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A computer-guided design tool to increase the
efficiency of cellular conversions

Sascha Jung"®, Evan Appleton® 232, Muhammad Ali*>°, George M. Church® %3¢ & Antonio del Sol@® 478

Human cell conversion technology has become an important tool for devising new cell
transplantation therapies, generating disease models and testing gene therapies. However,
while transcription factor over-expression-based methods have shown great promise in
generating cell types in vitro, they often endure low conversion efficiency. In this context,
great effort has been devoted to increasing the efficiency of current protocols and the
development of computational approaches can be of great help in this endeavor. Here we
introduce a computer-guided design tool that combines a computational framework for
prioritizing more efficient combinations of instructive factors (IFs) of cellular conversions,
called IRENE, with a transposon-based genomic integration system for efficient delivery.
Particularly, IRENE relies on a stochastic gene regulatory network model that systematically
prioritizes more efficient IFs by maximizing the agreement of the transcriptional and epige-
netic landscapes between the converted and target cells. Our predictions substantially
increased the efficiency of two established iPSC-differentiation protocols (natural killer cells
and melanocytes) and established the first protocol for iPSC-derived mammary epithelial
cells with high efficiency.
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ellular conversion technologies are the key to human

disease modeling, cell transplantation, and gene therapies,

all of which require the efficient generation of a wide range
of different human cell types!=3. Since it is often difficult to
identify, purify, and expand many primary human cell types that
can be readily used in this context, scientists have been investi-
gating methods for converting a cell type that can be easily
obtained and expanded efficiently to another cell type. For
instance, in the context of ex vivo gene therapies, gene-corrected
patient-derived induced pluripotent stem cells (iPSCs) have been
differentiated into a variety of cell types, such as keratinocytes
and epidermal pigment cells, and successfully transplanted®>.
While some recent work has been done in this area that mainly
uses a variety of media-based and transcription factor (TF) over-
expression-based cell culture methods, there are still no robust
general methods for optimizing selections of TFs for high con-
version efficiency.

Although there is compelling evidence that only a small set of
over-expressed TFs are sufficient to confer cell identity and are
being used for cellular conversion, which we refer to as instructive
factors (IFs), this process is usually inefficient®. In particular,
conversion efficiency refers to the ratio of successfully converted
cells to the initial number of cells, a widely adopted definition we
preserve in the remainder of this manuscript. In this context, four
major determinants of conversion efficiency have been high-
lighted in recent studies. First, in addition to identity TFs, certain
co-factors have to be up-regulated that cooperatively induce the
target cell type’. Second, cell conversion efficiency is crucially
dependent on the amount of epigenetic restructuring of the initial
cell type during the conversion process®°. Third, the conversion
efficiency is influenced by inherent stochastic activation of co-
factors!, and fourth, in addition to the combination of IFs,
current protocols mostly rely on viral vectors for factor delivery,
which results in limited cargo capacity and diminished conver-
sion efficiency!!l. These determinants are further supported by
recent computational studies emphasizing the importance to
consider the epigenetic landscape in cellular conversions!>~15. For
instance, a computational model of epigenetic regulation under-
scored the importance of stochasticity and epigenetic regulation
demonstrating that differentiation of pluripotent cells can be
induced by solely altering the kinetics of epigenetic regulators
and, thus, the epigenetic landscape!2.

The identification of IFs for cellular conversions has prompted
the development of computational methods to guide experi-
mental efforts. Early approaches relied on the identification of
significant  differences in transcriptomic or epigenetic
profiles!®-12 while more recent methodologies combined tran-
scriptomic data with gene regulatory network (GRN)
reconstruction?%-21. However, none of these methods account for
the major determinants of conversion efficiency and, thus, are
unable to systematically predict IFs for inducing efficient cellular
conversions. Indeed, based on experimental evidence, gene
expression alone is presumably insufficient for determining effi-
cient TFs?2-24,

Here, we present a computer-guided design tool for increasing
the percentage of successfully converted cells, which addresses all
four major determinants of conversion efficiency. The computa-
tional part of this design relies on an Integrative gene REgulatory
NEtwork model (IRENE) that systematically integrates gene
expression, histone modification, chromatin accessibility, TF
ChIP-seq, and protein—protein interaction (PPI) data to recon-
struct cell-type-specific core GRNs composed of identity TFs and
their co-factors. Based on these cell-type-specific core GRNS,
IRENE employs a stochastic Markov Chain approach to com-
putationally simulate cellular conversion and identify optimal
combinations of IFs, whose over-expression at the initial cell type

maximizes agreement at the transcriptional and epigenetic levels
between the converted and target cells. Results showed that
IRENE predicted a larger number of known IFs in 29 examples of
human cellular conversions in comparison to other state-of-the-
art methods and correctly discerned predictions of high and low-
efficiency IFs in eight previously experimentally validated exam-
ples of cellular reprogramming. Furthermore, the experimental
part of the design uses piggyBac-integrable?> TF-over-expression
cassettes via the human TFome?® to upregulate the predicted IF
combinations by IRENE without concern of genetic silencing.
Using this computer-guided design tool we increased the effi-
ciency of two established human iPSC-differentiation protocols
for natural killer cells and melanocytes up to ninefold and
established the first protocol for human iPSC-derived mammary
epithelial cells with high efficiency. In summary, we demonstrate
that this tool offers the most accurate and efficient method to date
for using TFs in direct cell-type conversions and is expected to
significantly enhance the production of cell sources for cell
transplantations and gene therapies.

Results

Reconstruction of cell-type-specific core GRNs. We propose a
computer-guided design tool for TF over-expression-based
cellular conversions to overcome the abiding issue of conver-
sion efficiency. For that, we developed IRENE, a computational
framework that models the major determinants of conversion
efficiency and prioritizes more efficient sets of IFs (Supple-
mentary Fig. 1). IRENE identifies these IFs by integrating
transcriptomic and epigenetic profiles along with publicly
available TF binding sites and enhancer-promoter interactions
to reconstruct cell-type-specific core GRNs. For each TF, active
enhancer and promoter regions are established by combining
enhancer-promoter interactions from GeneHancer?” with cell-
type-specific H3K27ac peaks and identifying H3K4me3 peaks
around transcription start sites (TSS), respectively. IRENE fil-
ters these regions by overlaying cell-type-specific DNase-seq
peaks to determine regulatory binding events within these
regions and reconstructs transcriptional regulators from over
224 million TF ChIP-seq peaks. Finally, IRENE identifies a set
of 10 identity TFs by computing the TFs with the highest cell-
type-specific expression in comparison to 7600 phenotypes
using a modified version of Jensen-Shannon-Divergence
(JSD)'6. In addition, TFs fulfilling the following three condi-
tions are included as co-factors of these identity TFs. First, each
co-factor has to be significantly expressed. Second, it has to be
regulated by at least one of the identified identity TFs and,
third, it has to regulate at least one identity TF. Of note, IRENE
does not impose a maximum number of co-factors. Thus, all
TFs fulfilling these criteria are included in the network. Finally,
the core GRN is composed of all regulatory interactions
between identity TFs and their co-factors.

We employed IRENE to reconstruct core GRNs for 72 human
cell types, cell lines, and tissues. Every network has up to 51 TFs
(on average 18.5 TFs), while every TF in the network has up to 46
regulators (on average 15.0) and 44 active enhancers (on average
6.0). The number of enhancers per gene follows an exponential
distribution where the majority of genes have one or two active
enhancers, which is consistent with enhancer-promoter interac-
tions obtained from promoter capture Hi-C experiments?8
(Fig. 1a). Moreover, unlike co-factors, core TFs are always
differentially expressed between the initial and final cell types
according to commonly used criteria (fold change>2). Never-
theless, although co-factors are not necessarily differentially
expressed, they are equally likely to be contained in the predicted
IF combinations, since their over-expression could be beneficial
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to overcome the transcriptional and epigenetic barriers (Supple-
mentary Table 1).

Validation of reconstructed GRNs. Before employing IRENE’s
reconstructed networks to generate predictions of IFs for efficient
cellular conversions, we interrogated their accuracy and cell-type-
specificity. For that, we first examined whether the set of selected
identity TFs and co-factors is implicated in the functionality of
the cell or tissue type. Significantly enriched gene ontology (GO)
terms of the network TFs were identified using WebGestalt?® and
showed a highly specific enrichment for most cell or tissue types
(Supplementary Data 1). For instance, subcutaneous adipocytes
were enriched in positive regulation of fat cell differentiation,
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natural killer cells were enriched in defense response while
mammary epithelial cells were enriched in the establishment of
the skin barrier (Fig. 1c-e).

Next, we validated the reconstructed interactions among
network TFs. In the presence of incomplete ground truth data,
we first assessed the number of interactions within promoter
regions that are compatible with cell-type-specific TF ChIP-seq
data from ChIP-Atlas’® (Supplementary Note 1). Requiring a
representative evaluation of at least 10 network TFs resulted in
eight examples of different cell types and cell lines. We evaluated
a total of 1044 TF ChIP-seq experiments and validated on average
80.98% of interactions whereas 8.84% of interactions were “false
positives”, i.e., regulatory binding events only occurring in a cell
type other than the target (Fig. 1b). Afterwards, we collected four
3
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Fig. 1 Benchmarking of IRENE. a The number of enhancers per gene (blue) across all networks follows an exponential distribution (orange). b Benchmark
of reconstructed networks against cell-type-specific TF ChlIP-Seq data for 8 cell types/cell lines. True positives (TP, blue) represent the interactions that
are present in the reconstructed GRNs and are experimentally validated by cell-type-specific TF ChIP-Seq data. Interactions validated by TF ChIP-Seq data
only profiled in cell-types other than the one under consideration are considered false positives (FP, orange). n =13 (Adipocyte), 69 (ESC), 236
(GM12878), 238 (HeLaS3), 292 (HepG2), 53 (K562), 37 (Keratinocyte) and 178 (MCF7) interactions. c-e Most-highly enriched significant gene ontology
terms for the reconstructed networks of ¢ adipocytes, d natural killer cells and e mammary epithelial cells. For adipocytes and mammary epithelial cells, the
top 5 GO terms are represented. For natural killer cells, only two terms were significantly enriched. Cells corresponding to TFs that are and are not relevant
for a particular GO term are colored in red and gray, respectively. f Reconstructed melanocyte subnetwork including all experimentally validated (red
border) and predicted IFs (gold) for the conversion of fibroblasts towards melanocytes. Enhancer and promoter regulation (green) is distinguished from
enhancer-only regulation (blue). Predicted interactions from position weight matrices using Homer are depicted as black dashed lines. g Recovery of
experimentally validated IFs in seven target cell types using IRENE (green), Mogrify (orange), and the method from d'Alessio et al. (blue). The fraction of
recovered IFs in multiple combinations of cellular conversions is depicted as box plots. The median is represented by a solid line within the boxes. The
lower and upper bounds of boxes are the first and third quartile, respectively. Whiskers extend to 1.5-times the interquartile range or the minimum/
maximum value. Dots correspond to outliers. n =3 (Adipocytes), 4 (Hepatocytes), 10 (iPSC), 3 (Melanocytes), 1 (Myoblasts), 4 (Neuron), and 4 (NSC)
combinations of cellular conversion factors. h Enrichment of predicted instructive factors in experimentally validated IF combinations. Predicted IFs are
highlighted in green whereas TFs that were replaced by another validated and more efficient IF are highlighted in blue. TFs not predicted by IRENE are

colored in black.

experimentally validated, manually curated gold-standard net-
works of embryonic stem cells (ESCs)3!, hepatocytes®2, HepG2,
and MCF7 cells’® to compare them against reconstructed
networks from IRENE. Of note, only TFs common to the
reconstructed and gold-standard networks were considered in
this assessment. In particular, 79% of TFs in the gold-standard
networks are, on average, present in the reconstructed networks
by IRENE (range: 50-100%) (Supplementary Table 2, Supple-
mentary Data 2). Moreover, we observed that the networks for
ESCs, HepG2, and MCF7 cells were in perfect agreement whereas
a single interaction was missing in the reconstructed hepatocyte
network (Table 1). Moreover, IRENE inferred four new
interactions of HNF1A and FOXA2 in the hepatocyte network
that have been validated in TF knockdown studies of hepatoma
cells®*, Thus, 95% of interactions in the gold-standard networks
were correctly reconstructed, which highlights IRENE’s accuracy.
In addition, we set out to validate the choice of databases
underlying IRENE and performed the same assessment using
enhancer-gene associations from EnhancerAtlas®> and transcrip-
tional regulatory interactions from GTRD3®. Indeed, using the
data from EnhancerAtlas and GTRD, we could only validate 52%
of interactions in the gold-standard networks, which supports the
choice of databases underlying IRENE (Supplementary Table 2,
Supplementary Data 2).

Prediction of IFs for inducing cellular conversions. Considering
the stochastic nature of cellular conversions, we set out to convert
reconstructed GRNs by IRENE into Deterministic Time Markov
Chain models (DTMCs) that we can exploit for interrogating the
dynamics of the system. For that, Boolean expressions were
defined that connect the regulators of a TF and represent their
competitive or cooperative action. IRENE characterizes two reg-
ulatory events as cooperative if their corresponding ChIP-seq
peaks significantly overlap and an experimentally validated
protein-protein interaction was reported in iReflndex?” (see
“Methods”). Otherwise, regulatory events are deemed competi-
tive. Using these models, we developed a strategy for identifying
combinations of TFs that induce cellular conversions with
increased efficiency. In brief, IRENE identifies combinations of
TFs whose over-expression at the initial cell type maximizes the
agreement at the transcriptional and epigenetic level between the
converted and target cells. To achieve this, IRENE assesses the
probability that a perturbation activates the complete network of
the target cell type and considers the amount of epigenetic
restructuring needed to transform the enhancer/promoter land-
scape of the initial to the target cell type (see “Methods”).

To begin with, we assessed whether IRENE’s strategy to
prioritize combinations of TFs is able to recapitulate known IFs.
Starting from a collection of 29 human cell conversion
experiments for which epigenetic and transcriptomic profiles
were available, we first assessed the number of recovered IFs
(Fig. 1h). Next, we compared our predictions against two former
state-of-the-art approaches, Mogrify?® and d’Alessio et al.l®.
Indeed, IRENE substantially outperforms Mogrify and d’Alessio
et.al, exhibiting median accuracy of 83.3% compared to 50% and
33.3%, respectively (Fig. 1g). Moreover, we observed a remarkable
enrichment of predicted TFs for iPSCs, showing on average 95%
recovery of known IFs compared to 72.5 and 45% with Mogrify
and d’Alessio et al. (Fig. 1g).

Despite the overall increased performance, IRENE’s predic-
tions of melanocytes were vastly inconsistent (17%), which
prompted us to investigate this case more closely. Only three of
the known IFs are included in the reconstructed melanocyte
GRN, namely MITF, SOX10, and PAX3 (Fig. 1f). However,
binding site predictions of known motifs from Homer3® in the
promoter regions of known IFs confirmed many network TFs as
upstream regulators. Importantly, one of the predicted TFs,
TFAP2A, displays predicted binding sites within the promoter
region of multiple IFs (Fig. 1f). In the presence of a recent study
showing that TFAP2A is likely a pioneer factor capable of
establishing competence for transcription, it is highly probable
that TFAP2A could more efficiently induce melanocyte
conversion?.

IRENE prioritizes more efficient combinations of IFs. Given
that IRENE resembled a majority of known IFs and at the same
time predicted other combinations, we investigated whether
IRENE prioritizes combinations yielding higher cellular conver-
sion efficiency. For that, we collected examples of IF combina-
tions inducing the same transition with different efficiency. In
order to assess the real contribution of the IFs on conversion
efficiency, we required the combinations to be reported in the
same study using the same experimental design as well as all IFs
to be present in the reconstructed GRNs. As a result, only iPSC
conversion fulfilled both of these criteria. In particular, we
identified eight pairs of IFs fulfilling our inclusion criteria in
which the efficiency was assessed and focused on these
transitions.

First, IRENE was employed to reconstruct an iPSC network,
which we assessed in terms of its constituent TFs (Fig. 2a).
Apparently, except for LIN28A, all known inducers of iPS$ cells,
ie, NANOG, MYC, POUS5F1, SOX2, KLF4, PRDM14, and
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Table 1 Benchmarking reconstructed core GRNs against experimentally validated core networks.

Cell type GS interactions Inferred Matching Mismatching Newly Newly inferred Overall
interactions interactions interactions inferred (validated) validated
ESC 9 9 9 0 0 0 100%
Hepatocytes 13 12 8 2 4 4 85.71%
HepG2 16 16 16 0 0 0 100%
MCF7 13 4 4 0 0 0 100%

For four well-characterized human cell types and cell lines, the reconstructed core networks were compared against their experimentally validated gold-standard (GS) core networks. The column ‘newly
inferred’ refers to the number of interactions not present in the gold-standard network whereas the column ‘Newly inferred (validated)’ refers to how many of them were validated in literature.

MYCN, are contained in the network. In addition, the network
contains FOXH]1, ZNF423, and MTA3, which play diverse roles
in the conversion to pluripotent stem cells. For example,
FOXHI significantly enhances iPSC conversion efficiency*’
and ZNF423 is implicated in the maintenance of pluripotency
and self-renewal®. In contrast, the functional role of MTA3 in
the induction and maintenance of PSCs remains to be
investigated. However, TP53 is a constituent of the recon-
structed GRN, as well. Even though it is known to diminish iPS
cell conversion efficiency!42, TP53 plays an important role in
the maintenance of ESCs*!43. Due to the dual role of TP53, we
examined whether the diminished efficiency of iPSC conversion
is reflected in the dynamics of the network. Indeed, combina-
tions including TP53 vyield significantly lower scores compared
to combinations not containing it (Supplementary Fig. 2,
one-sided Wilcoxon-Mann-Whitney test, p-value< 1.8e—5).
Moreover, the network dynamics underpin the essential role of
POUS5F1 in the induction of pluripotency, showing that
perturbations of fibroblasts without POU5F1 are not capable
of activating the complete network (Fig. 2¢). In addition, IRENE
prioritizes PRDM14 over KLF4, which is consistent with
previous reports showing that PRDM14 increases the efficiency
of iPS cell conversions** (Fig. 1h).

Supported by the assessment of the iPSC network, we went on
to compare the collected dyads of IFs starting from six different
initial cell types, ie., NSCs#>, HSCs*, melanocytes?’,
keratinocytes*$4%, newborn and adult fibroblasts®, and ranked
them based on IRENE’s score. Strikingly, IRENE resembled each
dyad of combinations correctly and assigned higher scores to
combinations with higher efficiency (Fig. 2b).

Finally, since the number of predicted TFs per combination is a
user-defined parameter of IRENE, we set out to interrogate the
redundancy of predicted TFs in combinations of various sizes. In
this regard, we focused on the differentiation of iPSCs into NK-
cells, scored all combinations of network TFs of size four, five,
and six, respectively, and ranked them based on the predicted
scores (Supplementary Fig. 3a). As a result, we observed that the
median rank of certain TFs, such as JUN and ELK4, is low, which
implies that they predominantly occur in high-ranking combina-
tions of all sizes, whereas others, such as ZNF107 and SP140,
mostly occur in low-ranking combinations (Supplementary
Fig. 3a). Intrigued by this finding, we explored whether the same
trend can be observed for high-ranking combinations as a whole,
i.e. whether high-ranking combinations of size k are subsumed in
high-ranking combinations of size k 4 1. However, in contrast to
single TFs, the addition of a single factor to high scoring
combinations does not always lead to new high scoring
combinations, which underscores the highly non-linear dynamics
imposed by the cooperative and competitive regulation of TFs
(Supplementary Fig. 3b).

Experimental validation of increased conversion efficiency. To
demonstrate IRENE’s ability to predict combinations of IFs, we

set out to increase differentiation efficiency by first creating stable
iPS lines for all experiments via genomic integration to ensure
high, stable expression of IFs using the human TFome (Fig. 3a).
We selected the three most commonly used types of protocols: (1)
a protocol for differentiating a cell type in the origin media type
to demonstrate that the TFs on their own are sufficient for dif-
ferentiation of a cell type, (2) a differentiation protocol using
destination media only to demonstrate that IFs are also effective
at differentiating in destination type conditions, and (3) a pre-
viously published growth-factor based protocol to show that we
can improve differentiation with our identified IFs. We selected
three target cell types having an immediate application in ther-
apeutic strategies where conversion efficiency constitutes a major
impediment.

For the first, we chose human mammary epithelial cells
(HMECs) (Fig. 3b), whose potential in the repopulation of
surgically resected mammary tissue has been explored for
decades®!. To date, this requires dissociation of mammary
epithelial cells from one tissue environment and subsequent
transplantation into another tissue. An efficient in vitro differ-
entiation protocol of mammary epithelial cells would thus
overcome this invasive procedure and provides a graft source
that can be generated from virtually any patient cells.

For the second, we chose melanocytes (Fig. 3¢c), which provide
a source of cellular grafts to replace damaged cells in the context
of vitiligo, an autoimmune disease characterized by the destruc-
tion of melanocytes by immune cells, which results in white,
unpigmented areas of the skin. To increase accessibility in the
clinics and decrease costs, current approaches rely on the use of
non-cultured melanocyte grafts, although transplantation of
appropriately cultured melanocytes is more efficacious in the
re-pigmentation of the skin®2. Thus, our melanocyte differentia-
tion protocol could serve as a way to increase the accessibility of
cultured melanocyte grafts for treating vitiligo in order to achieve
more favorable therapeutic outcomes.

For the final, we chose NK-cells (Fig. 3d), whose transplanta-
tion from allogeneic donors has been found to have a beneficial
effect in the treatment of leukemia after chemotherapy>3.
Although this strategy has been proven useful in achieving a
complete remission of the disease in some patients, the
transplanted cells were frequently rejected3. In this regard, an
efficient NK-cell differentiation protocol can substantially benefit
the treatment of leukemia by using patient-derived iPSCs, which
are expected to be well tolerated.

First, we thought it was important to demonstrate that selected
IFs were causing differentiation directly in starting cell type
media. To test this, we calculated combinations of TFs for
differentiating a cell type without previously documented
conversion protocols (mammary epithelial cells) and over-
expressed the TFs in iPSCs cultured in stem cell media (mTeSR)
(Fig. 3e, Supplementary Fig. 4a). As a result, we observed a high
consistency between the experimental and computational ranking
of EPCAM and ERBB2 double-positive cells (Fig. 2e). Each of the
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green), embryonic fibroblasts (blue), neural stem cells (NSC, orange), keratinocytes (purple), and melanocytes (gold). For each conversion, two
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dissimilarity of O (red) and cannot be induced without POU5F1 being expressed. d Comparison of EpCAM-positive cells (left) and predicted scores by
IRENE (right) when iPSC differentiation towards mammary epithelial cells is induced with 5- (orange, red) or 6 (blue, green) TF combinations. The median
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times interquartile range or the minimum/maximum value. n =4 (6 TFs) and 5 (5 TFs) independent experiments. e.g., Comparison of scores predicted by
IRENE with the percentage of successfully differentiated @ mammary epithelial cells (blue) f melanocytes (red) and g NK cells (green).

6 NATURE COMMUNICATIONS | (2021)12:1659 | https://doi.org/10.1038/s41467-021-21801-4 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21801-4

ARTICLE

a

iPS Cell Line Engineering

Differe

Differentiation
——

d Day 0: Days 5,7,9:
Plate 6 x 3k cells -SpinEB formation  Half-media changes

Days 11:

Day 0: Day 8:
b Plate 50k cells, mTeSR1 +DOX  Flow Cytometry
ntiated Cells
< /
C Day 0: Day 8:
Plate 50k cells, Melanocyte Media + DOX Flow Cytometry
Day 39:

Re-plate spin EBs for differentiation, bi-weekly half-media changes + DOX  Flow Cytometry

350 = [](iPS mTeSR Control)
= [GRHL3,NFYC,HINFP,VDR,NCOR1,SMAD4]
300 = [GRHL3,NFYC,HINFP,VDR,NCOR1,ZNF143]
® [GRHL3,NFYC,HINFP,VDR,NCOR1]
250 ® [GRHL3,NFYC,HINFP,VDR,SMAD4]
- = [GRHL3,NFYC,SMAD4,VDR,NCOR1]
S 200 ® [GRHL3,NFYC,VDR,KLF5,MAX,ZNF143]
o [GRHL3,NFYC,VDR KLF5,MAX]
2 150 = [GRHL3,ZNF143HINFP,SMAD2,CREB1,NCOR1]

® [GRHL3,ZNF143 HINFP,SMAD2,CREB1]

0

ERBB2+ EpCAM+  EpCAM+ERBB2+

= [](iPS mTeSR Control)
5 ® [] (iPS Melanocyte Media Control)
4.5 m [HOXC9,ETS1,MITF,E2F7]
4 ® [HOXCO,ETS1,MITF,TFAP2A]
€ 35 ® [RXRG,E2F7,PAX3,PAX10]
8 3 # [RXRG,ETS1,TFAP2A,HOXC9,E2F7,MSC]
5 25
a 2
1.5
1
0.5
0 -

Y, %)
12 by, o
e,
N

1 (iPS mTeSR Control)

[1 (iPS NK-Culture Control)
[JUN,ETS1,FLI1,IRF4,BACH2]
[JUN,ETS1,FLI1,IRF4,ELK4,ZNF107]
[JUN,ETS1,FLI1,IRF4,ELKA4]
[JUN,ETS1,FLI1,IRF4,IRF8,ELK4]
[JUN,ETS1,FLI1,IRF4,IRF8]
[JUN,ETS1,FLI1,IRF4,MBD4,ELK4]
[JUN,ETS1,FLI1,IRF4,MBD4]
[JUN,ETS1,FLI1,IRF4,RFX5]

Fig. 3 Experimental validation of improved efficiency of cell type conversion. a Stable iPS lines for all differentiation experiments were created prior to
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epithelial cells (HMEC) from human iPS cells (hiPSCs). ¢ Protocol for differentiating melanocytes from hiPSCs. d Protocol for differentiating NK cells from
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tested combinations resulted in at least 78.2% EPCAM-positive
cells after 8 days, but not necessarily a mammary subtype. In
addition, more over-expressed TFs lead to a significant increase in
converted epithelial cells (Fig. 2d; Wilcoxon test p-value: 0.03).
One combination, however, ([GRHL3, NFYC, VDR, KLF5,
MAX]), appeared to shift the population double-positive for a
large percentage of cells (~99%), compared to the number of
seeded cells. To corroborate the induction of these cells, we
performed RNA-seq experiments of the initial iPSC and
converted cell populations. Comparison between the individual
samples with iPSCs confirms the elevated expression of a larger
set of mammary epithelial marker genes (Supplementary Fig. 5).
In addition, a comparison of network TF expression of the
converted cells and iPSCs shows that the over-expression of a
small number of TFs was sufficient to induce these TFs in almost
all combinations, which supports the network architecture
reconstructed by IRENE (Supplementary Fig. 6). Despite the
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induction of marker genes and network TFs, we set out to assess
the transcriptional similarity to mammary epithelial cells by
deconvoluting the RNA-seq samples of iPSCs, converted cells,
and a gold-standard mammary epithelial cell line (Supplementary
Fig. 7). For that, we employed CybersortX>4, a computational
method for detecting the proportion of cell types present in an
RNA-seq sample within a single-cell RNA-seq reference dataset.
Based on a reference dataset assembled from human breast tumor
tissue>> and iPSCs>®, we found up to 14% of the converted cells to
possess a mammary epithelial cell type whereas the remaining
cells are largely possessing an iPSC phenotype. (Supplementary
Fig. 7a). Intriguingly, we employed a HMEC line as a positive
control and found only 23% of these cells to possess an epithelial
transcriptional phenotype, suggesting a closer resemblance of the
converted cells to the positive control than expected from the
predicted fraction of epithelial cells. However, we speculate that
longer differentiation or differentiation in a mammary-epithelial
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cell-specific media could result in a more holistic differentiation
of the population and, thus, a more pronounced increase in the
expression of marker genes and network TFs.

Next, we wanted to determine if IFs selected by IRENE could
improve differentiation efficiency when placing cells of the
starting type into media of the destination cell type as opposed
to the starting cell type (Fig. 3f, Supplementary Fig. 4c). For this
experiment, we differentiated iPSCs to melanocytes in mela-
nocyte media with and without TF over-expression. We found
that while destination media was sufficient to partially
differentiate iPSCs to melanocytes, two of four TF combina-
tions were able to considerably increase the efficiency of
differentiation by more than 900% of Mel.2-CD26 double-
positive cells (medium alone: 0.49%; TFs: 4.7%) (Fig. 2f).
Notably, the lowest ranking combination ([RXRG, PAX3,
SOX10, E2F7]) resulted in the second-highest efficiency, only
superseded by the combination [RXRG, ETS1, TFAP2A,
HOXC9, E2F7, MSC] (Fig. 2f). We suspect that this effect is
due to the composition of the growth medium and that it can
activate RXRG with retinoic acid, if it is expressed. Indeed,
retinoid acid, through RXR activation, is a well-known inducer
of melanogenesis®’. Similar to the case of mammary epithelial
cells, RNA-seq confirms the expression of melanocyte marker
genes and network TFs, especially for combinations increasing
the efficiency (Supplementary Figs. 8, 9). Moreover, deconvolu-
tion of the converted cell RNA-seq samples, using a single-cell
reference dataset composed of iPSCs® as well as neonatal and
adult skin samples enriched for melanocytes®8, shows up to
93% of successfully converted cells that do not possess an iPSC
phenotype anymore (Supplementary Fig. 7b).

Finally, we sought to determine if IRENE could produce
combinations of IFs that could increase the conversion efficiency
of established differentiation protocols. To test this, we performed
NK-cell differentiation using an established differentiation
protocol®® and measured if the related cellular markers were
more prominently differentiated in iPSC lines with over-
expressed TFs than a control iPS cell line (Fig. 3g, Supplementary
Fig. 4b). Again, we found a high consistency between the
experimental and computational ranking of CD56 + NKp46+
double-positive cells (Fig. 2g). In particular, five of eight iPSC
lines with combinations of IFs over-expressed after spin-EB
differentiation ([JUN, ETS1, FLI1, IRF4, ELK4, ZNF107], [JUN,
ETS1, FLI1, IRF4, IRF8, ELK4], [JUN, ETSI1, FLI1, IRF4, IRF8],
[JUN, ETSI1, FLI1, IRF4, MBD4, ELK4] and [JUN, ETSI, FLI1,
IRF4, RFX5]) increased the number of CD56 + NKp46 NK-cells
by up to 250% compared to the line without IFs, yielding an
efficiency of 2.6% with respect to double-positive cells (Fig. 3g).
Furthermore, these cell lines expressed a greater percentage of
other mature NK-cell markers (Fig. 3g), indicating that not only
were more NK-cells produced, but that the cells that were
produced were more mature than the iPSC control line. This
finding is corroborated by corresponding RNA-sequencing
analysis (Supplementary Figs. 10, 11). Except for one combina-
tion ([JUN, ELK4, ETSI1, FLI1, IRF4]), all combinations induce
the expression of NK-cell marker genes and network TFs. This is
consistent with the fact that this combination only results in an
efficiency of 0.28%, which is lower than the bona fide NK
differentiation protocol alone (Fig. 2g). Moreover, deconvolution
of converted cell RNA-seq samples using a single-cell reference
dataset composed of peripheral blood mononuclear cells®® and
iPSCs>¢ further underscores the possession of an NK-cell
phenotype for most combinations (Supplementary Fig. 7c). In
particular, except for one cell line converted with the IF
combination [JUN, ETS1, FLI1, IRF4, MBD4], between 16 and
30% of converted cells in each sample are predicted to be
NK cells.

Discussion

The often low efficiency of cellular conversions constitutes a
major obstacle in advancing the development of new cell trans-
plantation and gene therapies. Great efforts have been devoted to
increasing cell conversion efficiency by employing new experi-
mental techniques for delivering IFs®1-6> and, in some cases, by
developing computational methods for predicting combinations
of IFs in specific cellular systems!®-21. However, none of these
approaches alone could systematically address this prevailing
issue. Here, we introduced a computer-guided design tool that
combines the first computational framework for prioritizing more
efficient IFs of cellular conversions, called IRENE, and an
experimental setup exploiting the piggyBac transposase to over-
come the limitations of viral vector gene delivery.

In particular, IRENE is based on a general strategy for
increasing the efficiency of cellular conversions by systematically
integrating and making use of transcriptomic and epigenetic
profiles. The foundation of IRENE is the reconstruction of cell-
type-specific GRNs by integrating chromatin accessibility, histone
modifications, TF ChIP-seq, enhancer-promoter interactions,
PPIs, and transcriptomic datasets, which allowed the imple-
mentation of a model that accounts for the stochastic nature of
cellular conversions!?. The strategy proposed by IRENE for
prioritizing more efficient IFs minimizes not only the transcrip-
tional differences between the initial and target cell types but also
accounts for the amount of epigenetic restructuring needed
during the conversion process, which is a key determinant of
conversion efficiency®.

As previously described, IRENE reconstructs GRNs based on
transcriptional and epigenetic landscapes to predict IFs whose
over-expression increases the probability of inducing the target
cell type. Moreover, computational over-expression of the pre-
dicted IFs has to lead to the satisfaction of all reconstructed logic
rules of a network after simulation. It is worth noting that the
reconstructed logic rules are static and do not change during
simulation, which implies that the predicted IFs for a target cell
type requiring the binding of protein complexes in active
enhancer or promoter regions have to contain all TFs forming
these complexes unless they can be transiently activated. One
such example is iPSCs, in which POUS5F1 alone or as part of a
complex occupies all active regulatory regions. Thus, POU5F1 has
been determined to be indispensable for cellular reprogramming,
which has long been believed to be true®’. Nonetheless, recent
experiments demonstrated that viable iPSCs can be generated
with SOX2, KLF4, and MYC (SKM) alone®8, Since IRENE used
transcriptional and epigenetic profiles of PSCs induced by
POUS5F1, SOX2, KLF4, and MYC (PSKM), further research is
required to assess differences in binding events, active TFs as well
as active regulatory regions underlying the reconstructed net-
works of PSCs induced by SKM and PSKM, respectively. How-
ever, to date, no DNase-seq and H3K27ac ChIP-seq data of SKM-
based iPSCs have been generated, which currently prevents such
an assessment.

Further, predicted IFs by IRENE were over-expressed using
piggyBac-integrable TF-over-expression cassettes to overcome the
main limitations of current viral vector-based protocols. First,
piggyBac can integrate up to 100 kb sections of DNA into the
genome®®70, In combination with the human TFome?%, the first
collection of more than 1500 TF constructs, virtually any number
of predicted IFs can be delivered, thus, overcoming limited car-
rying capacity. Second, the prevailing issue of genetic silencing is
mitigated because piggyBac integrates TF-over-expression cas-
settes many times (240 copies) under recommended nucleofec-
tion conditions. Finally, piggyBac enables high-throughput
cellular conversions due to its demonstrated low conversion time,
which is highly instrumental for testing new gene therapies’!.
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We demonstrated through experimental validation that our
computer-guided design tool is applicable to various protocols
and substantially increased efficiency in most tested cases. A
significant consistency of the rankings of predicted and experi-
mental efficiency has been obtained in the conversion to mam-
mary epithelial and natural killer cells, which proves IRENE’s
ability to prioritize more efficient combinations of IFs. For
assessing the efficiency of cellular conversions, we adopted the
commonly employed formulation, which used the number of
starting cells plated and final double-positive cells observed.
Although this metric confirmed efficiencies predicted by IRENE,
this calculation is inherently unable to account for cell death,
proliferation rates, and cells lost during dissociation and washes.
Thus, a future improved metric would likely require sophisticated
automation for tracking the fate of each cell that divides over the
duration of a differentiation protocol. We believe that a sig-
nificant consistency would be obtained for melanocyte differ-
entiation, if more combinations are tested. In addition, we
showed that our tool can be readily applied to an existing pro-
tocol of NK cell differentiation and increased the efficiency by
900% compared to existing protocols. Nonetheless, some com-
binations yielded only a low percentage of CD56 + NKp46+
double-positive cells. Since the predictions have been performed
using iPSCs as the initial cell type instead of hematopoietic
progenitor cells (HSCs) obtained after 11 days of differentiation,
we speculate that low efficiency is due to detrimental regulatory
programs established during HSC differentiation, as exemplified
by BACH272. Importantly, although experimental validation was
performed in the context of directed cellular differentiation, the
consistent ranking of IFs for cellular reprogramming towards
iPSCs and the high accuracy of recovered IFs in previously
established protocols strongly suggests that IRENE could aid in
increasing the efficiency of conversions between somatic cells.

In addition to computational methods, several wet-lab
approaches have been conceived for predicting efficient IFs of
cellular conversions. For instance, a recent study demonstrated
that transdifferentiation efficiency can be substantially increased
by inducing cells with hyperproliferative and hypertranscribing
properties after overexpression of IFs”3. In contrast, the efficiency
of directed differentiation protocols is partly determined by the
cell cycle and can be increased through its targeted inhibition.
Moreover, the overexpression of IFs using small molecules suc-
cessfully increased the efficiency of cellular conversions in various
cell types’. However, the identification of these small molecules
requires large amounts of resources and is laborious. Another
approach for increasing conversion efficiency is the homo-
genization of the initial cell source through cell enrichment. This
technique has been successfully employed, for instance, to
increase the conversion efficiency of cellular reprogramming’> as
well as the differentiation of monocytes into dendritic cells’®. In
general, the aforementioned approaches have in common that
they require knowledge about the IFs inducing the desired cell
type. Consequently, we expect that these wet-lab approaches for
increasing cellular conversion efficiency are well complemented
by the predictions of IRENE.

To our knowledge, our computer-guided tool for designing
cellular conversions employs the first computational method that
systematically identifies more efficient IFs. Altogether, this tool
offers an accurate and efficient method for using TFs in direct
cell-type conversion and is expected to enhance the production of
cell sources readily usable in therapeutic applications, such as cell
transplantation and gene therapies.

Methods
Cloning of TF cassettes for cell type conversion. TFs were cloned into a plasmid
in between flanking piggyBac integrase regions. Plasmids were part of the Human

TFome collection and were cloned with Gateway LR cloning from compatible
donor plasmids and did not require primers for amplification. All plasmids are
available on the AddGene TFome collection. Upon nucleofection with the piggyBac
transposase, DNA between these regions is integrated randomly into the genome.
The exact number of integration events was not directly determined, but is a
function of DNA quantity upon nucleofection. Upstream of the TF cassettes is a
DOX-inducible promoter (pTRET) to activate TF-overexpression in the presence
of doxycycline in the media. All plasmids and plasmid maps will be made available
on Addgene.

Creation of cell lines. All differentiating cell lines were performed on repro-
grammed PGP1 fibroblasts (https://www.coriell.org/0/Sections/Search/
Sample_Detail.aspx?Ref=GM23338&Product=CC) using the Sendai-
reprogramming-factor virus. PGP1 iPS cells were expanded and nucleofected with
P3 Primary cell 4D Nuceleofection kits with pulse code CB150 using 2 pg of total
DNA for 800,000 cells [Lonza]. Cells were plated onto Matrigel-cotated plates
[Corning] with ROCK-inhibitor [Millipore] and selected with puromycin [Sigma].
Stable cell lines were expanded over several passages using TrypLE [Gibco] in
mTeSR [StemCell Technologies] and frozen in mFReSR [StemCell Technologies].
PGP1 cell lines were modified to incorporate TF over-expression cassettes into the
genome to create cell lines. The following cell lines were created (ex: “Cell line
name [TF1, TF2,...]”): NK 5.1 [JUN,ELK4,ETS1,FLI1,IRF4]; NK 5.2 [JUN,ETS1,
FLI1,IRF4,MBD4]; NK 5.3 [JUN,ETS1,FLI1,IRF4,RFX5]; NK 5.4 [JUN,ETS1,FLII,
IRF4,IRF8]; NK 5.5 [JUN,BACH2,ETS1,FLILIRF4]; NK 6.1

[JUN,ELK4,ETS1,FLI1,IRF4,IRF8]; NK 6.2 [JUN,ELK4,ETS1,FLI1,IRF4,
ZNF107]; NK 6.4

[JUN,ELK4,ETS1,FLI1,IRF4,MBD4]; Mel L [E2F7,SOX10,PAX3,RXRG]; Mel
H1 [MITF,ETS1,HOXC9,TFAP2A]; Mel H2 [E2F7,ETS1,HOXC9,TFAP2A]; Mel
5.1 [RXRG,ETS1,SOX10,MITF, TFAP2A]; Mel 6.1

[RXRG,ETS1,HOXC9,E2F7,TFAP2A,MSC]; HMEC 5.1 [GRHL3,NFYC,VDR,
KLF5,MAX]; HMEC 5.2

[GRHL3,NFYC,VDR,NCOR1,HINFP]; HMEC 5.3 [GRHL3,NFYC,VDR,
SMAD4,HINFP]; HMEC 5.4

[GRHL3,NFYC,VDR,NCOR1,SMAD4]; HMEC 5.5 [GRHL3,HINFP,ZNF143,
SMAD2,CREB1]; HMEC 6.1

[GRHL3,NFYC,ZNF143,VDR,KLF5MAX]; HMEC 6.2 [GRHL3,NFYC,VDR,
NCORI1,SMAD4,HINEP]; HMEC 6.3

[GRHL3,NFYC,VDR,NCOR1,HINFP,ZNF143]; HMEC 6.4 [GRHL3,HINFP,
ZNF143,SMAD2,CREB1,NCORI1].

HMEC differentiation. In total, 50,000 hiPSCs were plated on matrigel-coated
plates and differentiated with 2 ng/mL doxycycline [Sigma] for 8 days in mTeSR
[StemCell Technologies] with full media changes daily.

Melanocyte differentiation. In total, 50,000 hiPSCs were plated on matrigel-
coated plates and differentiated with 2 ng/mL doxycycline [Sigma] for 8 days in
Melanocyte Growth Media [Sigma] with full media changes every other day.

NK-cell differentiation. Six wells of 3000 hiPSCs were plated into uncoated round-
bottom plates in 200 pL of StemDiff APEL2 media [StemCell Technologies] with
Stem Cell Factor (SCF) (40 ng/mL) [R&D Systems], BMP4 (40 ng/mL) [R&D
systems], and VEGF (40 ng/mL) [BioLegend] and spun at 300 g at RT for 5 min.
Cells were then incubated at 37 C and 5% CO, for 11 days. Half-media changes
were performed on days 5, 7, and 9. On day 11, all six wells of spin EBs were
aspirated without disturbing the structure of the EB and plated into a well of a 24-
well plate in NK differentiation media consisting of StemDiff APEL2, SCF (20 ng/
mL), IL-3 95 (5ng/mL) (first week only) [R&D Systems], IL-7 (20 ng/mL) [R&D
Systems], IL-15 (10 ng/mL) [R&D Systems], and FIT3l (10 ng/mL), [BioLegend].
Half media changes were performed once per week for 4 weeks.

Flow cytometry. Cells were digested in TrypLE [Gibco] and resuspended in
growth media before staining with cell surface markers. The following antibodies
were used for analysis: [HMEC: ERB2-APC-Vio-777 (10 pL/test), EpCAM-PE-Cy7
(5 uL/test)]; [NK-cells: CD56-APC (5 pL/test), CD16-PerCP-Cy5.5 (5 pL/test),
NKp44-PE (5 pL/test), NKp46-PE-Cy7 (5 uL/test), NKG2D-FITC (5 uL/test)];
[Melanocytes: CD26-PerCP-Cy5.5 (5 pL/test), Mel.2-anti mouse I1Ggl (1 pg/mL),
ms IGg1-PE (20 pL/test)]. Cells were analyzed on a BD LSR Fortessa Analyzer. We
measured 3 biological replicates and for at least 1000 cells. Cytometry results were
analyzed using the flowCore R package v1.52.1 and related packages.

RNA Sequencing. 100k or fewer cells were digested with TrypLE [Gibco] and
resuspended in TRIzol LS Reagent [Invitrogen] for lysis. The RNA was purified
using a Direc-zol RNA MicroPrep Kit [Zymo]. Library preparation was performed
with a SMARTer Seq v2 Pico Mammalian Input kit [TAKARA Bio]. NGS was
performed using Illumina NovaSeq technology for 115 cycles.

Identification of identity TFs. A background gene expression distribution of each
TF was defined by 7600 different samples in Recount2’” (Supplementary Data 3).
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All samples from The Cancer Genome Atlas (TCGA) and those containing the
terms “cancer”, “disease”, and “single cell” in the title or description of their Gene
Expression Omnibus (GEO)78 entry were excluded prior to the analysis. TFs in a
query sample were subsequently ranked based on the specificity of their expression
using a modified version of the method proposed by D’Alessio et al.1°. The
approach consists of three steps. First, gene expression profiles in the background
are excluded that are correlated to the query sample. A Pearson correlation coef-
ficient of 0.75 was selected as a threshold, by maximizing the F1 score of distin-
guishing ESC from non-ESC samples in the background distribution
(Supplementary Fig. 12). Second, for each TF, an idealized probability distribution,
which contains ‘1’ in place of the considered sample and ‘0’ otherwise, and a query
probability distribution, containing the normalized expression of the TF in all
samples, is created. Finally, the Jensen-Shannon divergence (JSD) between the ideal
and background distribution is computed. The 10 TFs having the highest JSD value
are selected as identity TFs.

Reconstruction of cell-type-specific core GRNs. GRN reconstruction follows a
three-step approach. First, every gene is classified into being active or inactive
based on its expression value using RefBool”® with Matlab 2018a (© Mathworks),
testing the null hypothesis that a gene is inactive. P-values of <0.1 were considered
significant.

Second, active proximal and distal regulatory regions are identified for every
active TF. Promoters are defined based on the Ensembl promoter annotation from
the Eukaryotic Promoter Database®? (accessed 23 March 2018) and restricted to
1500 bp upstream and 500 bp downstream. Promoter regions are deemed active in
a given cell type if it overlaps with at least one H3K4me3 peak. Enhancers of active
TFs are defined by the GeneHancer database?” (accessed 6 April 2018). Enhancers
are deemed active if they overlap with at least one H3K27ac peak and truncated to
the peak region. Inactive enhancer regions are discarded.

Finally, TF binding events are identified in active promoter and enhancer
regions by overlaying TF ChIP-Seq peaks from ChIP Atlas®, regardless of the cell
type they were profiled in. Every binding event sharing one base pair with an active
region constitutes a potential regulatory interaction. Interactions are filtered by
cell-type-specific DNase-Seq peaks, such that all remaining interactions are within
accessible chromatin regions.

Using this approach, a GRN scaffold is constructed among all TFs and
subsequently restricted to identity TFs and co-factors. Co-factors are selected based on
three conditions. First, only active TFs defined by RefBool are considered. Next, TFs
are ranked based on their JSD value and restricted to those whose ranks are
significantly lower than their average rank across all samples (z-score < —1.5). Finally,
co-factors must regulate and must be regulated by at least one identity TF. The GRN
scaffold is restricted to identity TFs and co-factors, which constitutes the core GRN.

Accessions of the experimental datasets used in this study are provided in
Supplementary Data 4. All considered datasets were annotated to genome assembly
GRCh38 or converted to GRCh38 by using the CrossMap tool®’.

Inference of Boolean logic rules. IRENE infers cooperative and competitive
binding by identifying TFs with overlapping ChIP-seq peaks having a PPI reported
in iRefIndex’’. Significant overlap is determined on the basis of positive and
negative gold-standard datasets of 755 and 336 PPIs, respectively$283, The average
reciprocal overlap of (non-)interacting TF pairs was computed in all cell lines/cell
types with available ChIP-seq profiles in ChIP-Atlas?. TF pairs are more likely to
interact if their peaks overlap by at least 62.43% (Supplementary Fig. 13). All TFs in
an active regulatory region are transformed into an undirected graph where an
edge represents an overlap of more than 62%. The connected components of this
graph are detected using the “clusters”-method of the R “igraph”-library (version
1.2.2)84,

TFs in a cluster are connected by a Boolean AND-gate while all others are
connected by an OR-gate. Active enhancer and promoter regions are combined by
forcing the regulation of at least one enhancer, thus connecting multiple enhancers
by an OR-gate, and the promoter.

Prediction of efficient combinations of IFs. IRENE computes a surrogate mea-
sure of cellular conversion efficiency by assessing the probability that the over-
expression of a set of TFs eventually activates the complete core GRN. The measure
is composed of a transcriptional and an epigenetic score.

For the transcriptional score, the RNA-seq profiles of the initial cell type are
processed and discretized as described before. Over-expression of TFs is performed
in the discrete space, switching the expression value from ‘0’ to ‘1. A prior
distribution over all GRN states is computed describing the probability of the initial
cell type to be in each network state after applying over-expression of TFs. The
probability for each TF to be active or inactive is defined as the probability of
observing a lower or greater expression value in the background distribution of
RefBool”%, respectively. The probability of being in a certain network state is then
defined as the product of the probabilities of being in the individual TF states.
Finally, the model checker PRISM v4.48° is employed to compute the distance of all
network states that eventually activate the whole network (Supplementary Note 2).
The transcriptional score is defined as the average distance to the desired network
state in which every TF is actively weighted by the prior distribution.

For the epigenetic score, IRENE computes the fraction of common active
regulatory elements after TF over-expression. This fraction is set to one for over-
expressed TFs, thus bypassing the need for remodeling. The product of the fraction
of common enhancers after applying a perturbation serves as the epigenetic score.

Finally, the arithmetic mean of the epigenetic and transcriptional scores
constitutes IRENE’s surrogate measure of efficiency.

Importantly, IRENE requires the specification of a user-defined number of TFs
included in the combinations to allow for accounting for different experimental
setups.

GO enrichment. GO enrichment was performed using the WebGestaltR R-package
v0.4.2 with R version 3.6.1. All network TFs were queried against categories defined
in the “biological process” database that have at least 10 and at most 200 annotated
genes and restricted to human TFs from AnimalTFDB v380. A false discovery
rate less than 0.05 was considered significant.

Prediction of promoter regulators from DNA-binding predictions. Known
motifs for the human Grch38 genome were obtained from the Homer webpage
(version 191020) as bed-files and subset to the TFs included in the melanocyte
network. The set of all binding sites was subset to network TF promoter regions
defined by the Eukaryotic Promoter Database®? (restricted to 1500 bp upstream
and 500 bp downstream) using the intersectBed program from bedtools®” v2.22.1.

Determining statistical significance of IF prioritization. Concordance of rank-
ings obtained from experimentally measured conversion efficiency and predicted
scores from IRENE is assessed by calculating the Euclidean distance between both
rankings. Statistical significance was assessed by computing a background dis-
tribution of the Euclidean distance between all possible rankings and the experi-
mentally obtained ranking. The p-value was defined as the cumulative probability
of observing a lower distance than the one obtained from the predicted scores.

Deconvolution of RNA-seq samples. RNA-seq samples are deconvoluted into
individual cell types using CybersortX>+. First, single-cell SmartSeq2 reference
datasets have been collected and normalized to TPM. For each reference dataset, a
signature matrix containing 500 to 700 genes per cell type was computed using
CybersortX. Only genes having an expression value above 2 TPM were considered
and no sub-sampling of cells was performed. RNA-seq counts were transformed to
TPM and served as an input for deconvolution. CybersortX was run in “absolute
mode” to allow for normalization of the deconvolution results into percentages.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The RNA-seq data generated in this study can be found in GEO: GSE165961. Accession
numbers of transcriptomics datasets used for identifying identity TFs are provided in
Supplementary Data 3. Accession numbers of datasets employed for reconstructing gene
regulatory networks can be found in Supplementary Data 4. TF ChIP-seq accession
numbers for network reconstruction are provided in Supplementary Data 5.
Supplementary Data 6 contains pre-computed combinations of IFs for various cellular
conversions. Databases used throughout this study are publicly available: Eukaryotic
Promoter Database [https://epd.epfl.ch/human/human_database.php?db=human],
AnimalTFDB v3 [http://bioinfo.life.hust.edu.cn/static/ Animal TFDB3/download/
Homo_sapiens_TF], GeneHancer v4.7 [https://genecards.weizmann.ac.il/geneloc_prev/
genehancer.xlsx], Chip Atlas [https://chip-atlas.org/peak_browser], iRefIndex [https://
irefindex.vib.be/] and Recount2 [https://jhubiostatistics.shinyapps.io/recount/]. The
datasets used for generating single-cell RNA-seq reference samples for bulk RNA-seq
deconvolution are publicly available in GEO: iPSC [https://www.ebi.ac.uk/arrayexpress/
files/E-MTAB-6819/E-MTAB-6819.processed.1.zip], breast tumor tissue [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118389], PBMCs [https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE132044] and melanocytes [https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE151091].

Code availability
The source code of IRENE is available at https://github.com/saschajung/TRENE.
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