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Abstract Impulsive—compulsive disorders such as pathologi-
cal gambling, hypersexuality, compulsive eating, and shopping
are side effects of the dopaminergic therapy for Parkinson’s
disease. With a lower prevalence, these disorders also appear in
the general population. Research in the last few years has
discovered that these pathological behaviors share features
similar to those of substance use disorders (SUD), which has
led to the term “behavioral addictions”. As in SUDs, the be-
haviors are marked by a compulsive drive toward and impaired
control over the behavior. Furthermore, animal and medication
studies, research in the Parkinson’s disease population, and
neuroimaging findings indicate a common neurobiology of
addictive behaviors. Changes associated with addictions are
mainly seen in the dopaminergic system of a mesocorticolimbic
circuit, the so-called reward system. Here we outline neurobi-
ological findings regarding behavioral addictions with a focus
on dopaminergic systems, relate them to SUD theories, and try
to build a tentative concept integrating genetics, neuroimaging,
and behavioral results.
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Introduction

In the past decade, many exciting findings have shed light on a
new neurobiological understanding of impulsive—compulsive
behavioral disorders, such as pathological gambling. Above all,
the important role of the neurotransmitter dopamine has been
highlighted. About 14 % of patients with Parkinson’s disease
(PD) receiving dopaminergic medication develop impulsive—
compulsive disorders, such as pathological gambling, hyper-
sexuality, compulsive eating/binge eating, and compulsive buy-
ing [1+]. Albeit less prevalent, these disorders also occur in the
general (non-PD) population, are sometimes referred to as
“disorders in the impulsive-compulsive spectrum”, “impulse
control disorders” (ICDs), or “behavioral addictions,” and can
be classified in DSM-IV-TR as ICDs, even though only path-
ological gambling has specified criteria [2]. It was found that,
despite the different labeling, disorders such as pathological
gambling, hypersexuality, binge eating, excessive shopping,
and excessive Internet use share some essential features with
substance use disorders (SUDs) [3]. Behaviorally, substances as
well as behavioral addictions are characterized by a fixation on
the particular drug/behavior and sometimes disregard for
natural reinforcers. Other similarities are the craving to
consume the substance or execute the behavior in phases
of abstinence and the inability to stop the harmful behavior
[3]. There is ample evidence that these excessive and
reinforcing behaviors involve the dopaminergic “reward
system,” as do all substances of abuse (for a review, see
[4]). Owing to these similarities in phenomenology and
neurobiology, it has been proposed to classify several of
the ICDs as behavioral addictions in DSM-V, yet only
pathological gambling has been moved to the “addictions
and related disorders” section of DSM-V [4].

Efficient therapy and prevention of ICDs rely on a good
understanding of how these pathological behaviors develop.
One important starting point is the common neurobiology and
the similarities to addiction. Therefore, we will start by describ-
ing the neuroanatomy of reward processing and its alteration in
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substance and behavioral addictions. Subsequently, we will try
to outline predisposing and associating factors regarding be-
havioral addictions in the PD and non-PD populations, focusing
on neuroimaging and dopamine. Finally, we will describe neu-
robiological principles of a dopaminergic endophenotype that
may be at risk of develop ICDs/behavioral addictions.

The Addiction Circuitry

There has been extensive research on the neurobiological basis
of SUDs (for a review, see [5]). Here, we outline neuroanatom-
ical circuits involved in the development and maintenance of
substance addictions as well as behavioral addictions.

The Neuroanatomy of the Mesocorticolimbic “Reward”
System

Drugs and other rewarding stimuli act as reinforcers on a
mesocorticolimbic circuit, the so-called reward system, com-
prising the ventral striatum [VS; including the nucleus
accumbens (NAcc)], the orbitofrontal cortex (OFC), the anteri-
or cingulate cortex (ACC), the amygdala, and the hippocampus
[5] (but see also [6]). Novel stimuli, natural reinforcers such as
eating and sex, and nonnatural reinforcers lead to a phasic
release of dopamine from the ventral tegmental area to the
NAcc, the amygdala, and the hippocampus [7]. This dopami-
nergic signal likely reflects salience attribution and promotes
associative learning. The amygdala and the OFC presumably
play a key role in associating reward-predicting cues with the
positive emotions elicited by the actual reward [8]. The OFC is
additionally involved in encoding and updating the (relative)
reward value [8]. Dopaminergic neuromodulation in the mid-
brain seems to enhance hippocampus-dependent long-term
memory formation so that reward-related stimuli and contexts
are reliably recognized in later situations [7]. The ACC, on the
other hand, is hypothesized to link rewards with actions and
thus has a gating role in action selection following reward cues
[9]. In a healthy brain, reward-directed behavior is adaptively
controlled by inhibitory influences of the prefrontal cortex
(PFC). Here, different sensory inputs, memories, goals, and
physiological states (e.g., nutrient supply) have to be integrated
to entail an adequate performance [10]. Via the OFC and ACC,
top-down influences reach mesolimbic areas again and regulate
reward-seeking motivation [9].

Although processing in the mesocorticolimbic circuit pre-
dominantly relies on dopaminergic transmission, other neuro-
transmitter systems also play significant roles. It is assumed that
the “liking” of rewards is conveyed by p-opioid stimulation and
closely interacts with the dopaminergic system in the NAcc and
ventral pallidum [11]. Furthermore, coactivation of dopamine
D; receptors and NMDA systems within corticolimbic striatal
circuits may be necessary for adaptive reward learning [12].
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GABAergic projections from the tail of the ventral tegmental
arca/rostromedial tegmental nucleus to the nearby ventral teg-
mental area and substantia nigra seem to act as a major brake for
dopaminergic systems [13].

An Altered System - the Addiction Circuitry

Substances of abuse can be seen as strong synthetic reinforcers.
They cause a stronger release of dopamine that does not habit-
uate as fast as with natural rewards [5, 14]. Dopaminergic
signals in the midbrain are thought to reflect salience attribution
and therefore imprint an incentive value on addictive sub-
stances and motivate appetitive behavior toward associated
stimuli [5]. Heightened salience attribution is reflected by
stronger activation of the reward system following drug-
associated cues (e.g., an alcoholic seeing a bottle of beer)
[15]. In the terminology of conditioning, cues become condi-
tioned stimuli for the unconditioned stimulus (i.e., substance or
behavior). There are fewer studies regarding cue reactivity in
behavioral addictions, and the results are conflicting and not
always comparable with those of SUD studies [16—19]. This
may be due to diverging methods and cues [20]. In substance
addiction as well as behavioral addiction, reaction to the con-
ditioned stimulus is associated with “wanting” or “craving” for
the unconditioned stimulus [5, 18, 21]. Repeated exposure to an
unconditioned stimulus presumably leads to overactivation of
the mesolimbic dopaminergic system with reduced influence of
inhibitory frontal brain areas [9] (see Fig. 1). In line with this
suggestion, subjects with substance addictions and/or behavior-
al addictions are characterized by generally diminished impulse
control, as the term “impulse control disorder” (ICD) implies
[22-24]. When tempted, the motivation to take the drug or
carry out a behavior beats the efforts to control the addictive
behavior. During the addiction process, the initially arbitrary
behavior eventually becomes more habitual. SUD-related the-
ories suggest that during habit formation, activation caused by
the conditioned stimulus shifts from the shell of the NAcc to its
core and finally to dorsal parts of the striatum and associative as
well as sensorimotor corticostriatal circuits [7]. Also in ICDs,
there have been findings that suggest such a transition [25].

Theories on the Development of Addiction

A recent review has outlined the main theories on the develop-
ment of SUDs [26]. The reward deficiency hypothesis states
that a certain genetic variation leads to a reduced D, receptor
density in the limbic system [27]. Therefore, vulnerable indi-
viduals feel uncomfortable and in need of strong reinforcers to
get the dopamine level back to normal and relax [27]. Robinson
and Berridge [15], however, stress the role of salience attribu-
tion in addiction development and postulate that drug-
associated dopamine surges sensitize the reward system during
repeated drug use. The result is a hypersensitivity to incentive
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Fig. 1 Heightened striatal dopamine release during gambling in
Parkinson’s disease (PD) with pathological gambling (a) [35] and re-
duced activation of the orbitofrontal cortex (OFC) and rostral cingulate
zone (RCZ) in pathological gambling after dopamine (DA) administra-
tion (b) [91¢]. a Ventral striatal DA release (indexed by a reduction of
["'Clraclopride binding potential) during gambling as compared with that

motivational effects of drugs and drug-associated stimuli. Even
though there is much evidence in favor of the sensitization
theory, it does not explain why some are more vulnerable than
others. Goldstein and Volkow [28] developed the impaired
response inhibition and salience attribution (I-RISA) model of
addiction which integrates enhanced salience attribution and
impaired inhibition. Like Blum et al. [27], they hypothesize that
D, receptor deficiency is initially responsible for drug use and
reward-seeking behavior [28].

In this section, we drew a schematic picture of the struc-
tures and circuitries involved in reward processing and addic-
tion. In the following sections, we will highlight neurobiolog-
ical findings in behavioral addictions and relate them to ad-
diction development theories.

Factors Associated with the Development of Behavioral
Addictions

Every human possesses a reward system, but not everyone is
responsive to rewards to the same degree. Quite a lot of people
gamble from time to time, and all of us eat, shop, or have sex
more or less frequently. But who will become addicted? An
overview of the factors that are thought to influence the
genesis and development of behavioral addictions is given in
Fig. 2.

in a control task in PD patients with (fop) and without (bottom) patho-
logical gambling. b Differential effect of medication on brain activity in
PD gamblers compared to controls. Gamblers showed a significant do-
pamine-induced reduction in the left lateral OFC (top) and right RCZ
(bottom). (a With permission from: Steeves et al. [35]; b with permission
from van Eimeren et al. [91¢])

Genetics

Estimations of heritability in SUDs range from 40 to 70 % [29].
Research in the field of behavioral addictions is less extensive
and concentrates on pathological gambling. One large study
showed that genetic influences account for 37-55 % of the
variability in pathological gambling [30]. Two other studies,
however, found lower [31] or considerably higher [32] heredity
rates. There are several reasons for why the examination of a
genetic influence of polymorphisms on the development of
ICDs is highly complex and multidimensional. First, the ex-
pression and influence of genes is partly dependent on envi-
ronmental influences and lifespan (epigenetics) [29]. Second,
the findings only indicate that some polymorphisms affect the
development of traits and/or the availability of neurotransmit-
ters, which in turn predict (behavioral) addictions to a certain
extent. Third, polymorphisms frequently promote behavioral
addictions in interaction with other polymorphisms.

For a detailed discussion of the associations between genetic
predispositions and ICDs in PD and non-PD populations, we
refer to two recent reviews that provide an overview of genetics
in behavioral addictions [33, 34]. Briefly, the studies suggest
genetic susceptibility mainly regarding polymorphisms influen-
cing dopaminergic transmission, for example, the dopamine
transporter polymorphism SLCA3 or the D, receptor polymor-
phism TaqlA. But also genetic variations determining
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Fig. 2 Interacting factors associated with the development of behavioral addictions. AHDH attention deficit-hyperactivity disorder, OCD obsessive—

compulsive disorders, SUD substance use disorders

catecholaminergic, serotonergic, glutamatergic, and opioid sys-
tems have been shown to be predisposing for ICDs and/or
associated traits.

Neurotransmitters

As mentioned previously, the availability and functioning of
neurotransmitters depend on gene—environment interaction.
Some of the resulting endophenotypes are apparently more
prone to develop (behavioral) addictions than others. With a
focus on dopamine, this section provides an overview of altered
baseline neurotransmitter function in behavioral addictions.

Dopamine

Owing to the lack of prospective longitudinal studies, it is often
difficult to determine if neurobiological variations precede or
follow the development of behavioral addictions. Nonetheless,
findings indicate that preexistent, partly genetically determined,
dopaminergic abnormalities lead to pathological behaviors
which in turn cause a further disbalance in the dopaminergic
system. Studies focusing on the D, receptor gene suggest that
the Al allele of the Taql A polymorphism creates a condition
that is characterized by reduced availability of D, receptors in
the striatum [27]. Additionally, there are findings that patho-
logical gamblers and people with pathological overeating or
Internet addiction show reduced [''C]raclopride baseline bind-
ing potential in the striatum [35-37]. However, PET results
may indicate either a functional downregulation of dopamine
transporters or receptors or else higher synaptic dopamine
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levels. Thus, it remains unclear whether there is a basal
hypodopaminergic state as proposed by the reward deficiency
hypothesis or rather a hyperdopaminergic state as suggested by
the sensitization hypothesis [15]. In contrast to these findings,
other studies in pathological gambling [38, 39+¢] and a study
with PD patients with ICDs did not find different baseline
binding compared with controls [40ee].

Other Neurotransmitters

Although one can assume that other neurotransmitter func-
tions are altered in addiction [24], evidence is often limited to
preclinical or medication studies in SUDs.

Opioid antagonist therapy can be an effective treatment in
several ICDs, which may be based on midbrain p-opioid
receptor stimulation causing inhibition of GABA and conse-
quent dopamine release [41-44]. Regarding serotonin and
ICDs, there are mixed results regarding treatment studies with
serotoninergic medication [24]. However, Cools et al. [45]
propose that although dopamine serves to promote behavioral
activation to seek rewards, serotonin serves to inhibit actions
when punishment may occur. Preclinical studies on SUDs
indicate that altered glutamatergic transmission from the
PFC to the NAcc results in compulsive focusing of behavior
on drug-associated stimuli [46]. There is only limited evi-
dence from preclinical trials and medication studies that
glutamatergic and GABAergic medication effectively treats
(behavioral) addictions [47-50].

Currently, the contribution of neurotransmitters in behavior-
al and substance addictions is best understood for dopamine.
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Neuroimaging Findings

Here, we highlight neuroimaging findings of altered brain
functions and aberrant behavior related to reward processing
in behavioral addictions. Since dopamine is presumed to be
involved in numerous key functions in reward processing, we
will focus on a possible dopaminergic basis.

Reward and Punishment Reactivity

Altered reward sensitivity due to changes in dopamine func-
tion is one main component of all addiction theories, but is still
poorly understood [51]. Summarizing the results is difficult
since there is a multitude of different study designs, often
lacking proper discrimination between simple reward percep-
tion and various phases of reward learning.

Unpredicted rewards and reward prediction cues elicit a
phasic increase in striatal dopaminergic signal, whereas an
anticipated but not obtained reward (also called negative
prediction error) or an unpredicted loss is followed by a
decrease in tonic striatal dopamine receptor stimulation [51,
52]. Regular reward sensitivity would therefore yield activa-
tion correlating with reward prediction and its errors, i.e.,
activation for unpredicted rewards and reward cues and deac-
tivation for omitted rewards or losses.

Predicted rewards seem to elicit less activation mainly in
the ventromedial PFC in patients with ICDs as measured with
the monetary incentive delay task in two studies [53, 54¢].
Regarding unpredicted reward, a study found that all partici-
pants showed greater VS activity in response to reward than to
punishment, but pathological gamblers had lower differential
activation in the right striatum than controls [25]. It is, though,
not clear if this difference in reward sensitivity is due to a
blunted reaction to rewards or to losses or both. Notably,
dopamine agonists were shown to decrease reward sensitivity
in PD patients mainly caused by abolished deactivation fol-
lowing unexpected losses [55]. People with an Internet addic-
tion showed enhanced OFC activation following unpredicted
rewards but decreased ACC activation after losses [56].

Behaviorally, altered reward sensitivity leads to modified
reinforcement learning. Several studies showed that individuals
with pathological gambling or binge eating disorder showed
impaired reward and punishment learning [57-59]. Performance
in a card game with implicit reward and punishment learning
correlates with activation in a neural circuitry involving the
dorsolateral PFC, insula, posterior cingulate cortex, OFC, ven-
tromedial PFC, VS and ACC/supplementary motor area in
healthy individuals. There are only a few neuroimaging studies
assessing reinforcement learning in behavioral addictions. One
PET study in pathological gambling found higher dopamine
release in the VS accompanied by higher excitement despite
impaired performance [60]. Power et al. [61] showed that path-
ological gambling exhibited increased activation in the right

caudate, right OFC, and amygdala/hippocampus during high-
risk trials, which could indicate greater salience of monetary
rewards.

Some results indicate that people with behavioral addic-
tions show a blunted response to predictable rewards. How-
ever, when it comes to learning, the results propose reduced
sensitivity to losses and a constant or even heightened sensi-
tivity to gains. Regarding the addiction theories, these findings
are in line with the sensitization theory, since it predicts a
hypersensitive mesolimbic dopaminergic system, i.e., stron-
ger salience attribution mechanisms. Blunted response to pre-
dicted rewards would concord with the reward deficiency
hypothesis; reduced sensitivity to losses, however, would not.

Cue Reactivity

In accordance with the sensitization theory and findings in
SUDs [5, 15], several studies of behavioral addictions show
enhanced mesocorticolimbic reactivity to related cues that is
linked to a feeling of craving or wanting. In PD patients with
ICDs in comparison with those without ICDs, O’Sullivan
et al. [40+<] found greater striatal dopamine release following
related cues in contrast to neutral cues. Hypersexual PD
patients receiving and not receiving dopaminergic medication
showed heightened activation in response to visual sexual
cues in the limbic cortex, paralimbic cortex, temporal cortex,
occipital cortex, somatosensory cortex, and PFC compared
with PD patients without ICD [62]. Increased activity in the
ACC, posterior cingulate cortex, OFC, and VS correlated
positively with subjective sexual desire.

Other studies of ICDs showed increased dopamine release
in dorsal striatal areas or activation in the frontal, occipital, and
parahippocampal cortices in response to cues [63—66]. Con-
versely, one functional MRI study using videos of gambling
scenarios found decreased activity in the PFC and OFC,
caudate/basal ganglia, and thalamus of subjects with patho-
logical gambling compared with controls [18].

Two recent functional MRI studies with non-PD gamblers
and subjects with binge eating disorder also provide contrasting
results since they found decreased activation in the VS during
anticipation of both gains and losses [54¢, 67]. This might be
because these studies implemented designs with cues predicting
directly following reward (e.g., the monetary-incentive delay
task), whereas the studies mentioned before used stimuli asso-
ciated with addictions (e.g., food pictures for binge eaters).

To summarize, the results are heterogeneous but most
studies suggest increased cue reactivity in the striatum and/
or PFC, similarly to SUDs.

Probability and Delay Discounting

As for SUDs, patients with ICDs show heightened risk taking/
probability discounting, e.g., going for a larger but less probable
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reward, and not for the smaller but more likely one [68—73], and
altered delay discounting, i.e., choosing immediate smaller
rewards over delayed larger ones [71, 74—77]. PD patients with
ICDs, however, did not differ from controls in one study [78].
Both phenomena are probably related to altered reward sensi-
tivity and disinhibition (lack of top-down control) [79]. Hence,
brain areas included in valuation (ventromedial PFC, OFC, and
VS) and cognitive control (lateral PFC and ACC) might be
malfunctioning when abnormalities in delay or probability
discounting occur as found in addiction [79]. One study found
that activation in the VS and OFC for probabilistic rewards
correlated less with subjective value in gamblers compared with
controls [71]. Concordantly, PD patients with ICDs receiving
dopamine agonists had less VS activation associated with ex-
plicit risk taking [70]. In delay discounting, however, activation
in VS and OFC correlated stronger with subjective value in
gamblers compared to controls [70].

To summarize, there is evidence that probability and delay
discounting are altered in ICDs. Moreover, neuroimaging
studies suggest altered activity in the OFC and VS in ICDs
during discounting.

Impulsivity/Disinhibition and Perseveration

Impulsivity and disinhibition are often used synonymously
when speaking of PFC-mediated top-down control [80]. With-
in this definition, impaired inhibition is seen in most SUDs
and is associated with a hypoactive dorsal ACC and dorsolat-
eral PFC [9, 81]. Pathological gamblers and PD patients with
ICDs also show impairments in tasks such as the stop-signal
task, go/no-go paradigms, and the Stroop task that involve
inhibitory control [58, 81-84]. But there are also studies that
did not find any behavioral differences between gamblers or
Internet addicts and controls [85—88] or PD patients with ICDs
and PD controls [89]. As to differences in brain activity,
findings indicate reduced activity in the ventromedial or
dorsomedial PFC [85, 90] (but see [88]). Stressing the role
of dopamine, one study found that during a card game with
probabilistic feedback, dopaminergic medication deactivated
brain areas implicated in impulse control specifically in PD
patients with pathological gambling [91¢]. This concords with
the idea that the effect of dopaminergic medication may
depend on different baseline dopamine levels in ICD patients
and controls (Fig. 3) [92].

Another phenomenon often associated with substance and
behavioral addictions is response perseveration [84, 93, 94],
i.e., the inability to change behavior even though this would be
adequate. In healthy subjects, reversal learning, i.e., adequate
adaption of behavior, recruits the ventrolateral PFC. Compati-
bly, one study found lower responsiveness of the right ventro-
lateral PFC during winning and losing money associated with
response perseveration in a reversal learning task in patholog-
ical gamblers [95].
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Similarly to disinhibition, perseveration has been linked to
altered dopaminergic and serotoninergic function [45]. Howev-
er, perseveration in reversal learning is often assessed with tasks
that simultaneously measure risk taking or disinhibition. Thus,
it is unclear whether these impairments can be disentangled.

Traits, Comorbidities, and Life Events

Traits related to substance and behavioral addiction in PD and
non-PD populations include trait impulsivity and novelty and
sensation seeking [3, 78]. These traits are not independent of
the aforementioned phenomena, since impulsivity and novelty
seeking are closely linked to dopaminergic and serotonergic
transmitter systems [96-98].

As for comorbidities, SUDs, depression, bipolar disorder,
obsessive—compulsive disorder, anxiety disorders, and atten-
tion deficit-hyperactivity disorder are commonly seen togeth-
er with behavioral addictions in PD and non-PD populations
[3, 78]. We recently found that ICDs in PD patients are—like
in the non-PD population [99-101]—linked to alexithymia
(the inability to identify and describe one’s feelings) (K.S.
Goerlich, C.C. Probst, L.M. Winter, K. Witt, G. Deuschl, B.
Moller, and T. van Eimeren, 2013, unpublished data).

Environmental factors such as prenatal influences and crit-
ical life events are not to be disregarded as risk factors for the
development of behavioral addictions. Increased fetal testos-
terone level, for example, has been associated with greater
reward responsiveness in the striatum and increased behav-
ioral approach tendencies in children [102]. Stressful life
events in early childhood have been found to predict impul-
sivity [29]. Stress exposure in older age is known to play a key
role in the occurrence of addiction and relapse, among others
means by altering dopaminergic transmission [29].

Synopsis of the Findings

Before we summarize the findings, we need to acknowledge
some general limitations. First, there are very few neuroimag-
ing studies with patients with compulsive shopping or sexual
behavior, so the evidence primarily builds on pathological
gambling and to a lesser degree on Internet addiction and
binge eating. Furthermore, there is a great lack of longitudinal
studies of behavioral addictions. As a consequence, we do not
know if the findings are triggers or consequences.

In summary, the data on behavioral addiction show a pattern
similar to the neurobiology in SUDs. The findings indicate a
lower dopamine receptor binding in the striatum [35-37],
reflecting either a reduced receptor density or a heightened
dopamine level. The blunted response to predicted rewards
might be a sign of reduced sensitivity to “normal” rewards, or
might stem from an increased baseline activity [53, 54¢].
Heightened activation of the mesocorticolimbic system
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following addiction-related cues [40e, 56, 62—66] speaks for a
dopaminergic hypersensitivity. Reduced loss sensitivity and
slower loss learning rates [55, 56, 103] indicate a lack of a tonic
dopamine level dip that usually appears during punishment.
Additionally, subjects with behavioral addictions show impair-
ments in inhibition and reversal learning tasks correlating with
reduced activity in the ventrolateral and dorsolateral PFC [58,
81-85, 90]. Altered reward sensitivity as well as impaired top-
down control also correlate with heightened risk taking and
delay discounting [68—77].

All in all, the results mainly point to a pattern of heightened
salience attribution and impaired inhibition as proposed by the
I-RISA model of SUDs [28]. The question why some people
develop ICDs and some do not still remains open. Prevailing
evidence suggests a specific dopaminergic at-risk endopheno-
type (see Fig. 3): considering models of phasic and tonic
dopamine functioning in the striatum and the PFC [92, 104],

|
Addictive Reward
(e.g. win gamble)

Punishment
(e.g. lose gamble)

increased tonic DA level, leading to reduced influence of inhibitory
control areas via increased D, receptor activation (leff panel, middle)
[58, 81-84, 91¢]; 2 increased D, receptor activation interferes with the dip
following punishments [55]; 3 adequate reinforcing stimuli now lead to
suprathreshold D, receptor stimulation, which drives the formation of
pathological habits [40e¢]

one could hypothesize that individual predisposition implicates
heightened tonic dopamine levels in the striatum [33]. Tonic
dopamine predominantly activates D, receptors, whereas pha-
sic dopamine stimulates D; receptors [104]. Augmented tonic
dopamine levels would explain prefrontal deficits in behavioral
addictions, since an increasing tonic D, stimulation has been
shown to attenuate PFC inputs and was correlated with reduced
PFC activity [5, 104]. Punishment, however, would not lead to
sufficient reduction of tonic dopamine levels and hence hinder
punishment learning. Suprathreshold phasic bursts following
particularly strong reinforcers would thus promote habit forma-
tion. The results of studies in the PD population support the
importance of an increased tonic dopamine level, since dopa-
mine agonists primarily raise the tonic dopamine level.

Of course, this model is a gross simplification, not only
with regard to dopaminergic transmission, but also because it
disregards contributions of other neurotransmitters. Still, this
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model of a dopaminergic at-risk endophenotype is based on
empirical neurobiological evidence and may inform future
research and development of therapeutic strategies.

Conclusions and Future Directions

Opioid systems have to be looked at more closely, since they
mediate hedonic experience, interact with dopaminergic sys-
tems, and may play a critical role in the individual preferences
that lead to a specific addiction. In line with this, the complex
interaction of the neurotransmitter systems involved in addic-
tion should be a crucial aspect of future research. Finally, we
need good longitudinal studies to disentangle triggers from
consequences. Here, highly anticipated results of international
initiatives (e.g., IMAGEN, http://www.imagen-europe.com)
will hopefully deliver important answers.
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