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ABSTRACT

Combinatorial therapies that target multiple path-
ways have shown great promises for treating com-
plex diseases. DrugComb (https://drugcomb.org/) is
a web-based portal for the deposition and analy-
sis of drug combination screening datasets. Since
its first release, DrugComb has received continu-
ous updates on the coverage of data resources, as
well as on the functionality of the web server to im-
prove the analysis, visualization and interpretation
of drug combination screens. Here, we report sig-
nificant updates of DrugComb, including: (i) manual
curation and harmonization of more comprehensive
drug combination and monotherapy screening data,
not only for cancers but also for other diseases such
as malaria and COVID-19; (ii) enhanced algorithms
for assessing the sensitivity and synergy of drug
combinations; (iii) network modelling tools to visual-
ize the mechanisms of action of drugs or drug com-
binations for a given cancer sample and (iv) state-
of-the-art machine learning models to predict drug
combination sensitivity and synergy. These improve-
ments have been provided with more user-friendly
graphical interface and faster database infrastruc-
ture, which make DrugComb the most comprehen-
sive web-based resources for the study of drug sen-
sitivities for multiple diseases.

GRAPHICAL ABSTRACT

INTRODUCTION

Despite the scientific advances in the understanding of
complex diseases such as cancer, there remains a ma-
jor gap between the vast knowledge of molecular biol-
ogy and effective treatments. Next generation sequencing
has revealed intrinsic heterogeneity across cancer samples,
which partly explain why patients respond differently to
the same therapy (1). For the patients that lack common
oncogenic drivers, multi-targeted drug combinations are ur-
gently needed, which shall block the emergence of drug re-
sistance and therefore achieve sustainable efficacy (2). To
facilitate the discovery of drug combination therapies, high-
throughput drug screening techniques have been developed
to allow for a large scale of drug combinations to be tested
for their sensitivity (percentage inhibition of cell growth)
and synergy (degree of interaction) in-vitro (3). Further-
more, patient-derived cancer cell cultures and xenograft
models have been developed, which make the drug discov-
ery closer to the actual patients (4–6).

With the increasing amount of drug sensitivity screening
data, the challenge of translating them into actual drug dis-
covery remains, as recent studies showed that most of clini-
cally approved drug combinations work independently (7),
that the efficacy and synergy observed in a pre-clinical set-
ting may not be translated into a clinical trial (8,9). The
challenge of utilizing the results from drug combination
screens largely resides from un-harmonized metrics for syn-
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ergy and sensitivity that are derived from different mathe-
matical models, which are often incompatible for the same
datasets (10). Another limitation is the lack of standardiza-
tion of drug combination experimental design and the in-
sufficient level of data curation and deposition to publicly
available databases (11). Furthermore, the drug combina-
tion data has not been harmonized with single drug screen-
ing data, partially due to a lack of computational tools to
enable a systematic comparison of drug combination effi-
cacy against single drug efficacy (12).

To initialize the efforts for curating drug combination
datasets, and to facilitate a community-driven standard-
ization of evaluation of the degree of synergy and sensi-
tivity of drug combinations, we have provided DrugComb
as the very first data portal to harbour the manually cu-
rated datasets as well as the web server to analyse them (13).
The original version of DrugComb consists of four major
high-throughput studies, which served as a reference dataset
for developing machine learning algorithms to predict drug
combination sensitivity and synergy (14). Different from
other recent databases including DrugCombDB (15) and
SynergxDB (16), DrugComb is a unique resource as it is
a compendium of database and web application, not only
for depositing deeply curated public datasets but also for
the analysis and annotation of user-uploaded data. Further-
more, DrugComb provides detailed visualization of drug
combination sensitivity and synergy, which shall greatly fa-
cilitate the understanding of drug interactions at specific
dose levels. The data from DrugComb has been used to de-
velop machine learning models for drug combination pre-
diction (17,18), and synthetic lethality knowledge graph
(14). The analysis tools provided by DrugComb have also
helped to explore the mechanism of replication stress re-
sponse in colorectal cancer stem cells (19).

With the development of high-throughput screening
techniques, the number of data points for drug combina-
tions has been greatly increased. For example, the recent
Dream Challenge on drug combination prediction has pro-
vided more than 20k drug combinations in cancer cell lines
(20). Furthermore, drug combination screening has been
extended to other disease models such as malaria and Ebola
(21). More recently, drug combination screening studies on
COVID19 have been conducted, providing important clues
for the treatment of the ongoing pandemic (22). In the new
version of DrugComb, we aim to expand our manual cura-
tion from cancer to other diseases to improve the data cover-
age. On the other hand, drug combinations need to be har-
monized with the monotherapy drug screening data, since
these treatment options shall be evaluated using the same
endpoint metric (such as progression free survival and over-
all survival) in clinical trials. Therefore, we aim to harmo-
nize the drug combination with monotherapy drug screen-
ing, by providing informatics tools to evaluate their over-
all sensitivity in a more systematic manner. For this rea-
son, in the new version of DrugComb, we do not limit our-
selves for curating drug combination data, but rather we in-
cluded monotherapy drug sensitivity screening data as well.
More importantly, we provide a robust metric to enable a
direct comparison of drug combinations and single drugs,
as monotherapy drug screening can be considered as a sub-
set of drug combination experiments. The new data harmo-

nization framework thus allows a more systematic evalua-
tion of a drug combination in comparison to a single drug.
In addition, we implement several new modules for the anal-
ysis of these datasets, including the integration of drug tar-
gets and gene expressions of neighbouring proteins in a sig-
nalling network, such that the mechanisms of action of a
drug or a drug combination can be annotated systemati-
cally in a specific cellular context. We also provide a baseline
model based on CatBoost to predict the sensitivity and syn-
ergy of drug combinations, with which the machine learning
community may develop novel algorithms to improve our
understanding of drug responses in cancer cells. Taken to-
gether, the new version of DrugComb features an enhanced
web portal to make drug screening data more interpretable
and reusable for various applications such as machine learn-
ing, network modelling and experimental validation.

RESULTS

Overview of the DrugComb portal

DrugComb portal consists of two major components in-
cluding a database for harbouring the most recent drug
screening datasets as well as a web server to analyse and vi-
sualize these datasets or user-uploaded datasets for the de-
gree of sensitivity and synergy. For retrieving the database,
users can query by drug names, cell line names as well as
study names. For utilizing the web server to analyse user-
uploaded datasets, users need to import the data accord-
ing to the format of an example file, and the results will be
shown as both tabular and image displays, which are also
downloadable. When users plan a drug combination exper-
iment, they may utilize the web server to predict the sensi-
tivity and synergy and utilize such information to guide the
selection of drugs. The drug targets as well as the gene ex-
pressions of the signalling pathways for a given cancer cell
line can be also annotated as a network model. In the fol-
lowing, we describe how we have improved the coverage of
the database as well as the data analysis modules of the web
server with a range of algorithms, and the new implementa-
tion techniques to accelerate data curation and harmoniza-
tion efficiency (Figure 1).

Data sources

The initial version of DrugComb consists of four drug com-
bination screening studies, covering 437 923 drug combina-
tion experiments. We have curated much more drug combi-
nation experiments for cancer cell lines. Furthermore, we
have incorporated monotherapy drug screening datasets
and considered them as a subset of a drug combination ex-
periment, where the other drug is absent. We have also in-
cluded the drug screening results from patient-derived can-
cer samples in haematological malignancies (5). In addi-
tion to multiple cancer types, we have extended the cura-
tion efforts to other diseases such as Ebola, malaria and
COVID-19. The manual curation is under high level of
quality control, that only those studies that reported the
raw dose-response results will be considered, and thus the
studies that reported only summary-level results including
IC50, AUC (area under the dose response curves) or syn-
ergy scores (e.g. combination index) are excluded. We uti-
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Figure 1. A schematic overview of the DrugComb database and web server pipeline. Drug combination and monotherapy drug screening datasets are
curated from public databases, publications or user-upload. After quality control and pre-processing, the cell information is retrieved from Cellosaurus
(23), while the drug information is retrieved from multiple databases including PubChem (24), ChEMBL (25), UniChem (26), DrugBank (27), KEGG (28)
and DrugTargetCommons (29). The degree of synergy in drug combinations, as well as the sensitivity of drug combinations and single drugs are determined
using the SynergyFinder R package (3). For inferring the mechanisms of action of drugs or drug combinations, their targets as well as interacting proteins
are visualized in a signalling network, retrieved from STITCH (30) and UniProt (31). Furthermore, the gene expressions of these proteins in the given
cancer cells are obtained from DepMap (32) and Cell Model Passports (33), and from BeatAML where the cancer samples were derived from AML (Acute
Myeloid Leukaemia) patients (5). Machine learning algorithms utilize chemical structural and gene expression features to predict drug combination synergy
and sensitivity. The DrugComb portal enables the query and download of curated raw datasets and analysis results, as well as the contribution of new
datasets.

lized SynergyFinder (3) to determine the synergy scores
directly from the raw dose-response data and compared
them with those reported in the original publications. Only
the datasets that have a correlation higher than 0.6 will be
included. Furthermore, dose-response matrices containing
abnormal response values, for example percentage inhibi-
tion of cell growth less than −200% or larger than 200%,
were marked as poor-quality data points for which the data
analysis results were not shown in the web interface. We
have also standardized the metadata about experimental
protocols of these studies so that their differences can be
evaluated more systematically. The annotation of the bioas-
say protocols is based on the BAO (Bioassay annotation on-

tology) (34), that is commonly adopted for major chemical
biology databases including ChEMBL (25), PubChem (24)
and DrugTargetCommons (29). For the drugs and cell lines
we provided the cross-database references such that their
pharmacological and clinical information can be easily ac-
cessed (Figure 2A and B). As of March 2021, 751 498 drug
combinations, 717 684 single drug screenings from 37 stud-
ies are deposited in DrugComb, corresponding to 21 621
279 unique data points spanning 2320 cell lines including
225 cancer types and three infectious diseases. Supplemen-
tary Table S1 shows the summary of the data points from
the individual studies that are curated and harmonized in
DrugComb.
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Figure 2. Overview of DrugComb data statistics. (A, B) Classifications of cell lines (n = 2320) and drugs (n = 8397). (C) The CSS score for drug combinations
is higher than the RI score for monotherapy drugs, suggesting the general rationale for drug combination studies. (D) The correlations of synergy scores.
(E) An example of SS plot for vorinostat and sorafenib combination across 128 cell lines. DLD-1 is a colon cancer cell line, which has shown strong synergy
and sensitivity to the combination (38). (F) The synergy landscape over the dose-response matrix of vorinostat and sorafenib in DLD-1.
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Algorithms for assessing sensitivity and synergy

DrugComb utilizes the SynergyFinder R package to anal-
yse drug combination sensitivity and synergy. The single
drug sensitivity is characterized as a dose-response curve
with its IC50 and RI (relative inhibition) values. RI is the
normalized area under the log10-transformed dose-response
curves, which has shown enhanced robustness to character-
ize drug sensitivity (35). Moreover, RI can be interpreted as
percentage inhibition, summarizing the overall drug inhibi-
tion effects relative to positive controls. With the RI met-
ric, drug responses of different concentration ranges can be
compared, in contrast to IC50 or EC50, which are usually a
relative term depending on the tested concentration ranges.

For drug combination sensitivity, we provide a metric
called CSS (Combination Sensitivity Score), that is based
on the normalized area under the log10-transformed of
the combination dose-response curve when one of the two
drugs is fixed at its IC50 concentration (12). CSS and RI
use the same principle to characterize the overall drug re-
sponse efficacy, such that their values can be directly com-
pared (Figure 2C). For evaluating the drug synergy, we im-
plement four major mathematical models including Bliss,
Loewe, HSA and ZIP (36) and provide the visualization of
these scores in the dose-response matrices. Furthermore, we
provide a synergy score called S score that is derived from
the difference between CSS and RI scores of the combina-
tion and single drugs respectively (12). Drug combinations
with synergy scores of zero are considered additive, while a
positive synergy score suggests synergy, and a negative score
suggests antagonism. The five synergy scores are based on
different mathematical assumptions such that they do not
necessarily match with each other (Figure 2D). For ex-
ample, the Bliss model assumes probabilistic independence
when drugs are non-interactive while the Loewe model as-
sumes that the efficacy of non-synergistic drug combina-
tions is identical to that of a drug combined with itself.
The ZIP model, on the other hand, can be considered as
an Ensembl model as it combines the assumptions of Bliss
and Loewe (36). In actual clinical trials, approval of a drug
combination often is based on the HSA model that simply
shows that the drug combination improves patient survival
compared to monotherapies. To insure the clinical transla-
tion of drug combinations, we encourage the use of all the
major synergy scoring metrics, such that the top hits that
pass the threshold of all of them can be prioritized (37). On
the other hand, there have been biases by focusing solely
on the synergy, while the sensitivity of a drug combination
might be understudied. It is likely that a drug combination
produces strong synergy while their overall efficacy is not
achieving therapeutic relevance. Therefore, we provide an
SS (Synergy-Sensitivity) plot to ensure that both of these
two scores can be evenly weighted when interpreting the rel-
evance of a drug combination (Figure 2E, Supplementary
Figure S1).

As a unique feature of DrugComb, we visualize the syn-
ergy scores of a drug combination at each tested dose. The
so-called synergy landscape allows a rich information dis-
play to facilitate the interpretation of the data, for which
the most synergistic and antagonistic doses can be identified
separately (Figure 2F). For a given drug or a given cell line,

we provide the boxplots and histograms to show the general
distributions of the synergy and sensitivity scores, such that
the users may assess the general trend. For example, users
may evaluate whether drug combinations involving a par-
ticular drug tend to be more synergistic, or a cell line tends
to be more sensitive to drug treatment. Note that the ma-
jority of the data points (93.2%) that we curated from the
literature do not contain replicates, and therefore, we decide
not to provide the statistical significance of the synergy and
sensitivity over a dose-response matrix, as the significance
of individual doses contributing to the overall synergy can-
not be systematically assessed. Therefore, we would like to
highlight the issue of lack of replicates from a typical drug
combination screening that may likely hinder the transla-
tion of the results into clinical trials.

Network modelling for the mechanisms of action

Once a drug combination experiment has been conducted,
for which the results were analysed with the sensitivity and
synergy scoring, the next question would be the mechanisms
of action of the drug combinations. Network modelling of
drug combinations have been recently introduced as an ef-
ficient approach for the interpretation of drug combina-
tions, as well as the identification of predictive biomark-
ers from molecular profiles of cancer (39–42). In Drug-
Comb, the drugs are annotated with their target profiles,
and these profiles were further annotated in the signalling
networks of cancer cells, such that their first and secondary
neighbour proteins can be also retrieved. We utilize the
databases including ChEMBL, PubChem and DrugTarget-
Commons for their primary and secondary targets, and re-
trieve STITCH for the signalling networks. Furthermore,
we have incorporated the transcriptomics profiles of the
cancer cell lines into the network, such that their gene ex-
pression values can be also displayed (Figure 3A). In ad-
dition, we provide the correlation of the gene expression
and drug sensitivity such that those neighbouring genes
for which their gene expressions are highly correlated with
the drug sensitivity will be further identified as potential
biomarkers (Figure 3B).

For user-uploaded drug combinations or single drugs,
ideally the InChiKeys of the drugs should be provided.
This allows the web server to query drug STITCH ID from
the major drug databases. In case only the drug names are
provided, the web server will query from the major drug
databases, for which their targets profiles will be visual-
ized in a generic cancer signalling network. In case the cell
line names can be matched with the existing gene expres-
sion data, their gene expression values will be displayed as
coloured nodes. The network modelling results should be
interpreted together with the actual drug screening profiles,
such that the drug resistance or sensitivity can be related to
its target or neighbouring gene expressions (Figure 3B).

Machine learning for predicting sensitivity and synergy

Upon the large volume of drug combination data curated in
DrugComb, we provide the state-of-the-art machine learn-
ing algorithms to predict the sensitivity and synergy for a
user-selected drug combination on a given cancer cell line.
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Figure 3. Network modelling of drug combinations. (A) An example of veliparib and 5-fluorouracil combination in A2058 melanoma cell line. Drug targets
and neighbouring proteins are annotated with their gene expression values, some of which can be modulated by other drugs shown as rectangular boxes.
(B) Gene expressions of the neighbouring proteins in A2058 as compared with the correlations of these genes with the drug combination sensitivity across
all the tested cell lines. PARP2 is the primary target of veliparib, which shows top gene expression in A2058 as well as the highest correlation with the drug
combination, suggesting that PARP2 is a potential biomarker for predicting the drug combination sensitivity of veliparib and 5-flurouracil.

Figure 4. Workflow of machine learning prediction of drug combination sensitivity and synergy. Multiple features are integrated in CatBoost including
one-hot encoding of drugs, concentrations and cell lines as well as their specific features including drug chemical fingerprints, drug concentrations and cell
line gene expressions.
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We utilize the ONEIL data (43) to train a CatBoost model,
which has been considered as a reference algorithm for
many machine learning tasks (44). The ONEIL data con-
sists of 583 drug combinations involving 38 drugs tested in
39 cell lines, resulting in 92 208 drug combination experi-
ments consisting of 2 305 200 data points. The ONEIL data
has been considered a high-quality dataset, as it contains
multiple replicates and has been utilized in previous ma-
chine learning development (45–47). The CatBoost model
is based on decision-trees that can facilitate the integra-
tion of different types of features including textual, categor-
ical and numerical values. To build our model, the names
of drugs and cell lines are specified as categories in our
feature vectors. Additionally, the concentrations for drugs
are considered as both numeric values and categories. The
cell line’s gene expression and compound’s structural finger-
prints (MACCS) are considered as numerical values. More-
over, in order to accelerate the training process for our
model we consider only top 5% most variant genes (n = 153)
across the 39 cell lines (Figure 4).

Among all the CatBoost hyper-parameters, only four of
them show high importance for obtaining the best model.
Those hyper-parameters include iterations that indicate the
number of trees used in the model, maximum depth of the
tree, the learning rate used for gradient steps, and the L2
regularization for the loss function. The best values for
mentioned parameters are set and the rest of the hyper-
parameters are set to the default values. For drug combina-
tion inhibition and synergy scores, a model has been trained
separately and the results of the validation accuracy are pre-
sented in Table 1.

To facilitate the prediction, users need only to specify
the names and the maximal concentrations for each of two
drugs, and a cell line name. After receiving the user input,
the MACCS fingerprints of the drugs will be obtained by
the RCDKlibs package in R, and the cell line gene expres-
sion data will be retrieved internally from DrugComb. The
pre-processed data will be loaded into the trained models
to predict the inhibition values and synergy scores for a
10×10 equally distanced dose matrix within the given max-
imal concentrations.

Data contribution

To facilitate the data curation, we have provided a web
server for users to upload their drug combination data into
the database. The ‘Contribute’ panel will ask for the anno-
tation information of the drug combination screening re-
sults, and then the actual data points will be formulated as
a tabular format. We have utilized the contribution module
to curate the majority of the literature datasets and found
that it greatly facilitates the burden of the data contribu-
tors as well as data curators. For example, autofill func-
tions are available when users input the literature citation
and drug names. The cell line annotation is also available by
retrieving the Cellosaurus website for its disease classifica-
tion and other cross-reference links. Furthermore, data con-
tributors are guided to provide critical information about
assay protocols, such as detection technologies and culture
time. When the data has been successfully uploaded, we will
first manually check the format, completeness, and valid-

Table 1. Prediction accuracy of the CatBoost algorithm tested on ONEIL
data

Correlation R2 RMSE

INHIBITION 0.98 0.97 7.12
HSA 0.79 0.62 8.03
ZIP 0.89 0.80 6.55
LOEWE 0.57 0.32 9.68
BLISS 0.87 0.75 7.65

ity of the uploaded information, and then integrate them
into the database via the data analysis and annotation func-
tions (Figure 5A). In addition to the actual data points as
an outcome of such a data curation effort, we can also sys-
tematically evaluate the differences in the assay protocols
(Figure 5B), which might provide more insights on assess-
ing the reproducibility of the drug sensitivity screens (48).
Taken together, we believe that the data contribution may
greatly facilitate the open access of drug screening data and
therefore we encourage the users of DrugComb to be part
of the community-driven data curation team in the future.

Technical aspects

DrugComb is built using PHP 7.4.14 [Laravel Frame-
work 6.20.7] for server-side data processing, Javascript EC-
MAScript 2015 for the frontend, D3.js 5.7.0, Vis.js 4.18.1
and Plotly library 1.40.0 for the generation of the interac-
tive visualizations. Data is stored in MariaDB 10.3.17 with
RMariaDB 1.0.6.9000 as the driver for interfacing with R.
Software development tools including Python 3.6.7, numpy
1.14.1, pandas 0.23.4, scikit-learn 0.20.2, RDkit 2018.03.4,
R version 3.5.1, synergyfinder 2.2.4 and tidyverse 1.2.1 are
used in the analytical pipelines. Linux distribution CentOS-
8 with the kernel 4.18.0 64-bit running on four processor
cores and 64 Gb of RAM is used for hosting the web ser-
vice on a computational cluster.

The data portal has been designed in a straightforward
manner to maximize the user flexibility to retrieve the ex-
isting datasets as well as to analyse their own datasets. We
provided the API access at http://api.drugcomb.org such
that users can request data as json files. The API is imple-
mented using the PHP laravel framework. Instructions of
each of the modules are provided in their associated web
pages and the overview of the data portal was summarized
as tutorial video available at the home page. We aim to
continue accommodating new features such as cloud-based
computing and data infrastructure to facilitate the FAIR-
ness (Findable, Accessible, Interoperable and Reusable) of
drug screening data analysis. Meanwhile, the community-
based features such as data contribution and quality control
can be developed further.

DISCUSSION

Making cancer treatment more effective is what a com-
bination therapy aims to achieve. With the advances of
high-throughput drug screening technologies, an increasing
number of drug combinations have been tested. However,
before we can develop robust machine learning and network

http://api.drugcomb.org
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Figure 5. (A) The data contribution interface enables a community-driven data curation effort. (B) Statistics about assay protocols.
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modelling algorithms to predict and understand the poten-
tial drug combinations, the datasets need to be systemat-
ically curated and harmonized. Here we report the major
updates of DrugComb, a comprehensive data portal for the
drug discovery community to access the concurrent high-
throughput drug combination as well as monotherapy drug
screening datasets. These datasets have been deeply curated,
standardized and harmonized with the data analysis tools
including synergy and sensitivity scoring, such that their po-
tential can be maximized within a unified framework. Fur-
thermore, we have updated the network modelling of the
drug combinations, such that the transcriptomics profiles
of the cancer cell line, and drug target profiles can be inte-
grated in a signalling network where the protein-protein in-
teractions may provide deeper insights on the mechanisms
of drugs and drug combinations. In addition, we have pro-
vided a machine learning model to predict a given drug
combination for a cell line at the single dose level. To the
best of our knowledge, this is the first drug combination
prediction tool that has been made online with easy acces-
sibility for drug discovery users.

The four basic modules of DrugComb, i.e. (i) data cura-
tion, (ii) synergy and sensitivity scoring, (iii) network mod-
elling and (iv) machine learning constitute a workflow of
network pharmacological approaches based on which we
may gain deeper understanding of drug-drug interactions.
Currently, DrugComb focuses on small molecule drugs
such as cytotoxic and kinase inhibitors, while immunother-
apy and gene therapy drugs are largely missing. Furture
steps of DrugComb will involve constant improvement on
the data coverage, for example, by including drugs from
other classes. Moreover, we will include higher-order com-
binations that involve more than two drugs (e.g. (21)). In ad-
dition, we will consider the datasets from more recent tech-
niques of microfluidic-based drug screening (49), as well as
from patient-derived samples such as 3D organoid-based
drug screening (50) and patient-derived xenograft mouse
models (51). These datasets may help identify drug combi-
nations that are more translational to the clinics compared
to cell line-based studies (9). Meanwhile, the data analy-
sis tools will be also updated to incorporate the new data
types. For example, we will develop mathematical and sta-
tistical methods for analysing and visualizing higher-order
drug combinations. Taken together, we envisage that the
high-quality data in DrugComb will serve as a benchmark
for the development of more robust and predictive machine
learning models, for example, to improve the transfer learn-
ing from one study to another study, or to an under-studied
tissue (18), as well as accurate network-based models to cap-
ture the mechanisms of drug combinations that may eventu-
ally lead to predictive biomarkers that warrant patient strat-
ification for maximizing the efficacy of combinatorial ther-
apies.

DATA AVAILABILITY

The synergy and sensitivity scores in DrugComb are freely
available for download. Larger batch downloads of raw data
are permitted by contacting the authors. The AstraZeneca
drug combination datasets are proprietary, and a separate
agreement is needed, available at https://openinnovation.

astrazeneca.com/. The visualization results for sensitivity,
synergy and network models are downloadable as im-
ages. The source code for analysing the drug combination
datasets is available as the R package SynergyFinder ver-
sion 2.2.4 (https://bioconductor.org/packages/release/bioc/
html/synergyfinder.html). We are committed to open data
and welcome any researchers to participate in the develop-
ment of data curation and harmonization tools for drug dis-
covery.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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