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Abstract

Methylmercury (MeHg) is a potent neurotoxin that biomagnifies in marine food webs. Inor-

ganic mercury (Hg) methylation is conducted by heterotrophic bacteria inhabiting sediment

or settling detritus, but endogenous methylation by the gut microbiome of animals in the

lower food webs is another possible source. We examined the occurrence of the bacterial

gene (hgcA), required for Hg methylation, in the guts of dominant zooplankters in the North-

ern Baltic Sea. A qPCR assay targeting the hgcA sequence in three main clades (Deltapro-

teobacteria, Firmicutes and Archaea) was used in the field-collected specimens of

copepods (Acartia bifilosa, Eurytemora affinis, Pseudocalanus acuspes and Limnocalanus

macrurus) and cladocerans (Bosmina coregoni maritima and Cercopagis pengoi). All cope-

pods were found to carry hgcA genes in their gut microbiome, whereas no amplification was

recorded in the cladocerans. In the copepods, hgcA genes belonging to only Deltaproteo-

bacteria and Firmicutes were detected. These findings suggest a possibility that endoge-

nous Hg methylation occurs in zooplankton and may contribute to seasonal, spatial and

vertical MeHg variability in the water column and food webs. Additional molecular and meta-

genomics studies are needed to identify bacteria carrying hgcA genes and improve their

quantification in microbiota.

Introduction

Mercury (Hg) is a global pollutant adversely affecting human and wildlife health due to its tox-

icity and distribution in the environment [1]. Various processes, both natural and anthropo-

genic, lead to the release of primarily inorganic Hg (IHg), which can undergo methylation

resulting in formation of neurotoxic monomethylmercury (MeHg). While both IHg and

MeHg can be taken up by biota, only MeHg bioaccumulates in aquatic food webs [1,2].

The primary pathway for MeHg production is microbial Hg methylation [3], and a bacterial

gene cluster associated with such methylation (hgcAB) has recently been discovered [4,5]. It

was previously thought that mainly sulfate-(SRB) and iron-(FeRB) reducing bacteria methylate
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Hg in anoxic conditions [6–8]. However, the hgcAB gene cluster has been identified in some

syntrophic and fermentative Firmicutes indicating a broader phylogenetic and functional

representation of Hg methylators [9]. Recently, clade-specific quantitative PCR (qPCR) assays

were developed to quantify the abundance of hgcA gene of the main methylators [10]. Hence,

hgcAB and hgcA distribution can be used to predict occurrence of potential Hg methylators in

the environment [11]. Understanding hgcAB and hgcA distribution is essential for estimating

MeHg production in the water column and biomagnification in food webs [12].

Worldwide, great differences in MeHg accumulation have been reported for similarly struc-

tured and geographically close food webs [2,12]. In aquatic environments, MeHg production

takes place in both sediment and water column [12,13]; however, in the oxygenated waters, Hg

methylation may occur in anoxic microenvironments on sinking organic matter [7]. In the

water column, MeHg, bioconcentrated by phytoplankton, heterotrophic biofilms and periphy-

ton, enters the food web via zooplankton grazing, with subsequent transfer of zooplankton-

associated MeHg to zooplanktivores [12,14,15]. An additional source of MeHg and a possible

contributor to the variability in food-web bioaccumulation could be endogenous Hg methyla-

tion by gastrointestinal microbiota [5,16] with subsequent MeHg uptake by the host. There-

fore, endogenous Hg methylation in primary consumers could constitute an unexplored

MeHg source with consequences for higher trophic levels. Exploring the Hg methylation

capacity of gut microbiota has been attempted in various animals using both analytical and

molecular approaches [16]. While the gene cluster hgcAB has been identified in the gut micro-

biome of some terrestrial arthropods [5,16], its status in aquatic invertebrates is so far

unknown.

In the Baltic Sea, Hg sources are historically high, due to both natural and anthropogenic

inputs [17], which should promote Hg methylation ability in microorganisms [3] and facilitate

establishment of methylators in microbiota of filter-feeders, such as zooplankton. The objec-

tive of our study was to conduct a field survey to identify whether the hgcA gene is present in

the gut microbiome of zooplankton in the Baltic Sea. Our findings reported here represent the

first record of potential methylators associated with zooplankton and imply that endogenous

Hg methylation might occur in primary consumers as a pathway by which MeHg can enter

the food webs.

Materials and methods

Ethics statement

The sampling was conducted within Swedish and Finnish Marine Monitoring Programmes in

the Baltic Sea and SYVAB’s marine monitoring program in the Himmerfjärden Bay (Him-

merfjärden Eutrophication Study; www2.ecology.su.se), and no specific permissions were

required for any of the sampling locations in this study. Also, we did not require an ethical

approval to conduct this study as no animals considered in any animal welfare regulations and

no endangered or protected species were involved.

Field zooplankton collections and sample preparation

We focused our survey on microcrustaceans, cladocerans and copepods, which are the major

groups of mesozooplankton in the Baltic Sea. These microscopic animals are largely herbivo-

rous, with parthenogenic cladocerans thriving in the mixing layer and reproducing mostly

during summer, whereas copepods usually reside at deeper layers performing vertical migra-

tions related to onthogeny, temperature and predation risk [18].

Zooplankton were collected at four stations in the coastal and open sea area of the northern

Baltic Proper and the Bothnian Sea (Table 1, S1 Text, S1 Fig). Samples were taken by vertical
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tows at 0.5 m/s with a WP2 net (mesh size 90 or 100 μm; ring diameter 57 cm) equipped with a

cod end. At some stations, bottom to surface tows were taken, and at others, we used either

stratified tows or sampled only an upper part of the water column.

Animals retrieved from the cod-end were placed in 0.2-μm filtered aerated seawater and

supplied with an excess of the cryptophyte Rhodomonas salina (strain CCAP 978/24) to clear

the guts of any potential hgcA-containing microorganisms associated with their food items

and only retain those microbes closely associated with the gut mucosa. The animals were

transferred to the new medium containing the fresh algal suspension two-three times. This

procedure was applied to all species except Cercopagis pengoi, a predatory onychopod, feeding

by puncturing exoskeleton of planktonic crustaceans and sucking soft body tissues [19]. Such

feeding mode leaves the chitinous gut of the prey intact in the discarded carcass, hence, the

contamination of the predator gut with prey microflora was considered unlikely, and C. pengoi
were not subjected to the gut clearance procedure. For the rest of the zooplankton, randomly

selected individuals with visibly reddish guts (indicating that the animals were active and feed-

ing during the incubation) were selected following two-hour incubation. All specimens were

preserved in groups using RNAlater and stored at –20˚C [20].

From the RNAlater-preserved samples, different species of copepods and cladocerans were

picked under a dissecting microscope with forceps, rinsed in artificial seawater, and trans-

ferred in groups (30–50 ind. sample-1) into Eppendorf tubes. The following species and devel-

opmental stages were selected for the analysis: (1) copepodites (CV–VI) of Acartia bifilosa and

Eurytemora affinis; these are small calanoids, dominant in the study area and present all year

round, mostly in the epipelagia; (2) copepodites (CIII-IV) of Limnocalanus macrurus and

Pseudocalanus acuspes; these are large calanoid copepods, dominant zooplankton below the

halocline in the Northern Baltic, and important prey for zooplanktivores; (3) cladoceran Bos-
mina coregoni maritima (females, >0.7 mm); a small zooplankter, often reaching high abun-

dance in the surface waters during summer and being occasionally important prey for

zooplanktivorous fish, and (4) cladoceran Cercopagis pengoi (Barb Stages II and III); a large

predatory zooplankter representing a secondary consumers a common prey for fish during

summer. Thus, except for C. pengoi, all analyzed species are primary consumers and dominant

species in the pelagic food web.

Reference samples used as a contamination control were hatched Artemia spp. nauplii (San

Francisco Bay Brand) grown on axenic culture of R. salina (5 × 104 cells mL-1) in artificial sea-

water (28 g L-1 of Instant Ocean synthetic sea salt; Aquarium Systems Inc., Sarrebourg,

France). The animals were sacrificed after reaching a body length of ~2 mm and treated in the

same way as the zooplankton samples. As no amplification was ever observed in the reference

samples with Artemia guts (3 replicates, 25 guts sample-1), we beleive that no false positives

Table 1. Summary of zooplankton samples used for qPCR analysis. Species abbreviations for copepods: Acartia bifilosa (Ab, adults), Eurytemora affinis (Ea, adults),

Limnocalanus macrurus (Lm, CIV), and Pseudocalanus acuspes (Pa, CIV), and cladocerans: Bosmina coregoni maritima (Bm, body length> 0.7 mm) and Cercopagis pengoi
(Cp,> 2mm, excluding the tail spine). In total, 33 field-collected zooplankton samples and 3 reference samples (Artemia spp.) were analyzed.

Station Location, area Geographic coordinates and bottom

depth

Month,

Year

Sampling depth,

m

Number of samples per

species

Ab Ea Lm Pa Bm Cp

H4 Himmerfjärden Bay, Northern Baltic Proper,

Swedish coast

N 58˚59’, E 17˚43’; 30 m Jun 2007 28–0 3 3 2

BY31 Landsort Deep, Northern Baltic Proper, open sea 58˚35’ N, 18˚14’ E; 454 m Jun 2009 100–60 3

30–0 3 3 3

F64 Åland Sea, open sea N 60˚11’, E 19˚08’; 285 m Sep 2009 100–0 3

US5b Bothnian Sea, open sea N 62˚35’, E 19˚58’; 214 m Aug 2006 100–0 3 4 3

https://doi.org/10.1371/journal.pone.0230310.t001
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were produced, and bacterial contamination during experimental procedure and sample prep-

aration was either negligible or non-existent.

DNA extraction

From each specimen, the gut was excised with a sharp needle, a pair of ultrafine forceps under

dissecting microscope; the instrumentation and glassware were sterile. In total, 36 samples,

25–50 guts sample-1 (depending on the animal size), were prepared (Table 1, S1 Text). The

guts were transferred into 1.5 mL centrifuge tubes for Chelex-based DNA extraction [21] fol-

lowing a protocol developed for analysis of prokaryotes in zooplankton [22]; See S1 Text for

details on the laboratory procedures and S1 Table for the DNA yield in different species (Sup-

porting Information).

qPCR assay

Three main clades were considered as potential hgcA-targets, Deltaproteobacteria, Firmicutes,

and Archaea, the Hg-methylators broadly present in the environment that have been reported

to carry this gene [9]. For each clade, a separate SYBR Green qPCR assay was performed using

a clade-specific protocol of Christensen and co-workers [10]. As a standard, a synthetic DNA

oligonucleotide [23] comprising the clade-specific target sequence was constructed using a

representative strain: Dv. desulfuricans, Df. metallireducens, and Ml. hollandica, for Deltapro-

teobacteria, Firmicutes, and Archaea, respectively (S2 and S3 Tables). The standards were

cloned into plasmids and applied in five-step tenfold serial dilutions, 1.5 × 106 to 1.5 × 102

apparent copies of target DNA per reaction (S4 Table, S2 Fig). The qPCR primers and amplifi-

cation conditions [10] were used for all test samples, reference samples, NTC and standards

(S3 and S4 Tables). Under these conditions, qPCR yielded a single product in each standard

and in the test samples within an assay as evidenced by the melt curve analysis (S3 Fig). No

product was produced in the reference samples and NTC (non-template control) within the

assay range (30 cycles).

Data analysis

The number of hgcA copies detected by qPCR was used to calculate the number of hgcA copies

per individual and per μg of zooplankter wet weight (i.e., weight-specific number of Hg meth-

ylators). In these calculations, individual zooplankter weights [24] were used (S6 Table), and

one copy of hgcA per cell as determined by Christensen and co-workers [10]. Given substantial

variations in the amplification efficiency and detection limits for these qPCR assays among dif-

ferent bacterial strains that have been evaluated during the method development (efficiency:

60 to 90%, detection limits: 102 to 106 hgcA copies; see the method description [10]), any statis-

tical comparisons between species/sites were not meaningful [25]. Therefore, we consider our

results largely descriptive, indicative of the presence/absence of hgcA and, to a lesser extent, of

the interspecific or geographical variation.

Results and discussion

All four copepod species tested positive for hgcA genes (Fig 1), whereas no amplification was

observed for the two cladocerans. Among the clades tested, the hgcA genes of only Deltapro-

teobacteria and Firmicutes, but not Archaea, were found in the copepod guts. Although there

was a substantial imbalance in the sampling effort between copepods and cladocerans (25 vs. 8

samples; Table 1), the occurrence of hgcA-positive samples for copepods only is suggestive of a

difference. However, given the differences in the limit of quantification among the clades (S4
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Table), the between-clade differences in the hgcA abundance should be treated with caution.

Moreover, although Archaea are commonly reported to occur in zooplankton guts [26], the

contribution of this group can be low compared to bacteria [27]. Therefore, the lack of hgcA
amplification in the assays with archaeal primers may–at least in part–be related to the poor

representation of these microorganisms in the guts. Considering the reported variability in the

amplification efficiency of the qPCR assays among different bacteria tested with these assays

[10] and unknown composition of the hgcA-positive microbiota, only rough interpopulation

comparisons are possible. However, the overall findings suggest that microbiota of zooplank-

ters carries hgcA genes and thus may be capable of Hg methylation, which remains to be dem-

onstrated. The next step is to conduct experimental studies measuring the Hg methylation

capacity in the copepods and cladocerans that were found to have such striking differences in

the hgcA microbiota.

Whether bacteria-driven Hg methylation in zooplankton guts takes place depends not only

on the occurrence of hgcA-carrying bacteria but also on the functional performance of these

bacteria. To assess the hgcA expression, an analytical effort using available molecular tools,

Fig 1. Abundance of hgcA gene in the copepods collected in different areas of the Baltic Sea, ordered south to north. Data are

shown as mean ± SD; n = 3 in all cases, except Limnocalanus macrurus, where n = 4 (note that each replicate sample is composed by

25–20 dissected guts); see Table 1 for the number of replicates and S1 Fig for the map of the sampling sites. No amplification was

observed in any of the cladoceran samples. The individual-specific abundance (number of hgcA copies per individual) is shown in

the upper panels and the weight-specific abundance (number of hgcA copies per μg wet weight of zooplankter) is shown in the lower

panels (A and C: Deltaproteobacteria and B and D: Firmicutes; no amplification was observed for Archaea). Observe that set of

species is unique for every station; when no value is given, no samples for the particular species was available for the analysis.

https://doi.org/10.1371/journal.pone.0230310.g001
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such as RT-qPCR, RNA sequencing, and RNA-SIP is required. Furthermore, a better under-

standing of community structure is needed. Although our results do not provide any taxo-

nomic identification of the bacteria involved, the observed prevalence of Firmicutes among

the hgcA-carriers (Fig 1) agrees well with a relatively high abundance of this bacterial group in

the microbiome of other copepods [28,29]. In future studies, a 16S rRNA gene diversity profil-

ing and hgcAB amplification with high-throughput sequencing should be combined with hgcA
quantification [11]. Broad-scale zooplankton sampling, including seasonal, spatial and vertical

coverage, should provide material for such an evaluation.

If gut Hg methylation occurs, zooplankton may serve as a primary MeHg entrance point of

global significance and affect variability in MeHg transfer to secondary consumers [3]. A

mass-balance budget for the herbivourous marine copepod Calanus hyperboreus suggested

that endogenous Hg methylation could account for up to 70% of the annual MeHg uptake in

this species [30]. If these estimates are correct, they might explain why reported drivers of

MeHg variability are often contradictory. Indeed, MeHg concentrations in herbivorous zoo-

plankton vary among taxa [31,32], demographic population structure [33] and growth stoichi-

ometry [34]. In wild populations, however, these factors are difficult to disentangle [35], partly

due to their ultimate dependence on body size. Todorova and co-workers [35] speculated that

higher bioaccumulation of MeHg in larger species resulted from higher filtration efficiency

being a function of body size, whereas Kainz and co-workers [31] attributed this size depen-

dence to large zooplankton having larger anaerobic intestinal niches, where Hg methylation

can take place [36]. Supporting the view of Kainz and co-workers [31], we found that larger

copepods carried a greater number of hgcA copies, both per individual and per body mass.

However, no amplification was observed in equally large cladoceran Cercopagis; the latter

implies that not only body size, but also phylogenetic differences between the hosts are impor-

tant. In the large-bodied copepods L. macrurus and P. acuspes, our estimate of hgcA genes

yielded up to 10-fold higher values compared to the small-bodied A. bifilosa and E. affinis,
with the difference being most pronounced for Firmicutes (Fig 1). The group-specific variabil-

ity may affect spatial and seasonal contribution of endogenous MeHg to secondary consumers,

because different zooplankton groups that vary in their ability to methylate Hg would have dif-

ferent capacity to contribute MeHg to bulk zooplankton. For example, at least in the Baltic Sea,

the relative importance of gut Hg methylation and MeHg uptake by zooplankton would

increase in winter due to the higher contribution of copepods to bulk zooplankton biomass

[37].

The gut of copepods is likely to have anoxic conditions, at least in some species [36] and,

thus, provides a suitable habitat for methylating microbes. Notably, the morphology of cladoc-

eran gut predisposes it to active oxygenation, and gut microbiota in these animals is domi-

nated by clones affiliated to aerobic or facultative anaerobic bacteria [38], which may explain

the lack of hgcA amplification in our cladoceran samples. Hg-methylating genes have been

detected in invertebrate microbiota, including termites, beetles, and oligochaetes [5,16], and in

some invertebrates the endogenous MeHg production has been documented [39]. As a life

form, intestinal microbiota exists in biofilms, and such communities are increasingly recog-

nized as important sites for environmental Hg methylation [40,41]. Commensal biofilms are

present in both planktonic and benthic animals that actively exchange gut and body-surface

microbiota with the ambient microbial communities and other animals [42]. We found no

hgcA genes in the gut of the predatory Cercopagis pengoi, which may indicate that the digestive

system of predators with this feeding mode (puncturing exoskeleton of planktonic crustaceans

and sucking soft body tissues) is less likely to become populated by Hg-methylating bacteria

compared to filter-feeders that have a more active exchange with diverse microbial communi-

ties of seston.
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The presence of Hg-methylating bacteria in copepod guts and, hence, in their carcasses and

fecal pellets, could be an important and yet unquantified source for MeHg production in the

water column [43]. Remineralization of organic matter is associated with elevated MeHg pro-

duction [43,44], and Hg methylation potential is higher in fresh organic matter than in decom-

posed material [7,44]. Zooplankton fecal pellets, a considerable fraction of settling marine

organic matter, are almost completely remineralized in the water column, while degraded phy-

toplankton and terrestrial organic matter aggregates are more likely to reach the sea floor [45].

The presence of active Hg-methylating bacteria in fecal pellets could increase Hg methylation

efficiency compared to non-fecal organic matter, where a lag phase related to colonization

time is expected. In the latter case, the ecological niche for Hg-methylating bacteria might not

become available until the most labile parts of the organic matter are already remineralized,

resulting in lower MeHg production. Ingestion of fecal pellets by mesopelagic zooplankters

and benthic animals could also facilitate spread of methylators among invertebrates and enrich

these consumers with microflora of epipelagic zooplankters. In addition, these pellets can

become enriched in Hg methylators during the time spent in the water column. In line with

this, we found higher hgcA abundances in P. acuspes and L. macrurus residing in deeper water

layers compared with A. bifilosa and E. affinis inhabiting the epipelagic zone (Fig 1).

One can speculate that endogenous Hg methylation in zooplankton could help explain spa-

tial and temporal trends of fish MeHg concentrations in the Baltic Sea. The strong decrease in

Hg inputs to the Baltic Sea during the last decades has not resulted in a consistent decrease in

fish Hg levels across the sea [17,46]. During this time, significant and basin-specific changes

occurred in zooplankton communities [47] in concert with alterations in climate, nutrient

inputs and terrestrial runoff [17,44]. It is plausible that synchronous shifts in the methylation

capacity of zooplankton, at both the individual microbiome and community levels, have taken

place contributing to the MeHg dynamics in the food web. Experimental studies and quantita-

tive analysis of the interactions between biotic and abiotic processes governing endogenous

MeHg production is therefore essential, if we are to understand uptake and bioaccumulation

of MeHg in water column and food webs.
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