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Abstract. 	Two studies were conducted with the overarching goal of determining the extent to which lipolytic changes relate 
to germinal vesicle breakdown (GVBD) in bovine oocytes matured under thermoneutral or hyperthermic conditions. To this 
end, cumulus-oocyte complexes underwent in vitro maturation for 0, 2, 4, 6 or 24 h at 38.5 (first study) or 38.5 and 41.0 C 
(second study; heat stress applied up through first 12 h only, then shifted to 38.5 C). Independent of maturation temperature, 
triglyceride and phospholipid content decreased markedly by 2 h of in vitro maturation (hIVM; P < 0.0005). Content was 
lowest at 24 hIVM with no detectable impact of heat stress when exposure occurred during first 12 hIVM. Germinal vesicle 
breakdown occurred earlier in oocytes experiencing heat stress with effects observed as soon as 4 hIVM (P < 0.0001). Germinal 
vesicle breakdown was associated with lipolytic changes (R2 = 0.2123 and P = 0.0030 for triglyceride content; R2 = 0.2243 and 
P = 0.0026 for phospholipid content). ATP content at 24 hIVM was higher in oocytes experiencing heat stress (P = 0.0082). In 
summary, GVBD occurs sooner in heat-stressed oocytes. Although marked decreases in triglyceride and phospholipid content 
were noted as early as 2 hIVM and preceded GVBD, lipolytic changes such as these are not likely serving as an initial driver 
of GVBD in heat-stressed oocytes because changes occurred similarly in oocytes matured at thermoneutral conditions.
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Findings in two different species document the potential for 
heat stress exposure during meiotic maturation to hasten 

developmentally-important processes in the oocyte as it matures 
in preparation for fertilization. Baumgartner and Chrisman [1] 
reported a higher incidence of murine oocytes having a bicellular 
classification (i.e., oocytes contained two cells, with one presumed 
to be the first polar body) after in vivo heat stress exposure. This is 
consistent with results reported by Kim et al. [2], suggesting that 
short term heat shock exposure of murine oocytes during meiotic 
maturation accelerated germinal vesicle breakdown (GVBD). After 
direct application of heat stress to bovine oocytes, Edwards et al. 
[3] reported that a greater proportion had progressed to metaphase 
I by 8 h of in vitro maturation (hIVM), metaphase II by 18 hIVM, 
and completed cortical granule translocation to the oolemma by 
24 hIVM compared to non-stressed oocytes. The potential for heat 
stress to hasten developmentally-important processes is not without 
consequence, because fertilization within the timeframe expected to 
yield optimal development from oocytes effectively results in the 
fertilization of an “aged” oocyte. In support of this, insemination 
of heat-stressed oocytes 4 to 6 h earlier than the physiologically 

relevant 24 h timeframe improved blastocyst development [3, 4]. 
Furthermore, Rispoli et al. [5] observed similar blastocyst development 
in heat-stressed oocytes chemically activated at 24 hIVM and aged 
oocytes chemically activated at 30 hIVM.

Although the underlying mechanism(s) responsible for hastening the 
onset of meiotic maturation in heat-stressed oocytes remain unclear, 
increased mitogen activated protein kinase (MAPK) activity has been 
noted in other cell types experiencing a mild heat stress [reviewed 
by 6]. MAPK is an important driver of GVBD in bovine oocytes [7, 
8] and acts to phosphorylate hormone sensitive lipase in other cell 
types resulting in lipolysis of stored lipid [9, 10]. Bovine oocytes 
contain an abundance of lipid, comprised mostly of triglycerides and 
phospholipids [11], which may influence developmental competence 
after in vitro fertilization [12]. Although very little is known about 
the regulation of lipid metabolism during maturation, triglyceride 
content of mature bovine oocytes is significantly less than that 
contained within germinal vesicle stage oocytes [13, 14]. Decreases 
in triglyceride content during oocyte maturation have been coincident 
with increased lipase activity [15, 16].

Depending on the extent to which exposure of bovine oocytes 
to a physiologically-relevant heat stress alters MAPK activity, it 
was hypothesized that lipid metabolism during maturation may 
be altered in heat-stressed oocytes. In support of this notion, heat 
stress altered lipolytic activity in other cell types. For instance, fatty 
acid release in skeletal muscle cells was increased when human 
patients with Malignant Hyperthermia (a genetic disorder causing 
fever after administration of general anesthetics) became feverish 
[17], possibly as a result of increased triglyceride catabolism [18]. 
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Furthermore, application of radiant energy to fatty areas of the 
human body sufficient to elevate the temperature of adipocytes to 
approximately 41 C increases the rate of lipolysis [Laser Lipolysis; 
19]. Because the body temperature of heat stressed-dairy cows may 
reach or exceed 41 C [20–22] and bovine oocytes have a relatively 
high lipid content, an overarching goal of the two studies described 
herein was to characterize lipolytic changes in bovine oocytes 
matured at thermoneutral and hyperthermic conditions. Because 
of the importance of relating changes, if any, to the incidence of 
GVBD, we first examined lipolytic changes in triglyceride and 
phospholipid content at thermoneutral conditions during the time 
period of maturation when GVBD first becomes evident. A second 
study was then performed examining lipolytic changes in triglyceride 
and phospholipid content in relation to the timing of GVBD in oocytes 
matured at thermoneutral and hyperthermic conditions.

Materials and Methods

Unless otherwise stipulated, all chemicals were purchased from 
Sigma Chemical Company (St. Louis, MO, USA).

Collection and in vitro maturation of oocytes
In general, the methods used to collect and mature bovine oocytes 

in vitro were as described previously by Rispoli et al. [5]. Depending 
on study, approximately 35 to 50 cumulus-oocyte complexes (COCs) 
were randomly grouped for maturation at 38.5 C and/or 41.0 C (heat-
stressed COCs were transferred to 38.5 C after the first 12 hIVM) for 
up to 24 h. Immediately before placement into maturation medium (0 
h), or at designated times thereafter, a subset of COCs was removed 
from culture and denuded completely of cumulus cells. Between 0 
to 12 hIVM, oocytes were denuded by vortexing in HEPES-TALP; 
whereas COCs from the 24 h groups were vortexed in HEPES-TALP 
containing 0.3 mg/ml of hyaluronidase. Denuded oocytes determined 
free of cumulus cells were fixed in 3% paraformaldehyde-Dulbecco’s 
Phosphate Buffered Saline (DPBS, without CaCl2 or MgCl2) for 1 
h at room temperature, protected from light.

Study One: timing of lipolytic changes and GVBD in bovine 
oocytes undergoing in vitro maturation at 38.5 C

Lipolysis was evaluated by examining triglyceride and phospholipid 
content in COCs cultured for 0, 2, 4, 6 or 24 hIVM as modified 
from Genicot et al. [23] and Auclair et al. [15]. Fixed oocytes were 
incubated in 0.2 µg/ml Nile Red fluorescent lipophilic stain in 
1% PVP-DPBS for 2 h at room temperature, protected from light. 
Stained oocytes were washed in 1% PVP-DPBS and then transferred 
in groups of ten per 100 µl 1% PVP-DPBS into separate wells of 
a 96-well black microplate with a transparent bottom (Thermo 
Scientific Nunc – Thermo Fisher Scientific; Rochester, NY, USA). 
Fluorescent readings were obtained using a Synergy H1 microplate 
reader (BioTek Instruments, VT, USA) at two fluorescent settings: 
excitation 485/emission 588 (triglyceride) and excitation 549/emission 
628 [phospholipid; 24, 25]. Once measurements were obtained, 
background fluorescence was subtracted and the corrected value 
from each well was divided by the number of oocytes in said well to 
determine the arbitrary fluorescent units (A.F.U.) per oocyte. After 
fluorescence was recorded, oocytes were removed from the 96-well 

microplate and stained with Hoechst 33342 (0.5 µg/ml) before 
mounting to a slide under a coverslip. Nuclear stage of individual 
oocytes was determined using fluorescence (excitation 330 – 380/
emission ≥ 420) on a Nikon TE300 Inverted Fluorescent microscope. 
Oocytes were determined to have undergone GVBD if the germinal 
vesicle (GV) was no longer detectable and the nuclear material was 
in a condensed chromatin (CC) configuration or at MI. This study 
was replicated on six different occasions using 1,237 oocytes in 
total (the total number of pools per each of the five treatment groups 
ranged from 17 to 25).

Study Two: lipolytic changes, GVBD and ATP content during 
in vitro maturation of bovine oocytes at 38.5 and 41.0 C

Triglyceride and phospholipid content of control and heat-stressed 
oocytes was assessed at 0, 2, 4, 6 and 24 hIVM as previously 
described. To better control for variability, each plate was read ten 
times instead of once and values were averaged separately for each 
well. After the average fluorescence was recorded, oocytes were 
transferred from the 96-well microplate and prepared for nuclear 
stage assessment using Hoechst 33342.

Concurrent with efforts described above, ATP content was measured 
in a subset of oocytes taken before fixation from each treatment group 
at five different time points (0, 2, 4, 6 and 24 and cultured at 38.5 
C and 41.0 C). Levels of ATP were evaluated in oocytes to serve as 
an indirect measure of mitochondrial β-oxidation released during 
lipolysis. To this end, oocytes were denuded of surrounding cumulus 
cells and the zona pellucida was removed using 0.5% pronase. Oocytes 
were then transferred individually to microcentrifuge tubes, lysed 
in sterile water, and stored at –80 C. Oocyte lysates were assessed 
for ATP content using the ATP determination kit from Invitrogen 
(Division of Life Technologies; Carlsbad, CA, USA) and a tube-based 
luminometer (Berthold, Huntsville, AL, USA) set to read the sample 
for ten seconds after a three second hold-time. The total amount of 
ATP in each oocyte lysate was determined using a standard curve 
ranging from 0 to 10 pmol. This study was replicated on six different 
occasions using 2,680 oocytes for lipid analysis (14 to 16 pools per 
each of nine treatment groups) and 270 for ATP analysis (21 to 39 
oocytes per treatment group).

Statistical analyses
Data from Studies One and Two were analyzed as a randomized 

block design, blocking on date of collection with fixed effects of 
maturation time and temperature where appropriate, using generalized 
linear mixed models (PROC GLIMMIX, SAS 9.4, SAS Institute, 
Cary, NC, USA). The experimental unit for all data analyses was 
the 4-well Nunc plate in which the oocytes were incubated during 
IVM, as treatments were applied to a plate rather than individual 
oocytes. Treatment differences from all analyses were determined 
using F-protected least significant differences and reported as least 
squares means ± standard error of the mean (SEM). The association 
of nuclear maturation to lipolytic changes during IVM was assessed 
for each study using regression with GVBD serving as the dependent 
variable and blocking on collection date. The fixed effect of maturation 
temperature was included when appropriate. R-square was calculated 
from likelihoods (PROC GLIMMIX) as per Nagelkerke [26].
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Results

Study One: timing of lipolytic changes and GVBD in bovine 
oocytes undergoing in vitro maturation at 38.5 C

Triglyceride content per oocyte was greatest in GV-stage oocytes at 
0 hIVM (P < 0.0001; Fig. 1, panel A). By 2 hIVM triglyceride content 
decreased, with content being lower at 24 hIVM (P < 0.0001; Fig. 1, 
panel A). Similar to the triglyceride content, phospholipid content 
per oocyte was greatest at 0 hIVM, decreased by approximately half 
after 2 hIVM, and then decreased further by 6 hIVM (P < 0.0001; 
Fig. 1, panel B). Independent of IVM time, triglyceride content was 
almost double that of phospholipid content (283.14 vs. 156.56; SEM 
= 21.35). The resultant ratio of 1.81 to 1 did not change during in 
vitro oocyte maturation (P = 0.4201).

At 0 hIVM, the GV was intact in all oocytes that were evaluated. 
Percentage of oocytes undergoing GVBD increased at 4 hIVM (P 
< 0.0001; Fig. 1, panel C). Condensed chromatin was evident in 
almost all of the oocytes that had undergone GVBD by 4 hIVM. 
Incidence of GVBD was more pronounced at 6 hIVM (P < 0.0001; 
Fig. 1, panel C). Less than 1% of oocytes had reached the MI stage 
by 6 hIVM. After 24 hIVM the majority of oocytes were at the MII 
stage (83.97 ± 0.02%).

Lipolytic changes in triglyceride (R2 = 0.2477; P = 0.0095) and 
phospholipid (R2 = 0.2335; P = 0.0121) content were associated 
with GVBD in bovine oocytes undergoing meiotic maturation. For 
example, when lipid content was typically high at 0 hIVM incidence 
of GVBD was low; however, when lipid content was low at 24 hIVM 
the incidence of GVBD was high.

Study Two: lipolytic changes, GVBD and ATP content during 
in vitro maturation of bovine oocytes at 38.5 and 41.0 C

Triglyceride content decreased by 2 hIVM similarly in control and 
heat-stressed oocytes (P = 0.0009; SEM = 40.23). Independent of 
maturation temperature, triglyceride content remained similar from 
2 and 6 hIVM, yet was further decreased at 24 hIVM (P = 0.0003; 
Fig. 2, panel A). Similar to triglyceride content, phospholipid content 
decreased by 2 hIVM similarly in control and heat-stressed oocytes 
(P = 0.0005; SEM = 21.54). Independent of maturation temperature, 
phospholipid content was lower at 6 hIVM and decreased even further 
by 24 hIVM (P < 0.0001; Fig. 2, panel B). Triglyceride content was 
almost double that of phospholipid (184.82 vs. 93.33; SEM = 17.42). 
The resultant ratio of 1.98 to 1 was not affected by maturation time 
(P = 0.1841) or temperature (P = 0.3927).

The effect of maturation temperature on the ability of oocytes to 
undergo GVBD differed depending upon the length of IVM (IVM 
temperature × hIVM interaction; P < 0.0001; Table 1). Specifically, 
the proportion of control and heat-stressed oocytes undergoing GVBD 
was similar at 2 hIVM. At 4 hIVM, however more heat-stressed 
oocytes had undergone GVBD; the effect of heat stress to increase 
the incidence of GVBD was more pronounced at 6 hIVM (Table 
1). At 24 hIVM, a similar proportion of control and heat-stressed 
oocytes had undergone GVBD and progressed to MII (Table 1).

Independent of maturation temperature, lipolytic changes in 
triglyceride (R2 = 0.2123; P = 0.0030) and phospholipid (R2 = 0.2243; 
P = 0.0026) content were associated with incidence of GVBD in 
bovine oocytes undergoing meiotic maturation. Differences in oocyte 

ATP content were dependent upon both maturation temperature and 
time (IVM temperature × time interaction; P = 0.0082; Fig. 2, panel 
C). Oocyte ATP content was not different in control and heat-stressed 
oocytes matured for 6 h after placement in maturation medium. 
However, at 24 hIVM ATP content was higher in heat-stressed 
oocytes (Fig. 2, panel C).

Discussion

Novel findings described herein provide additional evidence that 

Fig. 1.	 Triglyceride (Panel A) and phospholipid (Panel B) content 
(average fluorescence units (A.F.U.) ± SEM) in bovine oocytes 
matured in vitro for 0, 2, 4, 6 or 24 h. Panel C: Percentage of 
bovine oocytes at 0, 2, 4, 6 or 24 hIVM that had undergone 
germinal vesicle breakdown (GVBD). A – D Letters within a panel 
differ, P < 0.05.
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exposure of bovine oocytes to a physiologically-relevant heat stress 
hastens the incidence of GVBD. Although underlying mechanisms 
remain unclear, changes in lipolytic activity are not likely problematic 
because triglyceride and phospholipid content changed similarly 
in oocytes matured at thermoneutral and heat-stressed conditions. 
Interestingly, ATP content at 24 hIVM was higher in bovine oocytes 
heat stressed during the first 12 h of maturation. Whether this novel 
finding serves as an indicator of downstream lipolytic changes 
involving heightened fatty acid β-oxidation, or representative of a 
surplus of ATP from mitochondrial dysfunction, changes in protein 

synthetic capabilities, or other alterations yet to be identified, remains 
unclear. Nonetheless, in two different studies, marked reductions 
in triglyceride and phospholipid content were noted after 2 hIVM 
in bovine oocytes. Regardless of maturation temperature, lipolytic 
changes in the oocyte preceded incidence of GVBD.

Heat-induced hastening of GVBD was evident as early as 4 hIVM 
with effects being more pronounced at 6 hIVM. Similar findings 
were previously reported by Edwards et al. [3] showing that a higher 
proportion of heat-stressed oocytes undergo GVBD sooner than 
non-heat stressed counterparts. The fact that an equivalent number 
of control and heat-stressed oocytes progressed to MII after 24 hIVM 
provides further evidence that there are instances whereby heat stress 
exposure at the beginning of maturation hastens, rather than inhibits, 
meiotic maturation. The increased ATP content of heat-stressed 
oocytes at 24 hIVM is consistent with age-related changes occurring 
after oocyte maturation is completed. Koyama et al. [27] reported 
that bovine oocytes matured for 30 to 40 h had more ATP content 
than oocytes matured for 20 h. Depending upon the extent to which 
heat-induced hastening of maturation occurs, oocytes experiencing 
heat stress during the beginning of meiotic maturation are likely 
aged at the time of fertilization. This could explain some of the 
previously reported reductions in oocyte developmental competence 
after exposure to elevated temperatures during the onset of meiotic 
maturation [3–5].

Although GVBD was associated with lipolytic changes, increased 
incidence of GVBD in heat-stressed oocytes was not related to 
changes in triglyceride or phospholipid content. This may not preclude 
possible heat stress effects on triglyceride catabolism however, as the 
energy requirements of an oocyte could be met by the breakdown of 
a small amount of lipid (e.g., the breakdown of one mole of fatty acid 
typically results in the production of approximately 100 moles of ATP 
[28]). During the first 6 hIVM, ATP content remained unchanged and 
was similar in control and heat-stressed oocytes. Depending on the 
extent to which oocytes, like other cell types experiencing heat stress 
consume more ATP [reviewed by 29], any heat-related differences in 
fatty acid β-oxidation may have been masked. Although speculative, 
addition of L-Carnitine, an upregulator of β-oxidation, to porcine 
or murine oocytes during maturation increased the rate of meiotic 
progression [reviewed by 30, 31].

Heat-induced increases in ATP content at 24 hIVM could be 
attributable to changes in protein synthesizing capabilities. Protein 
synthesis is energetically taxing; thus, heat-induced reductions in 
de novo synthesis by as much as 30 to 50% in bovine oocytes [32] 
could create a surplus of unused ATP. Regardless of the underlying 
mechanism(s), increased ATP content due to the effect of heat stress 
is likely real. In other cell types, ATP content is increased after 
exposure to elevated temperatures, possibly due to a greater cellular 
requirement for energy (ATP) necessary for overcoming stress-related 
apoptosis [reviewed by 29]. Increased ATP content in heat-stressed 
oocytes may also be the result of alterations in metabolic pathways 
whereby ATP remains unused [reviewed by 33] or key components 
involved in ATP production are altered [ATP synthase; 34].

Nonetheless, immature oocytes have an abundance of intracellular 
lipid droplets, much of which are degraded during maturation [35]. 
Consistent with this finding, several studies [13–15], including ours, 
show that lipid content changes during maturation with triglyceride 

Fig. 2.	 Triglyceride (Panel A) and phospholipid (Panel B) content 
(average fluorescence units (A.F.U.) ± SEM) and ATP content 
(Panel C; pmol per oocyte ± SEM) in bovine oocytes matured in 
vitro for 0, 2, 4, 6 or 24 h at 38.5 or 41.0 C (first 12 h only). A–D 
Letters within a panel differ, P < 0.05.
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levels being lower in mature oocytes compared to GV-stage oocytes 
at 0 hIVM. Previous efforts examining only two time points (i.e., at 
the beginning and end of maturation; 0 and 22–24 hIVM) speculated 
that maturation-related changes were most likely gradual [13, 14]. 
However, findings from our study examining changes during the first 
6 hIVM document marked changes (i.e., reductions) in triglyceride 
and phospholipid content of bovine oocytes within the first 2 hIVM. 
Though the physiological significance of the marked decrease within 
2 hIVM remains unclear, activation of mechanisms important for 
reducing much of the lipid content in an oocyte is likely critical in the 
continuum of remodeling/transforming cytoplasmic components in 
the oocyte to be “inherited” by the resultant zygote after fertilization. 
Interestingly, decreases in triglyceride content continue as the zygote 
begins to undergo cell cleavage divisions [13].

Another potential role for the rapid breakdown of lipids in the 
oocyte during the first 2 hIVM may be to release important proteins 
or histones that are packaged within lipid droplets. In a variety of 
different cell types, lipid droplets serve as a protein storage depot 
[reviewed by 36]. In Drosophila, approximately 50% of certain 
embryonic histones are physically attached to lipid droplets [37]. 
Because a fraction of H2Av was colocalized with lipid droplets in 
both nurse cells and in oocytes, Cermelli et al. [37] proposed that 
the lipid droplet may play an important role towards the storage 
of maternally-provided histones for early embryo development. 
Further evaluation showed that the associated histones were capable 
of translocation to the nucleus, where they could then take part in 
regulating DNA transcription. However, histones became unavailable 
for use in transcriptional regulation if lipid droplets did not properly 
redistribute during oocyte and early embryonic development [37]. 

Although it is not clear if lipid droplets play a similar role in the 
bovine oocyte, it is interesting to note that bovine cumulus oocyte-
complexes require a 1 to 2 h transcriptional phase towards synthesis 
of necessary proteins for driving meiosis [reviewed by 38].

Various fatty acids are released from the breakdown of lipid 
droplet-triglycerides. However, it remains unclear where or how 
released fatty acids are utilized within the oocyte. When lipolytic 
changes are most pronounced, bovine oocytes are intimately associated 
with surrounding cumulus cells [39]. These intimate associations via 
gap junctional-complexes allow for a bidirectional flow of signals 
and metabolites between the oocyte and the cumulus [reviewed by 
40]. Although cumulus cells were not evaluated as a part of this 
study, one cannot preclude the potential for these cells to receive, 
and possibly utilize, the by-products released from lipolytic activity 
occurring in the oocyte. Auclair et al. [15] reported that lipid droplet 
breakdown was greater in bovine oocytes matured with intact cumulus 
cells compared to those matured without surrounding cumulus. 
Furthermore, fatty acids are commonly packaged into vesicles to 
allow for transportation to membrane surfaces in other cell types 
[41]. Kruip et al. [35] observed small vesicles surrounding many of 
the cumulus cell processes in bovine oocytes during early maturation.

In conclusion, findings described herein provide additional evidence 
that exposure of bovine oocytes to a physiologically-relevant heat 
stress hastens the incidence of GVBD. Although underlying mecha-
nisms remain unclear, changes in lipolytic activity reported herein 
are not likely problematic because triglyceride and phospholipid 
content decreased similarly in oocytes matured at thermoneutral 
and heat-stressed conditions. Whether higher ATP content at 24 
hIVM in oocytes experiencing heat stress during the first 12 h of 

Table 1.	 Meiotic progression of bovine oocytes undergoing IVM at 38.5 or 41.0 C

A = Representative image of germinal vesicle (GV)-stage oocyte, scale bar = 20 µm. B = 
Representative image of oocyte with condensed chromatin (CC). C = Representative image of 
oocyte with metaphase I (MI) chromatin configuration. D = Representative image of oocyte 
with metaphase II (MII) chromatin configuration. a–d means differ within a column (P < 0.05). 
1GVBD = Germinal Vesicle Breakdown. 2AI = Anaphase I stage. 3TI = Telophase I stage.  
– = nuclear stage not observed at these time periods.
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maturation serves as an indicator of downstream lipolytic changes 
involving heightened fatty acid β-oxidation, or are representative 
of 1) a surplus of ATP from mitochondrial dysfunction, 2) changes 
in protein synthetic capabilities, or 3) other alterations yet to be 
identified, remains to be determined.
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