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SUMMARY

Proposing a general segmentation approach for lung lesions, including pulmo-
nary nodules, pneumonia, and tuberculosis, in CT images will improve efficiency
in radiology. However, the performance of generative adversarial networks
is hampered by the limited availability of annotated samples and the cata-
strophic forgetting of the discriminator, whereas the universality of traditional
morphology-based methods is insufficient for segmenting diverse lung lesions.
A cascaded dual-attention network with a context-aware pyramid feature extrac-
tionmodulewas designed to address these challenges. A self-supervised rotation
loss was designed to mitigate discriminator forgetting. The proposed model
achieved Dice coefficients of 70.92, 73.55, and 68.52% on multi-center pneu-
monia, lung nodule, and tuberculosis test datasets, respectively. No significant
decrease in accuracy was observed (p > 0.10) when a small training sample size
was used. The cyclic training of the discriminator was reduced with self-super-
vised rotation loss (p < 0.01). The proposed approach is promising for segment-
ing multiple lung lesion types in CT images.

INTRODUCTION

The automatic segmentation of lung lesions in CT images, including COVID-19 pneumonia and other

lesions with similar CT findings, such as tuberculosis and pulmonary nodules, has always been challenging

because of the various morphologies, intensities, and locations of lung lesions.1 Traditional morphology-

based segmentationmethods, such as region-growing, level set, and graph cut algorithms, have been proven

to automatically segment certain types of lung lesions.2–4 However, leakage of the regions, as well as over-

and under-segmentation limit the automatic segmentation of different types of lung lesions with diverse

morphological variations. Emerging convolutional neural network (CNN)-based algorithms, particularly

generative adversarial networks (GANs), have been demonstrated to be effective architectures for the auto-

matic detection and segmentation of regions of interest (ROI) in medical images.5–8 Continuous adversarial

and collaborative training of the generator and discriminator enabled theGAN to detect lesion characteristics

and produce synthetic images by directly extracting the ROIs of the lesions from the source CT images. Pre-

vious studies have demonstrated that GAN is an effective network for lung lesion segmentation. Zhang et al.

proposed a conditional GANmodel to segment the lung region and pneumonic lesions simultaneously using

a pyramid-based GAN architecture.9 ROI masks at different scales were used to process radiological images

via a pyramid-based GAN to mimic images with better resolution, and an average dice coefficient (DC) of

54.1% with a standard deviation of 21.6% was obtained. In another study, a weakly supervised GAN architec-

ture was proposed, consisting of a segmentation process producing a segmentation mask, a generator re-

placing the predicted lesion region with a generated region that resembles an uninfected area, and a discrim-

inator to distinguish images of healthy synthetic regions from real uninfected regions.10 By successfully

deceiving the discriminator using synthetic images, the proposed architecture achieved an average DC of

70.3% for pneumonic lesion segmentation. Second, for lung nodules, a three-dimensional (3D) GAN-based

data augmentation approach was proposed for bounding box-based 3D lesion detection.11 In another study,

two discriminators were simultaneously applied to classify real and synthetic nodule image pairs to improve

the detection and segmentation accuracy of lung nodules. In addition, GAN-based data augmentation for

image-style transfer has been used to synthesize training data for robust lung nodule segmentation.12,13 In

the aforementioned studies, a DC>80% was obtained with using augmented datasets from the Lung Image
iScience 26, 107005, July 21, 2023 ª 2023 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:xuhn@sj-hospital.org
mailto:dengkexue-anhui@163.com
mailto:song.jd0910@gmail.com
https://doi.org/10.1016/j.isci.2023.107005
https://doi.org/10.1016/j.isci.2023.107005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.107005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Pneumonia lesion segmentation on the training, validation, and test datasets

DC Training Validation Test p value

M_100 77.63% 75.01% 74.93% Ref.

M_70 76.96% 73.77% 72.19% 0.509

M_40 72.01% 71.33% 70.92% 0.220

M_10 63.20% 59.39% 58.55% <0.01

M_100, M_70, M_40, M_10 represent the model trained on 100%, 70%, 40% and 10% training images.
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Database Consortium image collection (LIDC-IDRI). By integrating multi-omics data, an end-to-end multi-

conditional GAN was proposed for the multi-scale fusion of image and gene sequencing data to ensure

the authenticity and quality of the synthesized lung nodule images.14 Furthermore, although admission symp-

toms of tuberculosis are similar to those of pneumonia, it has been reported to be responsible for more than a

million deaths per year based on theWorld Health OrganizationGlobal Tuberculosis Report. Themorpholog-

ical and intensity changes of tuberculosis in CT images are as diverse as those of lung nodules and pneu-

monia.15 One of the previous studies applied nine different deep CNNs to tuberculosis detection on X-ray

images.16 In addition, an intensity affinity metric with clustering was proposed to select optimal thresholding

for segmenting spatially diffuse and multi-focal radiotracer uptake of tuberculosis on PET images, with both

sensitivity and specificity higher than 90%.17 Based on U-net architecture, chest X-ray (CXR) modality-specific

U-Nets was proposed for semantic segmentation of tuberculosis ROIs, and a DC of 75.5% was obtained using

the proposed VGG16-CXR-U-Net architecture.18 Recently, a GAN-based disentangle learning framework was

proposed for effective tuberculosis area detection,19 which obtained an intersection-over-union of 60.3% on

CXR images.

Despite the performance of GAN in lung lesion segmentation tasks, the development of a general GAN-

derived segmentation approach for the automatic segmentation of pneumonia, pulmonary nodules, and

tuberculosis in CT images has three drawbacks.

First, various manually annotated training samples of lung lesions are required to achieve precise segmenta-

tion. Because there is no universal solution for the segmentation of diverse types of lung lesions, such as pneu-

monia, lung nodules, and tuberculosis, a large dataset of manually labeled images of specific lesion types is

required in each segmentation study to guarantee data diversity. However, manual segmentation of ROIs in

medical images is hampered by limitations such as time and labor resources, as well as inter-observer bias. For

example, it takes approximately 30 s on average for an experienced radiologist to delineate the boundary of a

solitary lung nodule with a diameter of 10 mm on one CT slice; this delineation procedure takes even longer

for adhesion-type lung nodules or pneumonia cases with multiple diffuse lesions. In addition, most mature

neural networks used for image analysis are trained on hundreds of thousands of images, such as ImageNet.20

However, unlike natural images, manually annotated medical images are often difficult to obtain because of

limited patient sources and privacy regulations in medical institutions. Although lung nodule images with

manual delineations by radiologists from 1,018 patients were published in the LIDC-IDRI dataset21 and CT

images of COVID-19 cases with radiologists’ annotations are available,22,23 they are insufficient for current

CNN networks with millions of parameters, particularly for the latest GANs.

Second, the information emphasized by the feature map layers obtained through step-by-step neural

network convolution varies significantly. Specifically, the features of global context-aware semantics, which

are relevant to precisely locating salient regions in images, are distributed in deeper layers. Conversely,

shallow layer features are rich in spatial and local texture information, which is more appropriate for rep-

resenting the details of the target regions.24 Studies have demonstrated that the accuracy of saliency

detection and segmentation benefits from the adaptive integration of local features in feature maps

with corresponding global dependencies.25,26 However, the process of encoding and decoding feature

maps is always consecutively implemented without distinction in current GAN-based segmentation algo-

rithms.27,28 Therefore, a module that reorganizes and recognizes features related to the texture, shape, and

location invariance of diverse lung lesions would be helpful for automatic segmentation.29

Finally, the alternating stochastic gradient descent training scheme in the GAN causes the discriminator

network to depend on the generator network output.30,31 Specifically, the discriminator is a classifier for
2 iScience 26, 107005, July 21, 2023



Table 2. DC of COVID-19 and non-COVID-19 pneumonia lesions on the test dataset

DC COVID-19 non-COVID-19 p value

M_100 77.36% 72.68% 0.410

M_70 73.55% 70.03% 0.353

M_40 71.30% 67.11% 0.341

M_10 60.80% 57.17% 0.208
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which the distribution of one class (i.e., fake samples) shifts as the generator changes during GAN training.

In this case, the discriminator disregards the information learned from the previous mimic images pro-

duced by the generator, particularly in nonstationary training environments.32 Training may become unsta-

ble or cyclic if the discriminator cannot recall previous classification boundaries or segmentations. This af-

fects the learning of the target characteristics and eventually reduces the quality of the mimicked image.
Related works

The emerging development of attention networks has shown the potential to simultaneously decode both

spatial and textural information in images, whereas the latest self-supervised loss in GAN has been proven

to reduce the instability of the discriminator learning of GANs. In the field of computer vision, the attention

mechanism focuses on discriminating image features and has proven to be an effective solution for object-

tracking tasks.33–35 Recently, attention networks have been applied to image analysis, such as image clas-

sification,36 object detection,37 and semantic segmentation.25 Among these, channel and spatial attention

modules are the two widely usedmodules in attention networks. The channel attentionmodule emphasizes

‘‘what’’ informative part of an image should be the focus and the spatial attention module is responsible for

‘‘where’’ the informative part is located.

First, the channel attention module is necessary because the feature map contributions from each chan-

nel do not equally represent the object, with some channels representing the visual pattern of the target

better than others, and vice-versa. Each channel map of high-level features can be regarded as a partic-

ular visual pattern, and different semantic patterns are associated with each other.38 Therefore, the aim of

the channel attention network in semantic segmentation is to optimize the channel-wise weights around

the object to be segmented.39 By exploiting the interdependencies between channel maps, interdepen-

dent feature maps can be emphasized to improve the feature representation of semantics related to the

target regions.

The spatial attention module encodes a wider range of contextual information into local features, thereby

enhancing their representation capabilities. It highlights the location of informative features of the target in

an image so that the target location can be determined. Thus, it complements the channel attention.40

Pooling is a type of spatial attention that selects the most probable attention region or the attention-

weighted average of spatial features.41,42 In addition to the basic forms of attention, variations in spatial

attention, such as the stacked spatial attention network,43 in which the later attention layer is based on

an attention-based feature map modulated by the earlier one, have been proposed to help locate desired

target regions. Recently, a dual-attention network that simultaneously applies spatial and channel atten-

tion networks to perform the same task has been proposed.38,44

However, because the generator network in GAN is constantly updated during training, the input of the

discriminator network is changed accordingly. In this dynamic training situation, discriminator forgetting

arises because the discriminator network is required to continuously extract new features to distinguish

the updated fake sample input. Discriminator forgetting contributes to GAN instability.32 To address

this problem, a conditional GAN, which allows both the generator and discriminator to access the labeled

data, and an augmented discriminator with supervised learning are feasible approaches for avoiding cata-

strophic forgetting.45,46 Recently, an approach that integrates an auxiliary self-supervised loss in the

discriminator to stimulate the generator was proposed, and discriminator collaboration in representation

learning while competing for image generation was shown to be effective for natural image synthesis.31

Self-supervised loss is implemented by training the network on a pretext task, such as predicting a

rotated angle or the relative location of an image patch, and then extracting the representations from
iScience 26, 107005, July 21, 2023 3



Figure 1. Segmentation of bilateral COVID-19 lesion

(A) Original images.

(B) Proposed model; and (C) Radiologists.
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the resulting network. Studies on natural images have demonstrated that with the help of self-supervised

loss, GAN retains generalizable representations in a nonstationary environment, which prevents the

forgetting of classes in discriminator representations during training iterations.47,48 However, studies us-

ing self-supervised rotation loss to enhance discriminator training in the field of medical image segmen-

tation are rare.

In summary, developing a new architecture for automatic lung lesion segmentation in CT images to

address the above-mentioned GAN challenges in this task is promising with the emerging attention

network and auxiliary self-supervised loss. Therefore, we first proposed a self-supervised adversarial

learning approach herein using an emerging dual-feature pyramid attention network module and auxiliary

rotation loss for end-to-end lung lesion segmentation. Compared with previous studies, the main advan-

tages of this study are that it has the potential to overcome the three main limitations of GAN in automatic

lung lesion segmentation.

1) Reducing the workload of radiologists of manually annotating lung lesions on CT images for network

training.

2) Decoding the semantic dependencies of lung lesion characteristics in both the spatial and channel

dimensions in the shallow and deep convolution layers to enhance training efficiency.

3) Mitigating discriminator forgetting in GAN and preserving generalizable representations of lung

lesion characteristics during nonstationary training.

The remainder of the paper is structured as follows. ‘‘results’’ section outlines the experiments performed

to develop themodel and comparison of themodel is made with state-of-the-art methods. Followed by the

‘‘discussion’’, ‘‘conclusions’’, and ‘‘limitations of the study’’ of the paper. Finally, ‘‘STAR Methods’’ section

describes the network architectures in detail.
4 iScience 26, 107005, July 21, 2023



Table 3. Lung nodule segmentation on the training, validation, and test datasets

DC Training Validation Test p value

M_100 82.39% 77.66% 76.30% Ref.

M_70 80.55% 76.62% 76.23% 0.685

M_40 77.91% 75.63% 74.10% 0.566

M_10 76.10% 73.90% 73.55% 0.209
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RESULTS

Table 1 presents the results of the pneumonia lesion segmentation. DCs of 77.63, 75.01, and 74.93% were

obtained using all images (M_100) on the training, validation, and test datasets, respectively. Similarly,

M_40 (training dataset reduced to 40%) obtained DCs of 72.01, 71.33, and 70.92%, andM_10 (training data-

set reduced to 10%) obtained DCs of 63.20, 59.39, and 58.55%, respectively. A significant difference was

found only when the training data were reduced to 10%, including 1,166 training images (p < 0.01). This

finding indicates that when the training dataset of pneumonia images is reduced to several thousand im-

ages, the segmentation results of the GSALmodel are similar to those obtained using tens of thousands of

images, which significantly reduces the effort required by radiologists in manual delineation in future public

health emergencies, such as pneumonia.

Table 2 lists the segmentation results of the COVID-19 and non-COVID-19 pneumonia lesions. The results

showed that COVID-19 pneumonia segmentation was better than non-COVID-19 pneumonia lesion seg-

mentation; however, no significant difference was found (p > 0.2) (see Table 2). The results demonstrate

that the proposed GSAL model enables the segmentation of different types of pneumonia lesions,

including COVID-19 pneumonia and other community-acquired pneumonia. This indicates the potential

applicability of the GSAL model as a generic automatic segmentation algorithm for diverse lung lesions.

Figure 1 shows the segmentation example of a COVID-19 lesion with the CT manifestation of bilateral,

mixed ground-glass opacity (GGO) and consolidation, and Figures S1–S3 show those of other pneumonia

subtypes: https://github.com/JD910/general_net_for_lesion_seg#supp_materials.

Table 3 lists the results of the lung nodule segmentation. DCs of 82.39, 77.66, and 76.30% were obtained

using M_100 for the training, validation, and test datasets, respectively. DCs of 76.10, 73.90, and 73.55%

were obtained for M_10. No significant difference was found between the results for M_100 and M_10

(p = 0.209). The results show that for lung nodule segmentation, the proposed GSAL obtained an average

DC of 75%, which is similar to the segmentation results reported in previous studies.

Table 4 lists the segmentation accuracy for each subtype of lung nodules on the test dataset. The

solid, juxta-vascular, juxta-pleural, and GGO subtypes were manually identified by clinical experts. The

results revealed that the segmentation accuracy for solid nodules and GGOs was better than that for ad-

hesive-type lung nodules; however, the difference was not statistically significant (p > 0.05). Figure 2 illus-

trates the segmentation of a solid nodule, and Figures S4 and S5 present other nodule subtypes: https://

github.com/JD910/general_net_for_lesion_seg#supp_materials.

For tuberculosis segmentation, the proposed model obtained DCs of 78.33, 70.90, and 73.30% on the

training, validation, and test datasets, respectively, using M_100 (see Table 5). No significant reduction

in segmentation accuracy was found when using M_10, which included 330 images (p = 0.089), and DCs

of 72.02, 65.37, and 68.52% were obtained for the three datasets. Figure 3 illustrates two examples of

nodular tuberculosis segmentation. The results indicate that GSAL is a potentially effective approach to

tuberculosis segmentation, although only hundreds of images were used for training. We speculate that

the potential reason may be that tuberculosis lesions in this study tend to be more similar to the features

of pulmonary nodules on CT images (see Figure 3).

A comparison of GSAL with the recently proposed general segmentation architecture nnU-net indicated

that for lung nodule segmentation, nnU-net obtained significantly better DC than the proposed approach

(p < 0.05). However, for pneumonia, with relatively fewer training samples, the proposed model obtained a

significantly higher DC for the test dataset (p < 0.05). No significant difference was found between the two

methods for tuberculosis segmentation (p > 0.05). The average time consumption from inputting an image
iScience 26, 107005, July 21, 2023 5
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Table 4. DC of lung nodule subtypes of solid, juxta-vascular, juxta-pleural, and GGO on the test dataset.

DC Juxta-pleural Juxta-vascular Solid GGO

M_100 75.33% 75.20% 76.50% 77.33%

M_70 75.51% 74.10% 76.30% 77.03%

M_40 73.30% 72.58% 74.36% 74.22%

M_10 71.50% 71.79% 72.90% 73.94%

No statistically significant difference was found between the DCs (p > 0.05).
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to outputting the generated image was 9.1 s for nnU-net and 0.2 s for GSAL in the test procedure. With

Model_100, the time to train one epoch of the lung nodule dataset ofGSAL was 30.2 min. Table 6 presents

the detailed results of the segmentation accuracy.

Furthermore, a comparison ofGSAL with the universal U-net was conducted (see Table 7). The results indi-

cate that the proposed approach is superior to U-net (p < 0.05) in pneumonia segmentation on CT images,

which is consistent with the results on nnU-net. For pulmonary nodules and tuberculosis, the proposed

approach obtained a higher segmentation accuracy than U-net on the test dataset; however, no statistically

significant difference was observed (p > 0.05). The results of the above comparison demonstrate that for

pneumonia segmentation, the proposed approach is superior to U-net-derived approaches. For the other

two types of lung lesions, GSAL is comparable to U-net-derived approaches. Although U-net has been

proved to be an architecture for automatic segmentation, our experiments have demonstrated that the

proposed GSAL is more appropriate for inflammatory lung lesion segmentation in CT images.

To demonstrate the improvement in the training efficiency obtained by the proposed model, an architec-

ture without self-supervised rotation loss in the discriminator network was trained for comparison. Figure 4

presents the loss curves of the discriminator models in the two architectures at different training epochs

(based on lung nodule images). The results show that the model with self-supervised loss converged faster

(p < 0.05 on DC for epochs <60, t-test). In the ablation study without cascaded cascaded context-aware

pyramid feature extraction (CPFE), the DCs were 61.55, 54.89, and 47.23% for pneumonia, pulmonary nod-

ules, and tuberculosis, respectively, on the test dataset based onM_10, which were significantly lower than

those of the proposedGSALmodel (p = 0.027). In addition, when the attention modules were removed, the

DCs of M_10 on the test dataset decreased by 8.55, 6.98, and 11.29% for pneumonia, pulmonary nodules,

and tuberculosis on the test dataset, respectively, which were significantly lower than those of the pro-

posed GSAL model (p = 0.003). These findings confirm our hypothesis regarding the integration of an

emerging attention network and self-supervised loss into a general lung lesion segmentation approach.

To verify the lung lesion detection precision of GSAL, the TP, FP, FN, P, R, and F1-score metrics of lung

nodule and pneumonia segmentation on the test dataset were analyzed by two radiologists with more

than five years of experience. The average accuracy obtained by the radiologists was reported to avoid po-

tential inter-observer bias. The results in Table 8 and Table S1 show that when using the training dataset of

thousands of images, the proposedGSAL achieved an F1-score of approximately 70% for both lung nodule

and pneumonia lesion detection. However, when the training dataset of pneumonia was reduced toM_10,

an F1-score of approximately 63% was obtained, which was significantly lower than that ofM_40 (p < 0.05).
DISCUSSION

In this study, we propose a general self-supervised adversarial learning architecture for end-to-end seg-

mentation of pneumonia, lung nodules, and tuberculosis lesions and validate it on multicenter datasets.

We demonstrated that the proposed model did not require massive numbers of manually labeled

training samples, and no significant decrease in segmentation accuracy was observed when a large

amount of training data was discarded, which would reduce the workload required for manual annotation

in this field of study. Using the proposed cascaded CPFE and dual attention modules, diverse types

and scales of lung lesions could be identified. High-level semantic interdependence and low-level

textural features complemented lung lesion segmentation. Finally, the self-supervised rotation loss

countered discriminator forgetting in the GAN, significantly improving the lung lesion segmentation

efficiency (p < 0.05).
6 iScience 26, 107005, July 21, 2023



Figure 2. Solid nodule segmentation

(A) Original images; segmentation obtained by (B) Proposed model; and (C) Radiologists. One nodule on the right lung was not delineated by the

radiologists (marked by green arrow), whereas the proposed GSAL model detected both nodules in the images.
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Studies on pneumonia and pulmonary nodule segmentation in CT images have contributed substantially

to the automatic segmentation of lung lesions.28,49–55 However, previous studies have been conducted

on specific lesion types, and general neural networks for segmenting these distinct lung diseases are

rare. The lack of large, manually labeled training samples has hindered the development of accurate

lung lesion segmentation methods. Furthermore, neural networks designed for the segmentation of spe-

cific lung lesion types, such as solid nodules, are unlikely to be directly suitable for the segmentation of

other lung diseases, such as diffuse pneumonia, owing to their variations in structure, morphology, and

intensity in CT images. Although transfer learning can achieve this goal to some extent,56 a general seg-

mentation network for different types of lung lesions will significantly reduce network design and manual

labeling. This study demonstrated that the morphology and CT intensity of solid, GGO, adhesive-type

lung nodules, and unilateral/bilateral GGO and multifocal consolidation of pneumonia, and tuberculosis

characteristics could be identified using the proposed self-supervised adversarial learning architecture.

Although opaque lesions of lung nodules (i.e., GGO) and pneumonia have similar intensity values on

CT images, their varied morphologies and dimensions increase the difficulty of segmentation. The

competitive detection accuracy (average F1-score: 77.1% and 70.3% in Table 8) of the GSAL demon-

strates the superiority of the proposed architecture in detecting diverse lung opacities. Moreover, the

proposed approach obtained the best segmentation accuracy for lung nodules, followed by tubercu-

losis; however, the DC decreased for pneumonia lesions using M_10 (73.55, 68.52, and 58.55%,
Table 5. Tuberculosis segmentation on the training, validation, and test datasets

DC Training Validation Test p value

M_100 78.33% 70.90% 73.30% Ref.

M_70 80.55% 76.62% 76.23% 0.583

M_40 77.91% 75.63% 74.10% 0.300

M_10 72.02% 65.37% 68.52% 0.139

iScience 26, 107005, July 21, 2023 7



Figure 3. Tuberculosis segmentation

(A) Original images; segmentation obtained by (B) Proposed model; and (C) Radiologists. In 1-3, radiologists did not identify the lesion indicated by the

arrow, and (4)-(5) indicates another patient with one nodular tuberculosis on the right lung.
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respectively). This is because pneumonia is accompanied by a greater degree of diffusion than tubercu-

losis and pulmonary nodules in this study, which primarily consist of solid lesions, account for most of the

training data. Therefore, the model performs better segmentation for solid lesions such as pulmonary

nodules or nodular tuberculosis than pneumonia lesions.

In previous studies, the training sample size used to train neural networks on natural images reached a

million samples, such as the large-scale visual recognition challenge subset of ImageNet.57 However, for

studies on lung lesion segmentation, the available annotated training samples consisted of approximately

one thousand; these can be retrieved from the LIDC-IDRI dataset or other pneumonia datasets.58,59 Owing

to the limitations of the natural properties of medical data and the cost of manual labeling, it is impossible

to accumulate as many training samples as it is for natural images, which means that current studies on

medical image segmentation are limited by insufficient training samples. Therefore, the question of how

to counter the reliance of neural networks on a large number of training samples has attracted considerable

attention in medical image segmentation, particularly for lung lesions. This study proposes an effective way

to reduce the training data to 3,000 images while achieving a segmentation DC of 70% on the test dataset
Table 6. Comparison of lung lesion segmentation between the proposed approach and the nnU-net on the test

dataset

DC

Lung nodule Pneumonia Tuberculosis

Proposed nnU-net Proposed nnU-net Proposed nnU-net

M_100 76.30% 85.30% 74.93% 70.20% 73.30% 74.69%

M_70 76.23% 82.60% 72.19% 68.39% 76.23% 74.33%

M_40 74.10% 80.90% 70.92% 63.58% 74.10% 71.08%

M_10 73.55% 78.02% 58.55% 50.41% 68.52% 64.97%

8 iScience 26, 107005, July 21, 2023



Table 7. Comparison of lung lesion segmentation between the proposed approach and traditional U-net on the test

dataset

DC

Lung nodule Pneumonia Tuberculosis

Proposed U-net Proposed U-net Proposed U-net

M_100 76.30% 72.66% 74.93% 65.30% 73.30% 71.11%

M_70 76.23% 75.30% 72.19% 55.63% 76.23% 75.96%

M_40 74.10% 71.03% 71.92% 51.39% 74.10% 73.28%

M_10 73.55% 68.33% 58.55% 51.96% 68.52% 70.36%
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for pneumonia, lung nodule, and tuberculosis lesions, whereas previous studies required tens of thousands

of training data. Specifically, the integrated workflow using a U-Net-like structure and dual attention mod-

ule to design a self-supervised adversarial learning architecture provides a novel generator network for

GAN with significantly less dependence on the size of the training dataset. Although U-Net and attention

networks have been previously used for image segmentation,60 and nnU-net achieved comparable accu-

racy in the present study, the advantage of our approach is the real-time and end-to-end exploitation of

multi-receptive-field semantic interdependencies in both spatial and channel dimensions that adapt to

the diversity of lung lesions. Each channel of a high-level feature map can be regarded as a class-specific

response with different associated semantic responses.61,62 Exploiting the interdependencies between

channels emphasizes interdependent feature maps; thus, feature representation is more relevant to the

specific semantics of lung lesions. Moreover, using the spatial attention module to evaluate pixel-wise cor-

relation on spatial feature maps, specific details, such as the boundary and texture of lung lesions, are

emphasized. Hu et, al.63 combining convolutional filters should lead to an informative architecture by

fusing spatial and channel-wise information within the appropriate receptive fields. Here, parallel spatial

and channel-wise attention modules indicated that the high-level and low-level feature representations

complement each other and could be integrated to generate mimic lung lesion segmentation images.

Another advantage of this study is that we reduced the discriminator forgetting that occurs in GAN training

by introducing a self-supervised rotation loss for lung lesion segmentation. Although rotation loss values

for salient region detection and segmentation in natural images have been reported,31,64 related studies

on medical images are limited. Motivated by the challenge of discriminator forgetting in GAN training,

we added a mechanism to the discriminator that allows uninterrupted representation learning, thus

rendering it independent of the generator status. Our results indicate that when coupled with the self-

supervised rotation loss, the network learning of lung lesion representations is transferred across the

generator and discriminator tasks; thus, the training efficiency is significantly improved compared with

that of the traditional GAN (p < 0.05).
Figure 4. Loss curve of discriminator network training with and without the self-supervised rotation loss
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Table 8. Segmentation of lesion detection by the radiologists (R1 and R2) on lung nodule and pneumonia images on the test dataset

Lung nodule (M_10) Pneumonia (M_40)

TP FP FN P R f1 TP FP FN P R f1

R1 602 512 28 54.9% 95.5% 69.7% 1269 730 139 63.5% 90.7% 74.7%

R2 618 498 12 55.5% 98.1% 70.9% 1320 649 79 67.0% 96.5% 79.1%

Avg 610 505 20 55.2% 96.8% 70.3% 1309.5 689.5 109 65.5% 93.6% 77.1%
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Conclusions

Weproved that the proposedGSAL architecture is promising as a general approach for automatic lung lesion

segmentation of pulmonary nodules, pneumonia, and tuberculosis. Large numbers of annotated samples are

unnecessary for GSAL training, thereby reducing the workload of radiologists in manual lesion delineation.

The integration of cascaded context-aware pyramid feature extraction and a dual attention module enables

the decoding of the semantic dependencies of lung lesion characteristics in both spatial and channel dimen-

sions, which enhances training efficiency. Our study paves the way for a GAN-derived architecture for multiple

lung lesion segmentation while mitigating discriminator forgetting using self-supervised rotation loss.

Limitations of the study

Our study was limited by the class imbalance in the sample of pulmonary nodules and pneumonia. For

example,M_10 for lung nodules andM_40 for pneumonic lesions yielded similar results. Hence, further ex-

periments should be performed to determine the most suitable amount of training data for each lung

lesion type. Owing to the introduction of the rotated image into the discriminator, the computational

cost of our model in space and time is higher than that of the traditional GAN. In the future, we will explore

more cost-effective solutions to prevent discriminators from forgetting and optimizing representation

learning. In addition, the model was developed on 2D CT images for lung lesion segmentation because

self-supervised rotation loss was proposed for 2D natural images.31 Future studies should focus on devel-

oping 3D segmentation models based on these modules. Finally, U-net and nnU-net were used for com-

parison because they were proposed as baseline segmentationmodel, whereas other recent segmentation

models for specific human organs65,66 were not used because this study aimed to propose a general seg-

mentation model for multiple lung lesions.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Lung nodule CT images The Cancer Imaging Archive https://wiki.cancerimagingarchive.net/pages/viewpage.

action?pageId=1966254

Pneumonia CT images zenodo https://github.com/JunMa11/COVID-19-CT-Seg-Benchmark

Code for lung lesion segmentation This paper https://github.com/JD910/general_net_for_lesion_seg

Software and algorithms

Pytorch PyTorch Foundation https://pytorch.org/

Python Python Software Foundation https://www.python.org
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Jiangdian Song (song.jd0910@gmail.com).
Materials availability

This study did not generate new unique reagents.

Data and code availability

CT images have been deposited at The Cancer Imaging Archive and zenodo, and are publicly available as

of the date of publication. DOIs are listed in the key resources table.

All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs

are listed in the key resources table.

Additional information required to reanalyze the data reported in this paper is available from the lead con-

tact upon request.

The source code of this study is published at: https://github.com/JD910/general_net_for_lesion_seg.
EXPERIMENTAL MODEL AND PARTICIPANTS DETAILS

This study used 110 COVID-19 positive cases and 103 COVID-19 negative cases, and 20 COVID-19 positive

cases from the open-access datasets. For lung nodule, 1018 patients with lung nodule from the LIDC-IDRI

dataset were used. In addition, 1652 patients with lung nodules and 220 patients with tuberculosis images

were enrolled in this study (1012 males, median age: 40 years). Appropriate Institutional Review Board

approval was obtained, and the need for informed consent was waived in this retrospective study. Because

studies in the field of lung lesion segmentation do not specifically calculate the required sample size, and

the number of subjects included in this study is more than previous studies, therefore, no additional sample

size calculation was performed. In addition, this study divided the dataset according to the consensus of

deep learning with an 80:10:10 ratio to construct a training, validation, and test dataset (the influence of

sex was not specifically considered according to previous studies in this field), respectively.
METHOD DETAILS

Figure S6 shows the proposed self-supervised adversarial learning (GSAL) architecture. A generator

network G, which is composed of a U-Net-like structure that includes a cascaded context-aware pyramid

feature extraction (CPFE) with a dual attention module, was constructed to first produce a lung lesion im-

age GðxÞ from the original CT image. A discriminator network comprising a series of convolution blocks

with self-supervised auxiliary rotation loss, was subsequently employed to distinguish the generated image

GðxÞ from the ground truth image RðxÞ.
14 iScience 26, 107005, July 21, 2023

mailto:song.jd0910@gmail.com
https://github.com/JD910/general_net_for_lesion_seg
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966254
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966254
https://github.com/JunMa11/COVID-19-CT-Seg-Benchmark
https://github.com/JD910/general_net_for_lesion_seg
https://pytorch.org/
https://www.python.org


ll
OPEN ACCESS

iScience
Article
Generator network G

The generator network G proposed here comprises a U-Net-like structure that includes a cascaded CPFE

for multi-receptive-field feature extraction and a dual attention module consisting of a spatial attention

module and channel-wise attention module to enhance lung lesion representation.

U-Net-like structure

The U-Net-like structure is a feasible GAN generator for image segmentation.27,30 From the contracting

path of U-Net, we obtained feature maps for the layers with 64, 128, 256, and 512 filters (called G_64,

G_128, G_256, and G_512, respectively), and the corresponding expansive path with deconvolution was

used to output the nodule image. Subsequently, the feature maps of the U-Net-like structure were input

into the cascaded CPFE and attention modules to consider the lung lesion semantic interdependencies

in the spatial and channel dimensions.

Cascaded CPFE

A dual attention module was used inGSAL to enhance the high-level contextual features in the deep layers

and low-level spatial textural features in the shallow layers. Specifically, a spatial attentionmodule was used

to enhance the texture details of lung lesions in a CT image, and a channel-wise attention module was

applied to enhance the semantic context of a lung lesion. In addition, because stepwise feature maps

only obtain the approximate regions of lesions, a CPFE network24 was first used to obtain multiscale,

multi-receptive-field features to represent lesions of various sizes. The cascaded structure sends the output

of the CPFE module to the dual attention module such that the most appropriate scale and receptive field

for lung lesion detection are recognized.

Figure S7 shows that the CPFE module comprises parallel dilated atrous convolutional layers at different

dilation rates. It was employed on each of the three semantic feature map outputs using a U-Net-like struc-

ture to capture the contextual information of multiple receptive fields. There are distinct variations in the

scale, shape, and location of lung lesions in CT images; hence, parallel dilated atrous convolution is suit-

able for recognizing lung lesions such that contextual information at different scales can be captured. The

dilation rates were set to one, two, and three to extract scale- and shape-invariant features.67 For each

feature map, the outputs of the parallel dilated atrous convolution layers were combined via cross-channel

concatenation (see Figure S7).

The dual-attention module enabled us to adaptively integrate similar features at any scale from a global

perspective, thereby improving the detection and segmentation of lung lesions. The steps of the dual

attention module are as follows. First, a spatial/channel-wise attention matrix is generated to model

the correlation between any two channels or pixels of a feature map. Second, the attention matrix and

transformation of the original feature map are combined using matrix multiplication. Third, the results of

the multiplication and the original feature map are summed element-wise to obtain the final feature

representations.

Spatial attention module

The spatial attention module encodes a wider range of contextual information into local features, thus

enhancing their ability to represent the ROIs details. By evaluating the spatial correlation between any

two pixels on the feature map, the spatial attention module focuses on the discrimination of structural

and textural details in the ROI from those of the background, which helps discriminate features for lung

lesion extraction.

Figure S8 shows that the low-level feature map derived from the CPFE module, LF ˛RC3H3W , is first re-

shaped to S˛RC3N, where N = H3 W . The transpose of S and S are then multiplied to obtain the corre-

lation between any two pixels in the feature map. The result is passed through a softmax layer to calculate

spatial attention feature map SA˛RN3N.

SAji ˛
exp

�
ST
i $Sj

�
PN

i = 1 exp
�
ST
i $Sj

� (Equation 1)

where ST is the transpose of S and SAji denotes the impact of the pixel at the ith position on pixel at the jth

position. A closer representation of these two positions contributes to a stronger correlation.
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Next, matrix S˛RC3N is multiplied by the transpose of SA; the result is then reshaped to RC3H3W . Finally,

we multiply it by a trainable scale parameter a and subsequently sum it element-wise with the original LF to

obtain the final output: SAM˛RC3H3W .

SAM = a 3 reshape
�
S$SAT

�
+ LF (Equation 2)

where SAT denotes the transpose of SA, and reshape outputs the featuremapwith dimensions RC3H3W . a is

a trainable weight.

Channel-wise attention module

The channel-wise attention module aims to exploit the interdependencies between high-level channel

maps and improve the feature representation of specific semantics. First, the high-level feature maps

output from the CPFE module, HF ˛RC03H03W 0
, are reshaped to C˛RC03N0

, where N0 = H0 3 W 0. Then,
C and the transpose ofC aremultiplied and passed through a softmax layer to output the channel attention

feature map CA.

CAji ˛
exp

�
Ci$C

T
j

�
PC

i = 1 exp
�
Ci$C

T
j

� (Equation 3)

where CA˛RC03C0
, CT is the transpose of C, and CAji denotes the impact of the ith channel on the jth

channel.

Next, the transposes of CA and C are multiplied; the result is reshaped to RC03H03W 0
. The final output of the

network is obtained by multiplying the result of CAT$C by a trainable scale parameter b and then

computing the element-wise sum with input HF.

CAM = b 3 reshape
�
CAT$C

�
+HF (Equation 4)

where CAM is the output of the channel-wise attention module, and CAT denotes the transpose of the

channel attention feature map. b is a trainable weight.

Using the above spatial and channel-wise attention modules, the inter-channel and inter-pixel correlations

of the feature maps were detected, and the contextual semantic and local texture of lesions were

enhanced, respectively, thus improving the discriminability of the semantics of lung lesion features.

Discriminator network D

Previous studies have indicated that an auxiliary self-supervised rotation loss in the discriminator of a GAN

retains generalizable representations in a nonstationary environment, and this prevents the catastrophic

forgetting of classes in discriminator representations during training iterations.47,48 In the proposed

GSAL, an auxiliary rotation loss is introduced into discriminator network D to eliminate discriminator

forgetting during model training. The generated imagesGðxÞ and ground truth image RðxÞ are first rotated

by r ˛R ðR = f0�;90�;180�;270�gÞ. The angles of rotation are then decoded as artificial labels to calculate

the rotation loss of the corresponding input images. The details are as follows.

Using images obtained by rotating both GðxÞ and RðxÞ at four angles R, the rotated images are concate-

nated channel-wise and input into a series of convolution blocks (see Figure S9). Here, a batch size of eight

and two graphics processing units were used. Thus, for each graphic processing unit, there were 16 images

derived from GðxÞ and 16 corresponding images derived from RðxÞ that were input into the discriminator

network. We define the input image as InputðÞ.
(
InputðGðxÞÞ = Concat

�
Rot =

�
GðxÞ0� ;GðxÞ90� ;GðxÞ180� ;GðxÞ270�

��
InputðRðxÞÞ = Concat

�
Rot =

�
RðxÞ0� ;RðxÞ90� ;RðxÞ180� ;RðxÞ270�

�� (Equation 5)

Figure S9 shows the proposed discriminator network comprises four successive convolution blocks called

Conv_D1, Conv_D2, Conv_D3, and Conv_D4. Two fully connected networks are then used, one to output

the discriminator loss of the image and the other to output the corresponding rotation loss.��
G pro loss;G rot pros

�
= Conv Dr�R ½ConcatðRot = r jGðxÞrÞ��

R pro loss;R rot pros
�
= Conv Dr�R ½ConcatðRot = r jRðxÞr Þ� (Equation 6)
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where pro loss denotes the discriminator loss with a shape of [4, 1] for each input image and rot pros rep-

resents the rotation probabilities of each input image with a shape of [4, 4]. In addition, r � R is the rotation

angle r selected from a set of possible rotations R ˛ f0�;90�;180�;270�g. Image x rotated by r degrees is

denoted as ðxÞr . Furthermore, Conv DðRotjðxÞrÞ denotes the predicted distribution of the discriminator

over the angles of rotation of the sample.

One-hot encoding is used to produce the artificial labels of the rotation angles, named rot labels (see Fig-

ure S6), to evaluate the distance between the discriminator output and the rotation label. As Equation 7

describes, the one-hot encoded rot labels form a [4, 4] matrix per input image, which the shape is the

same as the rot pros mentioned above. Cross entropy is used to calculate the distance between the

rot labels and rot pros.�
G Rot loss = sum

�
binary cross

�
G rot pros; rot labels

��
R Rot loss = sum

�
binary cross

�
R rot pros; rot labels

�� (Equation 7)

where G Rot loss and R Rot loss denote the rotation loss of the generated image GðxÞ and ground truth

image RðxÞ through the discriminator network, respectively. Moreover, binary cross is the loss obtained by

the function of binary cross entropy with logits. The sum of the loss of images in one batch is used in the

proposed method.

For the backpropagation, the following loss, employed by the Wasserstein GAN with a gradient penalty,

was used:

GAN loss = G pro loss � R pro loss+GP½GðxÞ;RðxÞ� (Equation 8)

whereGP represents the gradient penalty in the Wasserstein GAN with a gradient penalty. The final loss of

the proposed discriminator network is the weighted sum of the above loss and the rotation loss of RðxÞ,
expressed as follows:

Dloss = GAN loss+g$R Rot loss (Equation 9)

where g denotes the weight of rotation loss of ground truth image RðxÞ. For the loss of the proposed gener-

ator network, we used the summed loss of the GðxÞ image obtained by the discriminator network and the

weighted rotation loss of GðxÞ, as follows.

Gloss = G pro loss+ d$G Rot loss (Equation 10)

where d is the weight of the rotation loss of generated image GðxÞ.
Experiment

To evaluate the proposed GSALmodel for lung lesion segmentation, pneumonia, lung nodule, and tuber-

culosis images from multiple centers were used in this study.

For the pneumonia lesion segmentation, two open-access datasets, which included both COVID-19 pneu-

monia and other viral-infected community-acquired pneumonia with similar CT signs to COVID-19, with

manual delineation from radiologists were used. A total of 14,260 pneumonia images were collected

from Wang et al.’s study,68 including 110 COVID-19 positive cases and 103 COVID-19 negative cases. In

addition, 20 COVID-19 positive cases were collected from the COVID-19-CT-Seg-Benchmark,22 and

1,540 images with manual annotations were collected. Images were resampled to 256 3 256 pixels, and

only images with over 1,000 pneumonia pixels manually delineated by radiologists were included in our

study to prevent under-segmentation caused by training ROIs that were too small. All the included cases

were randomly divided at an 80:10:10 ratio to construct a training, validation, and test dataset, respectively.

To evaluate lung nodule segmentation performance, we used the LIDC-IDRI dataset and CT images

collected from three institutions participating in this study. All the images from the LIDC-IDRI database

were manually delineated by one to four radiologists. For the remaining datasets, all the nodules were

manually segmented and reviewed by at least two experts, and the ITK-Snap software was used to segment

the lung nodules slice-by-slice. Images were resampled to 256 3 256 pixels, and all lung nodules with a

maximum diameter greater than 3 mm after resampling were included in the study. Finally, 63,080 CT im-

ages that included at least one lung nodule were included. All the included lung nodules were randomly

divided into the training, validation, and test dataset with the same ratio.
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A total of 3361 tuberculosis CT images of 220 patients were collected from two participant units, and all

tuberculosis areas were manually delineated by the local radiologists with over five years of radiology

experience using ITK-SNAP. To ensure generality, this study included nodular tuberculosis, secondary pul-

monary tuberculosis, hematogenous pulmonary tuberculosis, and other pulmonary tuberculosis subtypes

with different signs in CT images. The training, validation, and test datasets were constructed with the same

ratio after resampling all the images to 256 3 256.

The radiologists’ segmentations intersection for each lung lesion is denoted as RðxÞ, which is used as the

gold standard for the segmentation in this study, and the predicted lung lesion image is denoted as GðxÞ.

To verify the superiority of the proposed model independent of training sample size, three experiments

with reduced sample sizes were also conducted. M_100, M_70, M_40, and M_10, are used to refer to ex-

periments in which 100, 70, 40, and 10% of the images were randomly selected to construct the training,

validation, and test dataset to build and evaluate the GSAL model, respectively. In addition, to demon-

strate the cascaded CPFE, the attention module, and the self-supervised rotation loss proposed for lung

lesion segmentation, an ablation study was conducted to remove the above modules for lung lesion seg-

mentation, and the comparison of segmentation results between the two was then performed.

The DC was used in this study to evaluate the automatic segmentation of the lung lesions accuracy. The DC

was calculated by comparing the overlapping area between the manual segmentation of the ROI of lung

lesions on the original CT images and the generated ROI of lung lesions on the mimic images.

DCR;G = ð2jRXGj = ðjRj + jGjÞÞ � 100% (Equation 11)

where DCR;G is the DC of the real ROI R and the generated ROI G, and R and G indicate the two clustered

nodule volumes (i.e., of the real and generated lung lesion images). The segmentation results obtained by

M_100, M_70, M_40, and M_10, were compared with the gold standard RðxÞ to calculate the DC. The sta-

tistics of the segmentation accuracy were acquired by comparing the generated lesions and the corre-

sponding manually delineated lesions on the CT images.

A state-of-the-art nnU-Net method, considered a promising general medical image segmentation archi-

tecture, was compared with the proposed model in lung lesion segmentation.69 Segmentation accuracy

and time consumption were calculated for comparison. In addition, the current segmentation networks

for medical images are mostly designed using U-net as a baseline framework.70 Therefore, as a represen-

tative of the widely used segmentation networks to date, U-net was also used for comparative analysis with

the proposed algorithm.

In addition, to demonstrate the lung lesion detection accuracy of the proposed GSAL, two in-house well-

trained radiologists reviewed all the images produced in the test dataset. True positive (TP), false positive

(FP), and false-negative (FN) were manually determined, and the precision (P), recall (R), and f1 measure-

ment, which is the harmonic mean of precision and recall, were used to evaluate the performance. These

metrics are calculated as follows. 8<
:

P = TP=ðTP + FPÞ
R = TP=ðTP + FNÞ

f1 = ð2$P$RÞ=ðP +RÞ
(Equation 12)

The PyTorch platform was used to implement the algorithms. All the training, validation, and tests were

performed on a computer with two 24 GB GeForce RTX3090. A pre-experiment was conducted using

1,000 randomly selected CT images to determine the best hyper-parameters for the experimental condi-

tions. A batch size of eight was used; the number of training iterations was set to 200; the Adam optimizer71

was used with an initial learning rate of 1e�4; the parameters for the Adam optimizer were set to b1 = 0.9

and b2 = 0.99; the size of the input CT image was set to 256 3 256. GSAL parameters were 15.17M for the

generator and 2.93M for the discriminator. Data augmentation including translating, rotating, and scaling

of the CT images was performed on the training datasets. The initialization of the trainable scale parame-

ters, a in the SAM and b in the CAM, was 1.0. For the rotation loss, the weight g =1.0 for the ground truth

image forDloss, and d= 0.5 for the generated image forGloss. The hyper-parameters of nnU-Net are defined

in Isensee et al.’s study.69
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