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Abstract 

 

Background: Computed tomography attenuation correction (CTAC) scans are routinely obtained 

during cardiac perfusion imaging, but currently only utilized for attenuation correction and visual 

calcium estimation. We aimed to develop a novel artificial intelligence (AI)-based approach to 
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obtain volumetric measurements of chest body composition from CTAC scans and evaluate these 

measures for all-cause mortality (ACM) risk stratification.  

Methods: We applied AI-based segmentation and image-processing techniques on CTAC scans 

from a large international image-based registry (four sites), to define chest rib cage and multiple 

tissues. Volumetric measures of bone, skeletal muscle (SM), subcutaneous, intramuscular (IMAT), 

visceral (VAT), and epicardial (EAT) adipose tissues were quantified between automatically-

identified T5 and T11 vertebrae. The independent prognostic value of volumetric attenuation, and 

indexed volumes were evaluated for predicting ACM, adjusting for established risk factors and 18 

other body compositions measures via Cox regression models and Kaplan-Meier curves. 

Findings: End-to-end processing time was <2 minutes/scan with no user interaction. Of 9918 

patients studied, 5451(55%) were male. During median 2.5 years follow-up, 610 (6.2%) patients 

died. High VAT, EAT and IMAT attenuation were associated with increased ACM risk (adjusted 

hazard ratio (HR) [95% confidence interval] for VAT: 2.39 [1.92, 2.96], p<0.0001; EAT: 1.55 

[1.26, 1.90], p<0.0001; IMAT: 1.30 [1.06, 1.60], p=0.0124). Patients with high bone attenuation 

were at lower risk of death as compared to subjects with lower bone attenuation (adjusted HR 0.77 

[0.62, 0.95], p=0.0159). Likewise, high SM volume index was associated with a lower risk of death 

(adjusted HR 0.56 [0.44, 0.71], p<0.0001). 

Interpretations: CTAC scans obtained routinely during cardiac perfusion imaging contain 

important volumetric body composition biomarkers which can be automatically measured and 

offer important additional prognostic value. 
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Research in context 

Evidence before this study 

Fully automated volumetric body composition analysis of chest computed tomography 

attenuation correction (CTAC) can be obtained in patients undergoing myocardial perfusion 

imaging. This new information has potential to significantly improve risk stratification and 

patient management. However, the CTAC scans have not been utilized for body composition 

analysis to date. We searched PubMed and Google Scholar for existing body composition related 

literature on June 5, 2024, using the search term (“mortality”) AND (“risk stratification” OR 

“survival analysis” OR “prognostic prediction” OR “prognosis”) AND (“body composition 

quantification” OR “body composition analysis” OR “body composition segmentation”). We 

identified 34 articles either exploring body composition segmentation or evaluating clinical value 

of body composition quantification. However, to date, all the prognostic evaluation is performed 

for quantification of three or fewer types of body composition tissues. Within the prognostic 

studies, only one used chest CT scans but utilized only a few specified slices selected from the 

scans, and not a standardized volumetric analysis. None of these previous efforts utilized CTAC 

scans, and none included epicardial adipose tissue in comprehensive body composition analysis.  

 

Added value of this study 

In this international multi-center study, we demonstrate a novel artificial intelligence-based 

annotation-free approach for segmenting six key body composition tissues (bone, skeletal 

muscle, subcutaneous adipose tissue, intramuscular adipose tissue, epicardial adipose tissue, and 

visceral adipose tissue) from low-dose ungated CTAC scans, by exploiting existing CT 

segmentation models and image processing techniques. We evaluate the prognostic value of 
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metrics derived from volumetric quantification of CTAC scans obtained during cardiac imaging, 

for all-cause mortality prediction in a large cohort of patients. We reveal strong and independent 

associations between several volumetric body composition metrics and all-cause mortality after 

adjusting for existing clinical factors, and available cardiac perfusion and atherosclerosis 

biomarkers.  

 

Implications of all the available evidence 

The comprehensive body composition analysis can be routinely performed, at the point of care, 

for all cardiac perfusion scans utilizing CTAC. Automatically-obtained volumetric body 

composition quantification metrics provide added value over existing risk factors, using already-

obtained scans to significantly improve the risk stratification of patients and clinical decision-

making.  
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List of abbreviations 

ACM – all-cause mortality 

AI – artificial intelligence 

BMI – body mass index 

CAC – coronary artery calcium 

CTAC – computed tomography attenuation correction 

EAT – epicardial adipose tissue 

IMAT – intramuscular adipose tissue 

HU – Hounsfield unit  

LVEF – left ventricular ejection fraction  

MPI – myocardial perfusion imaging 

SAT – subcutaneous adipose tissue 

SM – skeletal muscle  

TPD – total perfusion deficit  

VAT – visceral adipose tissue 
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Introduction  

Computed tomography attenuation correction (CTAC) scans are routinely obtained in single-

photon emission computed tomography (SPECT)/computed tomography (CT) cardiac perfusion 

imaging. However, these auxiliary scans are currently utilized only for attenuation correction and 

visual calcium estimation.1 Over 6 million patients in the United States undergo SPECT cardiac 

perfusion imaging annually.2 Expanding the scope of these scans can potentially enhance the utility 

of this widely used cardiovascular imaging modality.  

 

Body composition analysis, which examines the amount and distribution of body tissues, such as 

skeletal muscle and adipose tissue, provides important anatomic information, especially when 

abnormalities are present. Sarcopenia, cachexia, and obesity are well-known to be associated with 

cardiovascular,2 oncological,3 and metabolic disorders.4 However, comprehensive body 

composition biomarkers have not been evaluated from cardiac perfusion CTAC scans to date. A 

fully automated approach to extract these measures during routine cardiac imaging could 

significantly enhance the actionable information available to clinicians.  

 

While opportunistic, artificial intelligence (AI)-assisted evaluation of body composition on cross-

sectional imaging modalities has gained interest recently, data on CTAC-based body composition 

analysis remains scarce.2, 5-7 Studies have shown that automatic epicardial adipose tissue (EAT) 

derived from CTAC can provide additional information and improve mortality prediction.8 

Existing deep learning-based approaches for body composition segmentation have been developed 

for pre-selected abdominal CT slice,2, 7, 9 and only one study so far utilized selected three slices 
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from CT.5 Until now, the full predictive value of CTAC in cardiometabolic screening remains 

unexplored. 

 

We aimed to evaluate CTAC’s value for patient risk assessment, by developing a fully automated 

and standardized AI-based method for CTAC-derived volumetric measurements of body 

composition compartments including subcutaneous adipose tissue (SAT), visceral adipose tissue 

(VAT), intramuscular adipose tissue (IMAT), skeletal muscle (SM) and bone, together with our 

previously validated EAT segmentation model to predict all-cause mortality (ACM).  

 

Methods  

Study population  

This is a retrospective study of 11035 patients who underwent SPECT/CT cardiac perfusion 

imaging from four different sites (Yale University, University of Calgary, Columbia University, 

University of Ottawa) participating in the REgistry of Fast Myocardial Perfusion Imaging with 

NExt generation SPECT (REFINE SPECT).10 The study protocol complied with the Declaration 

of Helsinki and approval was obtained from the institutional review boards (IRB) at each 

participating institute. The overall study was approved by the IRB at Cedars-Sinai Medical Center, 

Los Angeles, California. Baseline demographic and clinical data were obtained from the REFINE 

SPECT registry.10 The endpoint was ACM; for sites in the United States this was determined using 

the National Death Index, while in Canada, administrative databases were used. 

 

CTAC image acquisition parameters 
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All CTAC scans were low-dose, non-contrast-enhanced and non-electrocardiographically-gated. 

The scans were acquired with different scanners (GE Discovery NM/CT 570c, Philips Precedence 

16P, and Siemens Symbia Intevo 16). The slice thickness range was 2.5-5.0 mm, tube current 16-

30 mAs, and tube voltage 120-130 kVp. At two sites (Yale University and Columbia University) 

scans were performed free breathing, while at the remaining two (University of Calgary, and 

University of Ottawa), scans were performed using an end-expiratory breath hold.  

 

Clinical data and existing risk factors 

Risk factors from clinical data or cardiac perfusion analysis included in the prognostic analysis 

included sex, age, body mass index (BMI), hypertension, diabetes mellitus, dyslipidemia, family 

history of coronary artery disease (CAD), smoking, stress total perfusion deficit (TPD), left 

ventricle ejection fraction (LVEF), and CAC score. Dedicated software (Quantitative Perfusion 

SPECT [QPS], Cedars-Sinai Medical Center, Los Angeles) was used to quantify automatically 

stress TPD and LVEF from myocardial perfusion imaging (MPI) scans at the core laboratory 

(Cedars-Sinai Medical Center, Los Angeles).11
  Stress TPD <5% was considered as normal 

myocardial perfusion, whereas impaired LVEF was defined as LVEF <50%.8 CAC was segmented 

and quantified automatically from CTACs with a previously validated deep learning model.12  

 

Body composition segmentation and quantification 

Figure 1 summarizes the study design. An open-source foundational model (TotalSegmentator) 

was used to segment 117 structures from CTAC scans.13 To reduce the effects of variations in 

scanned body regions due to different CTAC scan lengths, we computed the CTAC-volumetric 

measurements between T5 and T11 vertebrae which was covered by 96.4% of scans 
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(Supplementary Figure 1). T5 and T11 were identified using results from TotalSegmentator.13 

Based on segmented structures and image processing techniques, a chest rib cage was created to 

automatically separate SM, SAT, IMAT, and VAT inside and outside the rib cage (see 

Supplementary Figure 2). Hounsfield unit (HU) filtering with tissue-specific thresholds (for 

skeletal muscles between -29 and +150 HU, for adipose tissue between -190 and -30 HU). EAT 

was segmented separately from VAT by using our previously developed deep learning model.8 

The EAT model was trained and validated using 500 CTACs from Yale University which were 

excluded from the analysis. Bone tissue was analyzed based on Total Segmentator segmentation 

and thresholding between +151 and +1200 HU.13 See more details in Supplementary Methods.  

 

We evaluated the prognostic value of three types of volumetric measures of six segmented body 

tissues including attenuation (mean of HU), standard deviation (standard deviation of the HU), 

volume index (volume divided by height squared, in units of cm3/m2). The ratio of skeletal muscle 

volume to total volume of adipose tissues (SAT, IMAT, EAT, and VAT) was also calculated. 

Unadjusted and multivariable models (adjusted for 11 clinical and imaging factors and the other 

18 body composition quantifications) were used to evaluate associations with ACM. Prognostic 

evaluations were performed for the whole study group as well as for subgroups, distinguished 

based on race (Black or African American, White), gender (male, female), age (<65, ≥65 years), 

and BMI (BMI <30 kg/m2, BMI ≥30 kg/m2). Due to insufficient data for other races, we included 

only Black and White races in the race-based subgroup analysis.  

 

Statistical analysis  
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Continuous variables were summarized as median (interquartile range [IQR], (IQ1, IQ3)), and 

discrete variables were summarized as frequency (%). The Wilcoxon rank sum test was used for 

comparisons of continuous variables. The Pearson’s chi-squared test was used to compare 

categorical variables with two levels (binary variables) while the Fisher’s exact test was used for 

categorical variables with multiple levels. The log-rank test and the Wald test were used to evaluate 

statistical significance for Kaplan-Meier curves and HRs, respectively. The Youden index was 

used to find their optimal cutoffs for risk stratification, and hazard ratios (HRs) using Cox 

regression model was calculated. All statistical tests were two-sided, and a p-value <0.05 was 

considered statistically significant. The statistical analyses were performed with R Studio 4.3.2. 

 

Role of funding source 

The funders of this study had no role in study design, data collection/analysis/interpretation, or 

writing of the manuscript. 

 

Results  

Study population 

From four sites participating in the REFINE SPECT registry, we included 11035 participants who 

underwent SPECT/CT cardiac scans. After excluding cases that had incomplete T5-T11 scan 

coverage, missing clinical data, or had been used for EAT-model training, the final study group 

consisted of 9918 patients (Figure 2). The average computational time was 81.98±4.54 seconds 

per case.  
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Of all included participants, 5451 (55%) were male and median age was 65 (57-73) years. Median 

follow-up time was 2.48 [1.45-3.60] years, during which 610 (6.2%) patients died (Table 1). Male 

patients had significantly higher bone (349 vs. 277, p<0.0001) and SM (914 vs. 674, p<0.0001) 

volume indices, but lower VAT (-86 vs. -82, p<0.0001) and EAT (-61 vs. -60, p=0.0097) 

attenuation as compared to females. Supplementary Tables 1-4 show baseline characteristics for 

all participants stratified by death, race (Black and White), age (<65 and ≥65 years), and BMI (<30 

and ≥30 kg/m2), respectively.  Youden index cutoffs for each measure are shown in Supplementary 

Table 5. 

 

Body composition quantification predictors for all-cause mortality  

In entire study group  

The quantitative predictors of mortality for six tissues are shown in Figure 3. The unadjusted and 

adjusted HR are presented in Table 2 and Supplementary Table 6 (extended information). High 

VAT attenuation (>-80 HU) was associated with an increased ACM risk (adjusted HR 2.39 [1.92, 

2.96], p<0.0001). Patients with high bone attenuation were at lower risk of death (adjusted HR 

0.77 [0.62, 0.95], p=0.0159). Likewise, high SM volume index was associated with a lower risk 

of death (adjusted HR 0.56 [0.44, 0.71], p<0.0001). In Supplementary Figures 3-5, we show risk 

stratification for six body composition attenuation measures stratified by cardiac variables (total 

perfusion deficit, left ventricular ejection fraction, and coronary artery calcium score). Figures 4 

and 5 show different examples of body composition segmentation. 

     

In subgroups 
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VAT attenuation was a strong predictor for ACM in all subgroups distinguished based on sex, 

race, age, and BMI categories. High VAT attenuation (>-80 HU) was associated with an elevated 

ACM risk in both male and female participants (unadjusted HRs 2.79 [2.28, 3.42], p<0.0001 and 

2.71 [2.08, 3.54], p<0.0001 [Supplementary Table 7]; HRs adjusted for 10 clinical and imaging 

factors 2.42 [1.94, 3.04], p<0.0001 and 2.28 [1.70, 3.07], p<0.0001 [Supplementary Table 8]; HRs 

additionally adjusted for remaining 18 body composition measures 2.43 [1.82, 3.24], p<0.0001 

and  2.40 [1.68, 3.43], p<0.0001 [Supplementary Table 9]). 

 

High SAT attenuation significantly increased death risk in both female and male patients 

(unadjusted HR 3.22 [2.46, 4.21], p<0.0001; 1.37 [1.09, 1.72], p=0.0069, respectively) 

(Supplementary Table 7). High VAT attenuation elevated the risk of mortality in all gender groups 

(male and female) (unadjusted HRs 2.79 [2.28, 3.42], p<0.0001; 2.71 [2.08, 3.54], p<0.0001, 

respectively) (Supplementary Table 7), White and Black groups (unadjusted HRs 2.91 [2.19, 3.87], 

p<0.0001; 1.99 [1.26, 3.15], p=0.0032, respectively) (Supplementary Table 10), all age groups 

(<65 years and ≥65 years) (unadjusted HRs 2.97 ([2.22, 3.97], p<0.0001) and 2.22 ([1.85, 2.67], 

p<0.0001), respectively) (Supplementary Table 11), and all BMI groups (<30 kg/m2 and ≥30 

kg/m2) (unadjusted HRs 2.33 [1.89, 2.88], p<0.0001; 2.24 [1.70-2.97], p<0.0001, respectively) 

(Supplementary Table 12). For subjects with BMI ≥30 kg/m2, high EAT, IMAT, and VAT volume 

indexes were at elevated risk of death as compared to patients with low volume indices (unadjusted 

HRs 2.36 [1.78-3.13], p<0.0001; 2.38 [1.58-3.58], p<0.0001; 1.56 [1.21-2.01], p=0.0006, 

respectively) (Supplementary Table 12). 

 

Discussion  
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We developed AI-based volumetric CTAC-body composition segmentation in patients undergoing 

cardiac perfusion imaging. This simple and automatic approach reveals robust information on body 

tissue composition available in all CTAC scans, but not utilized to date.  This task was 

accomplished by integrating fully automated segmentation of skeletal muscles, bone, 

subcutaneous, intramuscular, and visceral adipose tissues with our previously validated deep-

learning-model for EAT quantification from CTAC maps in a fast (less than average 2 minutes per 

case) and reproducible manner with no additional exposure to radiation. The algorithm was applied 

to scans with different image acquisition parameters acquired with various scanners from different 

manufacturers demonstrating wide generalizability. We showed strong and independent 

prognostic value for several body composition measures, which remained predictive of all-cause 

mortality even after adjustment for key clinical variables and imaging variables. These body 

composition measures are prognostically complementary to each other and to major cardiac 

perfusion measures.   

 

Patients with abnormal body composition measurements have worse outcomes and increased 

mortality,3, 14 which was also demonstrated in our study. Abnormal body composition phenotypes 

include low muscle mass (sarcopenia),15 high fat mass (obesity),4 and both low muscle and fat 

mass (cachexia).16 Obesity is an alarmingly increasing global public health problem17 that affects 

the psychosocial and physical aspects of quality of life and is associated with various comorbidities 

such as cardiovascular disease18 and mortality,19 but BMI-based assessment does not provide 

adequate information.2 Sarcopenia and cachexia are also recognized to be associated with negative 

outcomes like physical disability,20 prolonged hospitalizations,21 or death.15, 22  Utilizing the tools 

developed in our study, all these prevalent conditions relevant to cardiometabolic health can be 
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monitored comprehensively and automatically in any patients undergoing scanning which includes 

low-dose chest CT imaging. 

 

Body tissue composition analysis provides information of vital clinical importance. Prior studies 

utilized mainly abdominal CT scans and a single CT slice for segmentation6, 7 of a limited number 

of body tissues (skeletal muscle, visceral or subcutaneous adipose tissue).2, 5-7 Xu et al. 

demonstrated the predictive value of body composition measurements from low-dose chest CT 

scans for mortality prediction in smokers from the National Lung Screening Trial (NLST), 

although analyzing only a limited number (n=3) of specific slices.5 Our group studied the 

association of volumetric EAT quantification from CTAC with adverse events.8 To our 

knowledge, this is the first comprehensive volumetric body composition analysis of six tissues 

simultaneously from chest CTAC maps (which are of even lower quality than standard lung CT 

scans). These maps are utilized for attenuation correction and visual estimation of calcium during 

hybrid imaging, yet they contain other valuable information that is not currently considered during 

clinical reporting.  

 

Importantly, to provide a comprehensive assessment, we also included EAT analysis, which is 

known to be associated with the risk of cardiovascular events.8, 23 In our holistic approach, we 

evaluated measures of automatically segmented tissues inside/outside the thoracic cavity within 

automatically-determined sub-volume defined by T5-T11 vertebrae. Among all the volumetric 

measures, tissue density (defined by attenuation in HU) remained the strongest mortality predictor 

when adjusted for other variables, for bone, VAT, SAT, and SM. VAT attenuation was a strong 

mortality predictor across all subgroups. Since excess adipose tissue, particularly in the visceral 
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compartment (visceral obesity), is associated with metabolic syndrome, cardiovascular disease, 

and increased mortality,24, 25 more comprehensive cross-sectional image analysis may be 

important. This analysis can be easily performed with AI-assistance from previously obtained 

scans, without the need for extra radiation or imaging time.  

 

Our study has several limitations. We performed only a regional and volumetric body composition 

analysis (T5-T11) to predict all-cause mortality, which was done to ensure standard coverage for 

the vast majority of patients undergoing the MPI scans. Our segmentation framework was a multi-

stage approach that required the segmentation results from deep-learning-based segmentation 

models, potentially increasing the running time; however, the total end-to-end time of 2 minutes 

should be clinically feasible as the analysis can be performed in background. We did not 

distinguish the intermuscular and intramuscular adipose tissue while analyzing IMAT. Similarly, 

compact bone and bone marrow were not analyzed separately. We did not manually annotate 

segmentations for evaluating segmentation algorithm due to the large scale of our cohort. Lastly, 

our study only considered quantification of different tissues from chest CT scan, but body 

composition quantification from abdominal CT could potentially provide additive prognostic 

value.2     

 

In conclusion, we demonstrated the utility of performing opportunistic volumetric body 

composition analysis for prognostic prediction of all-cause mortality from CTAC in patients 

undergoing cardiac perfusion imaging by developing a simple and annotation-free body 

composition segmentation framework for six tissues. The obtained volumetric body composition 

measurements offer additional prognostic value over perfusion imaging, calcium measures and 
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clinical data and can be performed automatically using data from existing scans without additional 

radiation or imaging time.   
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Data sharing 

All implementation for the body composition approach used primarily Python-based image 

processing libraries including Python version 3.11.5, Scikit-image version 0.20.0 (https://scikit-

image.org/), OpenCV version 4.6.0 (https://opencv.org/), and SciPy version 1.11.3 

(https://scipy.org/). TotalSegmentator v2 (https://github.com/wasserth/TotalSegmentator), EAT 

segmentation model, and CAC segmentation model were implemented in PyTorch.8,11 All the 

statistical analysis was performed using RStudio 4.3.2, and the R libraries used include dplyr, tidyr, 

readxl, stringr, corrplot, survival, survminer, VennDiagram, gtsummary, gt, forestmodel, 

tidyverse, tidytidbits, adjustedCurves, and survivalAnalysis. All the experiments were completed 

using a desktop with Windows 10 Pro 64-bit operating system, 256GB RAM, AMD Ryzen 

Threadripper 3950X 24-Core Processor CPU, and NVIDIA TITAN RTX 24 GB GPU. The source 

code is available upon reasonable written request. Access to the code is available from the date of 

publication.  
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Figures 

 

Figure 1. Study design: artificial intelligence-derived computed tomography attenuation correction (CTAC)-

based body composition analysis. We integrated fully automated segmentation of skeletal muscles, bone, 

subcutaneous, intramuscular, and visceral adipose tissues with our previously validated deep-learning model for 

epicardial adipose tissue segmentation to predict all-cause mortality in patients undergoing myocardial perfusion 

imaging (MPI). SPECT – single-photon emission computed tomography. 
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Figure 2. Study flowchart. Abbreviations: CTAC - computed tomography attenuation correction, EAT – epicardial 

adipose tissue, T – thoracic.  
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Figure 3. Kaplan-Meier curves stratified by body composition measures. A: epicardial adipose tissue (high 

attenuation: > -63 HU), B: intramuscular adipose tissue (high attenuation: > -68 HU), C: visceral adipose tissue (high 

attenuation: > -80 HU), D: subcutaneous adipose tissue (high attenuation: > -101 HU), E: bone (high attenuation: > 

250 HU), F: skeletal muscle (high volume index: > 597.16 cm3/m2).  Hazard ratios (HR) are shown (both unadjusted 

and adjusted for 11 clinical and imaging variables and other 18 body composition measures). 
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Figure 4. Example of body composition segmentation from computed tomography attenuation correction scans 

in a male patient with a body mass index of 26.4 kg/m2.  
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Figure 5. Example of body composition segmentation from computed tomography attenuation correction scans 

in a female patient with a body mass index of 25.8 kg/m2.  
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Tables  

Table 1. Baseline characteristics for all participants stratified by sex. 

 

Male 

(N=5451) 

Female 

(N=4467) p-value 

Age [years] 64 (56, 73) 66 (57, 74) <0.0001 

BMI [kg/m2] 30 (26, 34) 31 (26, 36) <0.0001 

Race   <0.0001 

  American Indian or Alaska Native 12 (0.2%) 8 (0.2%)  

  Asian 110 (2.0%) 57 (1.3%)  

  Black or African American 546 (10%) 639 (14%)  

  Native Hawaiian or Other Pacific Islander 6 (0.1%) 13 (0.3%)  

  White 2067 (38%) 1296 (29%)  

Unavailable  2710 (50%) 2454 (55%)  

Hypertension 3411 (63%) 2756 (62%) 0.3692 

Diabetes mellitus 1623 (30%) 1199 (27%) 0.0013 

Dyslipidemia 2996 (55%) 2062 (46%) <0.0001 

Smoking 947 (17%) 541 (12%) <0.0001 

Family history of coronary artery disease 1264 (23%) 1198 (27%) <0.0001 

Follow-up [years] 2.40 (1.40, 3.66) 2.57 (1.55, 3.64) 0.0004 

Mortality 382 (7.0%) 228 (5.1%) <0.0001 

Stress TPD [%] 3 (1, 9) 4 (1, 7) 0.0050 

LVEF [%] 59 (51, 66) 70 (63, 78) <0.0001 

Log(CAC score + 1) [AU] 2.29 (0.00, 3.09) 0.95 (0.00, 2.33) <0.0001 

Bone attenuation [HU] 258 (230, 287) 253 (224, 289) <0.0001 

Bone SD [HU] 197 (178, 216) 197 (176, 220) 0.6175 

Bone volume index [cm3/m2] 349 (312, 386) 277 (249, 306) <0.0001 

EAT attenuation [HU] -61 (-68, -54) -60 (-68, -53) 0.0097 

EAT SD [HU] 48 (44, 54) 47 (42, 53) <0.0001 

EAT volume index [cm3/m2] 49 (35, 67) 48 (34, 65) 0.0295 

IMAT attenuation [HU] -71 (-75, -67) -69 (-73, -66) <0.0001 

IMAT SD [HU] 49 (38, 62) 43 (35, 55) <0.0001 

IMAT volume index [cm3/m2] 101 (67, 155) 74 (50, 110) <0.0001 

VAT attenuation [HU] -86 (-90, -81) -82 (-86, -78) <0.0001 
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VAT SD [HU] 57 (52, 65) 57 (53, 64) 0.6180 

VAT volume index [cm3/m2] 451 (307, 619) 310 (211, 432) <0.0001 

SAT attenuation [HU] -99 (-102, -95) -103 (-106, -99) <0.0001 

SAT SD [HU] 41 (32, 51) 37 (30, 48) <0.0001 

SAT volume index [cm3/m2] 863 (583, 1243) 1706 (1161, 2301) <0.0001 

SM attenuation [HU] 33 (28, 38) 26 (22, 31) <0.0001 

SM SD [HU] 53 (42, 65) 48 (40, 58) <0.0001 

SM volume index [cm3/m2] 914 (768, 1060) 674 (567, 789) <0.0001 

Ratio SM/ATs volume 0.60 (0.45, 0.83) 0.31 (0.24, 0.42) <0.0001 

 

Values are presented as N (%) or median (IQ1, IQ3) 

ATs – adipose tissue, BMI – body mass index, CAC – coronary artery calcium, CT – computed tomography, EAT – 

epicardial adipose tissue, HU – Hounsfield unit, IMAT – intramuscular adipose tissue, LVEF – left ventricular 

ejection fraction, MPI – myocardial perfusion imaging, SAT – subcutaneous adipose tissue, SD – standard 

deviation, SM – skeletal muscle, TPD – total perfusion deficit, VAT – visceral adipose tissue 
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Table 2. Comparison between unadjusted and adjusted hazard ratios.  Lower values are 

considered reference. 

Body Composition Quantification 

 

 Hazard Ratios 

Univariable Multivariable* 

HR [95% CI] P-value HR [95% CI] P-value 

Bone attenuation [HU] 0.54 [0.46, 0.64] <0.0001 0.77 [0.62, 0.95] 0.0159 

Bone SD [HU] 0.79 [0.67, 0.93] 0.0039 1.10 [0.89, 1.36] 0.3911 

Bone volume index [cm3/m2] 1.34 [1.14, 1.59] 0.0005 1.16 [0.93, 1.46]  0.1922 

EAT attenuation [HU] 1.85 [1.55, 2.20] <0.0001 1.55 [1.26, 1.90] <0.0001 

EAT SD [HU] 1.62 [1.37, 1.90] <0.0001 1.50 [1.23, 1.83] <0.0001 

EAT volume index [cm3/m2] 1.70 [1.44, 1.99] <0.0001 1.56 [1.28, 1.91] <0.0001 

IMAT attenuation [HU] 2.17 [1.85, 2.54] <0.0001 1.30 [1.06, 1.60]  0.0124 

IMAT SD [HU] 0.71 [0.54, 0.93] 0.0123 0.90 [0.65, 1.26] 0.5485 

IMAT volume index [cm3/m2] 1.33 [1.12, 1.57] <0.0009 1.29 [1.03, 1.62]  0.0165 

VAT attenuation [HU] 2.50 [2.13, 2.93] <0.0001 2.39 [1.92, 2.96] <0.001 

VAT SD [HU] 0.89 [0.76, 1.05] 0.1642 0.78 [0.63, 0.96]  0.0219 

VAT volume index [cm3/m2] 1.12 [0.94, 1.32] 0.2072 1.04 [0.83, 1.31] 0.7274 

SAT attenuation [HU] 2.10 [1.76, 2.49] <0.0001 1.30 [1.05, 1.61] 0.0145 

SAT SD [HU] 1.07 [0.90, 1.28] 0.4458 1.01 [0.79, 1.29]  0.9502 

SAT volume index [cm3/m2] 0.60 [0.51, 0.70] <0.0001 0.94 [0.74, 1.20]  0.6429 

SM attenuation [HU] 0.61 [0.51, 0.72] <0.0001 0.54 [0.44, 0.67] <0.0001 

SM SD [HU] 1.67 [1.41, 1.99] <0.0001 1.64 [1.27, 2.12] 0.0002 

SM volume index [cm3/m2] 0.49 [0.41, 0.59] <0.0001 0.56 [0.44, 0.71] <0.0001 

Ratio SM/ATs volume 1.24 [1.04, 1.49] 0.0153 1.15 [0.90, 1.48] 0.2671 

 

Bold indicates statistical significance. 

*Adjusted for clinical, perfusion, and other body composition factors: sex, age, body mass index, hypertension, 

diabetes mellitus, dyslipidemia, family history of coronary artery disease, smoking, stress total perfusion deficit, left 

ventricle ejection fraction, and deep-learning-coronary artery calcium score and all the other body composition 

quantifications.  

CI – confidence interval, EAT – epicardial adipose tissue, IMAT – intramuscular adipose tissue, HU – Hounsfield 

units, SAT – subcutaneous adipose tissue, SD – standard deviation, VAT – visceral adipose tissue, ratio SM/ATs 

volume – ratio of skeletal muscle volume to all adipose tissues volume.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 1, 2024. ; https://doi.org/10.1101/2024.07.30.24311224doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.30.24311224
http://creativecommons.org/licenses/by-nc/4.0/

