathway that accelerates bone metas-
tasis. Hie et al. reported that VitC deficiency status upregulates RANK expression in vitro
and in vivo, suggesting a negative regulation of RANK [83]. These findings indicate that
VitC may inhibit tumor growth by acting on metastases, as well as the main location.

The existing research on the effects of VitC on the bone microenvironment focuses
mostly on preventing osteolysis and bone loss. Further research into this function for
certain osteogenic metastases, such as prostate cancer, is warranted [84]. Anyway, VitC may
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help patients with advanced cancers avoid complications like osteoporosis and fractures by
acting as a supportive treatment.

4. Application of VitC as a Single Agent or Adjuvant to Target the TME

As the routes of administration correspond to different bioavailabilities and by ex-
plaining the controversy over the studies of Cameron and Pauling, interest in the anticancer
ability of VitC has been revived [85]. We will present the latest applications of VitC in
single-agent and combination strategies against tumors (Table 2).
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Table 2. Preclinical and clinical evidence for different doses of VitC as a novel therapeutic adjuvant.

Combination Therapy Study Type(s) VitC Dose Cancers (Cell Lines) Target Outcome(s) Reference/NCT
Number

Immunotherapy

ICT (anti-PD-1,
anti-CTLA-4) + VitC i.p. animal 4 g/kg

breast cancer (TS/A, 4T1),
colorectal cancer (CT26, MC38),
pancreatic cancer (PDAC),
melanoma (B16-F10)

CD4+ and CD8+T
lymphocytes, cancer cells

VitC increases the recruitment of
lymphocytes in TME and improves the
responsiveness of mMR-deficient
tumors to ICT

[18]

ICT (anti-PD-1) + VitC i.p. cell line and animal 1 mM (in vitro); 4 g/kg
(in vivo)

B-cell lymphoma (A20,
SU-DHL-6, OCI-Ly1, OCI-Ly7,
OCI-Ly3)

CD8+T cells, macrophages,
cancer cells

VitC synergistically increases ICT
efficacy by enhancing retrovirus
expression, CTLs infiltration, and IL12
production in lymphoma

[35]

ICT + IVC cell line and animal 250 µM (in vitro);
4 g/kg (in vivo)

melanoma (B16-OVA),
leukemia (THP-1), colorectal
cancer (MC38)

CD3+T cells, CTLs,
CD56+NK cells, cancer
cells

VitC upregulates TET-mediated
cytokine expression to activate the
IFN-γ/JAK2/STAT1 pathway,
enhancing TILs infiltration, as well as
ICT efficacy

[34]

ICT + VitC i.p. cell line and animal 0.5 g/kg renal cell carcinoma (Renca,
786-O, A498)

CD4+ and CD8+T
lymphocytes, cancer cells

VitC improves ICT efficacy via
upregulation of cytokine and
chemokine levels in a TET2-dependent
manner, and indirectly induces PD-L1
expression

[86]

ICT + VitC cell line 0–50 µM pancreatic cancer (PANC-1,
BxPC-3 and MIA PaCa-2) cancer cells

VitC inhibits histone acetyltransferase
1, which in turn downregulates PD-1
mRNA expression

[87]

ICD (oAds) + VitC i.p. cell line and animal 2 mM (in vitro); 4 g/kg
(in vivo)

colon cancer (CT26), breast
cancer (4T1), hepatocellular
carcinoma (Hepa1-6)

DC cells, CD8+T cells,
CD4+ T cells, CD3+T cells

High-dose VitC and oAds exhibit a
synergistic antitumor effect, with
increased CD8+ T cells and DCs and
decreased M2-type TAM cells in TME

[77]

DC vaccines + VitC i.p. cell line and animal 0–2 mM (in vitro);
0.08 mM (in vivo) melanoma (B16F10) DC cells, CD8+T cells,

CD4+ T cells

VitC promotes the secretion of
co-cultured CD4+, CD8+ T cells
in vitro and induces protective
antitumor immunity in mice

[88]

Small-molecule kinase
inhibitors

PI3K inhibitor (buparlisib)
+ oral VitC cell line and animal

0, 50, 100, 300 µM
(in vitro); 3.3 g/L
(animal)

TNBC (BT20, MDA-MB-453) cancer cells

Synergistically, VitC enhanced
KDM5-mediated histone H3K4
demethylation and boosted the
efficacy of buparlisib

[89]

sorafenib + IVC cell line and clinical 0–20 mM (in vitro);
75 g/infusion (clinical)

hepatocellular carcinoma (Hep
G2, SNU-449, HuH-7), breast
cancer (T47D), pancreatic
cancer (MIA PaCa2)

cancer cells, angiogenesis
IVC and low-dose sorafenib exhibit
synergistic cytotoxicity to suppress
cancer viability and metastasis

[90]
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Table 2. Cont.

Combination Therapy Study Type(s) VitC Dose Cancers (Cell Lines) Target Outcome(s) Reference/NCT
Number

erlotinib + gemcitabine
+ IVC clinical, phase I 50, 75, 100 g/infusion pancreatic cancer cancer cells, angiogenesis

IVC is well tolerated with erlotinib
and gemcitabine in patients with
advanced cancer

[91]

tyrosine kinase inhibitors
(osimertinib or tarceva or
iressa) + IVC

clinical, phase I/II 30 g/infusion EGFR mutant NSCLC cancer cells - NCT03799094

Monoclonal antibodies

bevacizumab+
Temozolomide + oral VitC clinical, phase I 250 mg/d recurrent high-grade glioma cancer cells, angiogenesis - NCT01891747

FOLFOXIRI +/-
bevacizumab + IVC clinical, phase III 1.5 g/kg peritoneal metastatic colorectal

cancer cancer cells, angiogenesis - NCT04516681

mFOLFOX6 +/-
bevacizumab + IVC clinical, phase III 1.5 g/kg colorectal neoplasms cancer cells, angiogenesis - NCT02969681

cetuximab + VitC i.p. cell line and animal 1 mM, 2 mM (in vitro);
4 g/kg (animal)

colon cancer (RAS/BRAF wt,
DiFi, CCK81, C75, IRCC-10A) cancer cells, angiogenesis

Combination therapy delays the
emergence of acquired drug resistance
in EGFR mutant tumors in vitro and
in vivo

[92]

Metabolic inhibitors

antibiotics (doxycycline,
azithromycin) + VitC cell line 0–500 µM breast cancer stem cells (MCF7) cancer cell mitochondria

VitC and glycolysis inhibitor form a
synthetic lethal strategy that targets
both OXPHOS and glycolysis

[93,94]

metformin + IVC clinical, phrase II 1.5 g/kg
hepatocellular carcinoma,
pancreatic cancer, gastric cancer,
colorectal cancer

cancer cell mitochondria
and other targets - NCT04033107

glycolysis inhibitors (3-PO)
+ VitC cell line 0–20 mM NSCLC (H1299, H661, A549) cancer cells

VitC synergizes with glycolysis
inhibitors to induce apoptosis in
NSCLC, mainly through the
upregulation of ROS

[52]

Epigenetic therapies

DNMTis (5-aza-CdR) +
VitC cell line 57 µM

colorectal cancer (HCT116),
APL (HL60), breast cancer
(MCF7), liver cancer (HepG2,
SNU398)

cancer cells

In cooperation with DNMTis,
low-dose VitC acts as a TET enzyme
stimulator, which enhances viral
mimicry response via endogenous
retroviral gene transcription

[95]

DNMTis (5-azacytidine) +
oral VitC clinical 500 mg/d AML, MDS, CMML cancer cells

The treatment increased 5hmC/5mC
levels in patients and upregulated
retroviral gene expression in DNMTi
naïve patients compared to the
placebo group

NCT02877277;
[76]

BETi + oral VitC cell line and animal 50–300 µM (in vitro);
3.3 g/L (in vivo)

TNBC (MDA-MB-231, BT-549,
HCC1937), melanoma (A2058,
SK-MEL28, SK-MEL2, C8161,
1205Lu)

cancer cells

Oral VitC and BETi collectively inhibit
histone acetylation and improve tumor
response to BETi treatment in vitro
and in vivo. The underlying molecular
mechanisms involve disruption of
BRD4 and H4 interactions and
upregulation of HDAC1 expression

[96,97]
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Table 2. Cont.

Combination Therapy Study Type(s) VitC Dose Cancers (Cell Lines) Target Outcome(s) Reference/NCT
Number

Diet therapy

ketogenic diet + IVC clinical 15–40 g/d multiple cancers cancer cells

VitC controls the inflammatory status
of patients with advanced cancer, as
well as increases ketone body content
after a ketogenic diet

[98]

fasting-mimicking + IVC cell line and animal 350 µM (in vitro);
4 g/kg (in vivo)

KRAS mutant cancers:
colorectal cancer (HCT116,
DLD-1, CT26), lung cancer
(H23, H727), pancreatic cancer
(PANC1)

cancer cells

VitC and fasting-mimicking
synergistically disrupt ROS and iron
metabolism to enhance toxicity to
KRAS-mutated tumor cells, sensitizing
oxaliplatin therapy

[99]

very low carbohydrate diet
+ IVC clinical, phase I/II 25, 50, 75, 100 g/infusion KRAS and BRAF mutant colon

cancer stage IV cancer cells - NCT04035096

Abbreviations: i.p., intraperitoneal injection; IVC, intravenous vitamin C; ICT, immune checkpoint therapy; PD-1, programmed death-1; CTLA-4, cytotoxic T-lymphocyte-associated
antigen 4; ICD, immunogenic cell death; oAds, oncolytic adenoviruses; PI3K, phosphoinositide 3-kinase; FOLFOXIRI, (5-fluorouracil, leucovorin, oxaliplatin, and irinotecan); mFOLFOX6,
(5-fluorouracil, leucovorin, oxaliplatin); 3-PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one; DNMTis, DNA methyltransferase inhibitors; 5-aza-CdR, 5-aza-2′-deoxycytidine; BETi,
bromodomain and extra-terminal domain inhibitors; NSCLC, non-small cell lung cancer; APL, acute promyelocytic leukemia; AML, acute myeloid leukemia; MDS, myelodysplastic
syndromes; CMML, chronic myelomonocytic leukemia; TNBC, triple negative breast cancer; TILs, tumor-infiltrating lymphocytes; CTLs, cytotoxic T lymphocyte.
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4.1. Monotherapy

Although VitC alone has been reported to inhibit the viability of various solid and
hematologic cancers in preclinical studies, several phase I/II clinical studies did not obtain
supportive results from IVC therapy [100–102]. Nevertheless, monotherapy is an excellent
option to investigate the safety and adverse effects of VitC therapy, as it can exclude drug–
drug interferences and assess the therapeutic effect. A high-dose of IVC is well-tolerated
by most patients, with only mild adverse effects. The most frequent adverse reactions
include nausea, diarrhea, dryness, and headache, and these effects are usually resolved at
the end of treatment [101,103]. However, severe adverse reactions, such as hemolysis and
kidney stones in a minority of patients, should be vigilantly monitored. VitC monotherapy
in palliative care alleviates cancer-related pain and fatigue and improves the patients’
quality of life [104]. The results in monotherapy underlie the rationale and feasibility of
combination therapy. Large-scale randomized clinical trials need to be performed in the
future to rule out placebo effects, predict responsiveness across patients, and identify the
optimal dose to be administered.

4.2. Combination Therapy

VitC is widely being explored as an adjuvant treatment strategy. Its combination with
conventional radiotherapy and chemotherapy amplifies the cytotoxicity to cancer cells
and reduces the treatment-related side effects and off-target effects. Several reviews have
summarized the research in this area [105,106]. Herein, we will focus on combining VitC
with novel therapies in cancers and TME.

For targeted therapy, the multifaceted nature of VitC facilitates its combination with
different strategies. Future therapeutics could benefit from a combination of VitC and anti-
angiogenic drugs, such as small molecule multi-kinase inhibitors and VEGF monoclonal
antibodies. VitC enhances the killing efficiency of Hep G2 cells by low-dose sorafenib
in vitro. The authors also reported a patient with rib metastases who achieved more pro-
longed remission after receiving combination therapy [90]. To assess the efficacy and
safety of IVC in combination with erlotinib and gemcitabine, a Phase I clinical trial was
implemented in patients with metastatic pancreatic cancer. The addition of VitC did not
increase adverse effects but alleviated tumor progression [91]. Bevacizumab inhibits tu-
mor growth by blocking the binding of VEGF to the vascular endothelial receptor, which
targets the tumor vascular system. Three clinical trials are performed to investigate the
impact of VitC combined with bevacizumab and chemotherapy drugs to treat advanced
cancer patients (NCT01891747; NCT02969681; NCT04516681). Cancer stem cells (CSCs)
present a subpopulation with stem-cell-like properties of self-renewal and differentiation,
which are considered as the root of cancer recurrence and drug resistance. High-dose VitC
may selectively kill CSCs through oxidative damage and modification of pluripotency
genes [107,108]. Several recent studies have suggested that VitC acts synergistically with
antibiotics (e.g., doxycycline and azithromycin) by targeting the mitochondria of CSCs
to inhibit cell proliferation and invasion [93,94]. These studies provide a synthetic-lethal
metabolic strategy to target specific cancer cells. Like VitC, metformin is a versatile anti-
cancer agent that targets energy metabolism, stimulates immunity, and reshapes the TME.
A combined clinical trial is currently underway to evaluate the synergistic effects of VitC
and metformin (NCT04033107). Besides, several studies have also focused on oral VitC
enhancing the anti-tumor efficacy of epigenetic agents. In mice bearing triple-negative
breast cancer and melanoma, VitC supplementation improves sensitivity to BETi ther-
apy [96,97]. In a randomized, double-blind trial in patients with bone marrow cancer,
oral VitC promoted DNA demethylation in a synergistic manner with DNMTi therapy
(5-azacytidine) [76].

For immunotherapy, the combination strategy yielded some positive results. Luchtel
et al. first combined high-dose VitC with anti-PD-1 therapy and found increased infiltration
of CD8+ T, DC, and NK cells alongside enhanced cellular activity in murine B-cell lym-
phomas [35]. In general, combination therapy yields considerably better tumor suppression
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than monotherapy. Magrì’s et al. subsequently obtained encouraging results by using high
doses of VitC in combination with anti-PD-1 or anti-CTLA-4 for colon, breast, melanoma,
and pancreatic cancers. VitC boosts the efficacy of ICT against drug-resistant cancers,
even eliminating some breast and colon cancer cells and preventing cancer recurrence [18].
Mechanistically, VitC does not directly alter the PD-L1 mRNA but increases the IFN-γ-
induced chemokines in a TET-dependent manner, ultimately acting on the PD-L1 gene [34].
Supporting this conclusion, Peng et al. recently revealed that VitC stimulation of TET2
activity in the renal cell carcinoma significantly increases T-lymphocyte infiltration and
indirectly affects PD-L1 expression via the IFN-γ/STAT1/IRF1 signaling pathway [86].
Furthermore, the role of VitC as a promoter of γδ T-cell, NK cell immunotherapy is also
under investigation [21,109]. Future studies will focus more on VitC as an adjuvant to ICT
and adoptive cell therapy.

Regarding nutrition and metabolism, several studies have attempted to explore IVC
with nutritional therapy in cancer patients. Fasting-mimicking diet and ketogenic diet
postpone tumor progression by depleting glucose in TME and improving immunity. Di
Tano et al. demonstrated that fasting-mimicking diet and VitC treatment exerted a syner-
gistic effect on oxidative damage and chemotherapy-induced cytotoxicity in KRAS-mutant
tumors [99]. In another study, patients who received IVC after ketogenic therapy had
increased levels of ketone bodies and reduced generalized inflammation compared to
pretreatment [98]. Despite the encouraging results, the safety of this calorie restriction
strategy remains disputable, considering cancer patients often experience malnutrition and
increased energy expenditure.

5. Conclusions

We have provided a multilevel, multifaceted perspective on the anticancer activity of
VitC. We have discussed many aspects, such as tumor immunity, metabolism, neuromodu-
lation, and the microbiome. A large body of preclinical and clinical evidence shows great
prospects for the therapeutic application of VitC, especially with immunotherapy, targeted
therapies, and dietary therapies. Despite new advances in the anticancer mechanisms of
VitC, some challenges that deserve in-depth investigation: (1) whether the antioxidant
properties of VitC promote tumor diffusion; (2) whether VitC could be combined with
dietary therapies, such as ketogenesis and fasting; and (3) the effect of VitC on the mi-
crobiome and bacterial-derived VitC on efficacy. Cancer is not static but a multistage,
dynamic process, and VitC may play different roles at different stages. The value of VitC in
anticancer therapy has reemerged, urging more research to exploit its potential in targeting
the TME and cancer cells in the future.
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