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The availability and utility of genome-scale metabolic
reconstructions have exploded since the first genome-scale
reconstruction was published a decade ago. Reconstruc-
tions have now been built for a wide variety of organisms,
and have been used toward five major ends: (1) contextua-
lization of high-throughput data, (2) guidance of metabolic
engineering, (3) directing hypothesis-driven discovery, (4)
interrogation of multi-species relationships, and (5) net-
work property discovery. In this review, we examine the
many uses and future directions of genome-scale metabolic
reconstructions, and we highlight trends and opportunities
in the field that will make the greatest impact on many
fields of biology.
Molecular Systems Biology 5: 320; published online 3
November 2009; doi:10.1038/msb.2009.77
Subject Categories: metabolic and regulatory networks; simula-

tion and data analysis

Keywords: computational biology; metabolic model; modeling;

network; systems biology

This is an open-access article distributed under the terms of the
Creative Commons Attribution Licence, which permits
distribution and reproduction in any medium, provided the
original author and source are credited. Creation of derivative
works ispermittedbut theresultingworkmaybedistributedonly
underthesameorsimilar licencetothisone.Thislicencedoesnot
permit commercial exploitation without specific permission.

Introduction

Biochemistry has long been occupied with the reconstruction
of metabolic pathways. With modern genome-sequencing
capabilities, these pathway reconstructions have been increas-
ingly integrated into genome-scale metabolic models. Ten
years ago, a metabolic model of Haemophilus influenza
became the first genome-scale metabolic reconstruction to be
published (Edwards and Palsson, 1999). In the decade since,

the field of genome-scale metabolic network analysis has
expanded rapidly, and today 450 genome-scale metabolic
reconstructions have been published (see Figure 1A). With the
growing influence of these reconstructions on biomedical and
biological research, and with the field now shifting from an
inward focus on method development to an outward focus on
application development, it is timely to review the various uses
of genome-scale metabolic reconstructions and the future
potential of systems-based analyses of metabolism.

Of all organisms that have been analyzed through a
constraint-based metabolic reconstruction, Escherichia coli
has gained the most attention as a model organism. As the
applications of E. coli genome-scale models have been
reviewed earlier in detail (Feist and Palsson, 2008), we
specifically exclude E. coli from this review, and instead focus
on the many other target organisms that have been studied.

A survey of papers citing metabolic reconstructions over the
last 10 years revealed several themes in uses of the
reconstructions. Following these themes, this review assigns
uses of genome-scale metabolic reconstructions (metabolic
GENREs; Becker and Palsson, 2005) to five major categories:
(1) contextualization of high-throughput data, (2) guidance
of metabolic engineering, (3) directing hypothesis-driven
discovery, (4) interrogation of multi-species relationships,
and (5) network property discovery (see Figure 2). These
categories were chosen because they cover the majority of
topics that have been addressed using metabolic GENREs, and
they each represent a significantly different aim of these
models. Areas of research not covered in these categories
represent directions which in general have not been as well
developed, and which may be possible avenues for future
study. Each section describes the importance and historical
context of that use, ways that metabolic GENREs have
accelerated the knowledge gained in the given field, and
finally the drawbacks or current hurdles in applying metabolic
GENREs to the given problem. These applications include both
applied and theoretical approaches, and represent a broad
range of problems that have been engaged using genome-scale
metabolic reconstructions.

Model building and analysis

Methods for developing metabolic reconstructions have been
reviewed in the past (Reed et al, 2006; Durot et al, 2009; Feist
et al, 2009) and several resources exist for model building and
analysis (Becker et al, 2007), so those methods are not
presented in detail here. Although the majority of this review
focuses on uses of completed metabolic GENREs, we will
nevertheless quickly overview the reconstruction process itself
to highlight ways in which it can be intrinsically useful.

To date, all high-confidence genome-scale metabolic recon-
structions have been built manually through a four-step
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process (Oberhardt et al, 2008). First, an initial reconstruction
is built from gene-annotation data coupled with information
from online databases such as KEGG (Kanehisa et al, 2006)
and EXPASY (Gasteiger et al, 2003), which link known genes to
functional categories and help bridge the genotype–phenotype
gap. Second, the initial reconstruction is curated through an
examination of the primary literature. Then, the reconstruc-
tion as a knowledge base is converted into a mathematical
model that can be analyzed through constraint-based ap-

proaches. Third, the reconstruction is validated through
comparison of model predictions to phenotypic data. In a
final fourth step, a metabolic reconstruction is subjected to
continued wet- and dry-lab cycles, which improve accuracy
and allow investigation of key hypotheses.

Generally, a reconstruction includes semi-automated gene-
annotation data based on BLAST-homology scores from a
sequenced genome, augmented by detailed, manually col-
lected data from organism-specific literature. One of the most
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Figure 1 Reconstruction statistics. The cumulative number of metabolic GENREs published over the past decade is shown in (A). (B–D) Histograms of the number
of metabolic GENREs containing varying numbers of genes (B), metabolites (C), and reactions (D). (E) Histogram of the number of reconstructions published per
species. All histograms display prokaryotic (green) and eukaryotic (brown) statistics. *Yeast, S. cerevisiae; Human1,2, human reconstructions (Duarte et al, 2007;
Ma et al, 2007).
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immediate contributions of metabolic GENREs to biological
knowledge comes in the process of gap analysis during model
building, whereby formerly un-annotated gene functions are
incorporated into gene-annotation knowledge by analysis of
incomplete but essential metabolic pathways (Gonzalez et al,
2008; Oberhardt et al, 2008; Chavali et al, 2008b). The gap-
analysis process can be beneficial both by stimulating
literature searches that reveal previously overlooked pheno-
typic data and by posing hypotheses for enzymes that likely
exist in the organism but for which no corresponding gene is
currently annotated. Aside from offering hypotheses for future

experiments, this process serves to crystallize the work done
on a particular organism and highlight major areas still left
for investigation. The gap-analysis step is also crucial for
conversion of a genome-scale reconstruction as a knowledge
base into the metabolic GENRE as a functional model, toward
whose analysis the full suite of network tools can be applied
(Manichaikul et al, 2009).

Through gap analysis and subsequent pathway analysis,
studies have elucidated both the stoichiometry of certain
reactions (Feist et al, 2006) and the most efficient pathways for
production of certain metabolites (Kjeldsen and Nielsen,
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2009), and in some cases have even proposed methods for
engineering more efficient strains (Puchalka et al, 2008). Also,
it is common for reconstruction efforts to provide high-quality
estimates of cellular parameters such as growth yield, specific
fluxes (Senger and Papoutsakis, 2008b), P/O ratio, and ATP
maintenance costs (Famili et al, 2003), and these theoretical
values are often used for hypothesis building or validation in
biological studies (Lee et al, 2007; Hiratsuka et al, 2008).
Several published metabolic reconstruction studies also
include in silico predictions for minimal medium design
(Oliveira et al, 2005; Baart et al, 2007b; Chavali et al, 2008b).

A completed metabolic GENRE can be used for a variety of
applications. Many of the constraint-based analyses possible
on metabolic GENREs rely on the theory that evolution selects
for fitness-optimizing organisms, a concept crystallized with
the development of flux balance analysis (FBA) (Maynard
Smith, 1978; Lee et al, 2006). FBA involves optimization of a
network for a given objective function, often a ‘biomass’
reaction, to predict in silico flux values and/or growth. This
optimization process outputs an optimal set of metabolic flux
values that are consistent with maximization (or minimiza-
tion) of the chosen objective. Another class of constraint-based
approaches, termed pathway analysis methods, enables an
accounting of all possible flux pathways in a given network,
and have been used to examine network properties such as
flexibility and variability of flux distributions (Papin et al,
2004). These techniques underlie most model validation
performed on metabolic GENREs, and have opened up a wide
variety of applications and new directions for model use.

Currently available reconstructions

Metabolic GENREs of prokaryotes encompass an average of 600
metabolites, 650 genes, and 800 reactions, whereas metabolic
GENREs of eukaryotes include on average 1200 metabolites,
1000 genes, and 1500 reactions. Excluding the two existing
reconstructions of Homo sapiens metabolism lowers the
average eukaryotic network size to 800, 800, and 1300,
metabolites, genes, and reactions, respectively, a closer but still
higher distribution to that of prokaryotes (see Figure 1B–D).
Depending on whether the mouse, human, and Arabidopsis
thaliana metabolic reconstructions are included in the statistic,
between 6 and 13% of all ORFs in a eukaryotic genome are
generally included in a metabolic GENRE, whereas metabolic
GENREs of prokaryotes include on average 18% of all ORF’s.
Existing reconstructions span the domains Eukaryota, Bacteria,
and Archaea. The most represented domain is bacteria, with 25
species reconstructed. The phylogenetic tree in Figure 3 reveals
a conspicuous lack of plant metabolic reconstructions, with
a preliminary reconstruction of A. thaliana (Radrich et al,
http://hdl.handle.net/10101/npre.2009.3309.1) as the only
plant metabolic GENRE released so far. This gap indicates an
important direction for future efforts.

Category 1: Contextualization of
high-throughput data

With biology increasingly becoming a data-rich field, an
emerging challenge has been determining how to organize,

sort, interrelate, and contextualize all of the high-throughput
datasets now available. This challenge has motivated the field
of top–down systems biology, wherein statistical analyses of
high-throughput data are used to infer biochemical network
structures and functions. In top–down modeling, determina-
tion of network structure poses a major technological and
computational hurdle (Stark et al, 2003). However, many of
the weaknesses of top–down modeling, such as lower
accuracy and confidence in the resulting models, can be
alleviated by comparison or merging with carefully built
bottom–up models, such as metabolic GENREs. By serving as a
framework on which other data types can be overlaid, the
metabolic reconstruction has served as a powerful tool for
contextualizing high-throughput data and aiding top–down
approaches, as described below.

High-throughput data can be overlaid onto a metabolic
GENRE in several ways. One highly functional way to use a
metabolic GENRE for contextualization of gene expression
data, protein expression data, C13 flux data, or high
performance liquid chromatography derived byproduct secre-
tion profiles is by directly imposing constraints on the GENRE
based on the values in the experimental dataset. For instance,
if an experimental dataset indicates that glycolytic enzymes
are highly active under a given condition, flux can be funneled
through glycolysis by constraining the relevant fluxes in silico,
thereby forcing flux through the activated reactions and
allowing evaluation of changes in global flux distributions.
Gene microarray data can be similarly used to constrain
metabolic fluxes and can give tremendous insight into
conditional changes in metabolic activity (Shlomi et al,
2008), despite a nonperfect correlation between gene expres-
sion and protein expression (Ideker et al, 2001; Chechik et al,
2008). In addition to altering the constraints in a functioning
metabolic model, high-throughput data can also simply be
overlaid on a metabolic network to foster insight into
metabolic hotspots or pathways that are significantly altered
under certain conditions (Usaite et al, 2006). This process can
elucidate otherwise inscrutable relationships between data-
points. Other types of high-throughput data can be analyzed in
context of a metabolic GENRE as well, including rapid
phenotyping data (e.g. BIOLOG phenotype microarrays, which
test metabolic phenotypes of cells under thousands of growth
conditions simultaneously), and whole or partial-genome
gene essentiality data (Oberhardt et al, 2008). These data
describe physiological states, which can directly be compared
with in silico phenotypes, often in a qualitative or binary way:
an organism grows on substrate X or it does not. In this sense,
contextualization of these data represents a refinement of
traditional taxonomic methods, which often use growth
profiles of an organism for identification but generally lack
mechanistic details or explanations for the majority of assayed
phenotypes (Boone et al, 2001).

Metabolic reconstructions have been particularly useful as
context for gene expression data. Many examples exist of gene
microarrays being used in conjunction with genome-scale
metabolic reconstructions to give a deeper understanding of
why certain changes in expression occur in different environ-
ments. In particular, Saccharomyces cerevisiae has been used
as a model organism for this type of analysis. A comparison of
in silico metabolic fluxes versus microarray gene expression
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data in E. coli and S. cerevisiae revealed that metabolic genes
whose fluxes are directionally coupled generally show similar
expression patterns, share transcriptional regulators, and
reside in the same operon (Notebaart et al, 2008). Expression
data has also been coupled with various generations of
S. cerevisiae metabolic reconstructions to determine which
portions of metabolism are most sensitive to nitrogen
limitation (Usaite et al, 2006) and to compare metabolic states
during growth on glucose, maltose, ethanol, and acetate
(Daran-Lapujade et al, 2004). In these studies, expression
states of metabolic genes were overlaid on the reactions their
protein products catalyze, and expression patterns of meta-
bolic enzymes were then compared against the fluxes
predicted in silico under the given growth condition. Without
a model to lay these expression data on, it would be difficult to
characterize the global expression states. In another striking
example, a metabolic model of S. cerevisiae was augmented
with 55 regulatory transcription factors regulating 348 meta-
bolic genes to form a regulatory-metabolic network (Herrgard
et al, 2006). From an initial regulatory network, ChIP-chip and
binding-site motif data were used to expand the regulatory

rule-set, and this expanded network was shown to have higher
predictive power of gene expression when evaluated with 12
microarray datasets. The use of a regulatory-metabolic model
to predict gene expression changes is a powerful direction for
further research with metabolic reconstructions, one which
pushes closer toward modeling the function of an entire cell
(Lee et al, 2008b).

High-throughput technologies to determine the intracellular
metabolic state of cells have also been aided by the
development of metabolic GENREs. Intracellular metabolic
fluxes can be determined through the use of 13C-labeled
glucose experiments, in which labeled carbon is tracked
during growth of cells in a chemostat culture and computa-
tional methods are used to reconstruct the paths that carbon
took inside the cells during growth. Although 13C isotopomer
tracking has been performed without the aid of a metabolic
GENRE, the comprehensive coverage of metabolic pathways
enabled by the genome-scale reconstructions has made these
attractive frameworks for 13C tracking experiments (Vo et al,
2007; Panagiotou et al, 2008). Metabolic GENREs have
also been used as frameworks for interpreting metabolite

Chlorophyta Streptophyta

Euglenozoa

Cyanobacteria

Bacteriodetes

Tenericutes

Chlorophyta

Eukaryota BacteriaArchaea

Chordata

Eu
ry

ar
ch

ae
ot

a

Ascomycota

Proteobacteria Firm
icu

tes

A
ctinobacteria

Pseudomonas aeruginosa

Pseudomonas putida

Acinetobacter baylyi

Yersinia pestis

Salmonella typhimurium

Esc
heric

hia co
li

M
an

nh
ei

m
ia

 S
uc

cin
ici

pr
od

uc
en

s

H
ae

m
op

hi
lu

s 
in

flu
en

za
e

G
eo

ba
ct

er
 s

ul
fu

rr
ed

uc
en

s
G

eo
ba

ct
er

 m
et

al
lir

ed
uc

en
s

H
el

ic
ob

ac
te

r 
py

lo
ri N

eisseria m
eningitidis

R
hizobium

 etli
S

treptococcus therm
ophilus

Lactococcus lactis

Lactobacillus plantarum

Bacillus subtilis

Staphylococcus aureus

Corynebacterium glutamicum

Mycobacterium tuberculosis
Streptomyces coelicolor

Synechocystis sp.

Porphyro
monas g

ingiva
lis

M
yc

op
las

m
a 

ge
nit

ali
um

As
pe

rg
illu

s 
or

yz
ae

A
sp

er
gi

llu
s 

ni
ge

r

A
sp

er
gi

llu
s 

ni
du

la
ns

S
ac

ch
ar

om
yc

es
 c

er
ev

is
ia

e

H
om

o sapiens

M
us m

usculus

A
rabidopsis thaliana

C
hlam

ydom
onas reinhardtii

Leishm
ania m

ajor

Halobacterium salinarum

Methanosarcina barkeri

Clostridium acetobutylicum

Figure 3 Phylogenetic tree of reconstructed species. This figure shows a phylogenetic tree of all species for which metabolic GENREs have been built. Sections are
colored by superkingdom, and phyla are noted on the outer ring of the tree. The phylogenetic tree was generated using semi-automated software at http://itol.embl.de/
(Ciccarelli et al, 2006), and phyla were determined using the NCBI taxonomy browser.

Uses of metabolic reconstructions
MA Oberhardt et al

& 2009 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2009 5



concentration data. In one study (Cakir et al, 2006), a high-
throughput GC-MS method was used to determine concentra-
tions of 52 metabolites in S. cerevisiae. Differences in
metabolite concentrations under known environmental con-
ditions were mapped onto a modified S. cerevisiae metabolic
GENRE, and this mapping was then combined with transcrip-
tome data to investigate the effectors of metabolic regulation in
the cell.

In many cases such as the one highlighted above, multiple
high-throughput data types are analyzed in concert through
the framework of the metabolic GENRE, which allows for a
highly integrated picture of cell function to emerge. Tran-
scriptomic data in particular is often linked with other data
types, such as protein expression data (Shlomi et al, 2008),
protein–protein interaction data, protein–metabolite interac-
tion data, and physical interaction data (Prinz et al, 2004).
Particularly in light of multiple data types, the metabolic
GENRE can be a valuable tool for data interpretation. For
instance, multiple data types were used in concert with a
metabolic GENRE to determine tissue-specific metabolic
activities in H. sapiens (Shlomi et al, 2008) and to compare
the filamentous-form versus the yeast form of S. cerevisiae
(Prinz et al, 2004).

Metabolic GENREs are natural frameworks for contextualiz-
ing genome-scale data, and as a result there have been many
studies that use metabolic GENREs in this manner. High-
throughput data have even been used to aid in building
metabolic GENREs; for instance, the fact that some mitochon-
drial genes lie outside the mitochondrion made proteomic data
key to building a model of human mitochondrial metabolism,
in combination with biochemical data from literature (Vo et al,
2004). However, a major challenge still lies in determining an
optimal strategy for interpreting high-throughput data. For
instance, while a link has been established between expression
of the gene for a metabolic enzyme and the bounds on
metabolite flux through that enzyme (Chechik et al, 2008),
establishing a scalable, reliable heuristic for bounding reaction
fluxes using transcriptomic or proteomic data remains an
unanswered challenge in the field. Noise also has a function in
obscuring the relationship between high-throughput data and
flux-related phenotypes. Particularly in situations where
multiple noisy high-throughput datasets are considered at
once, the question arises of how to integrate all of the data into
one cohesive mathematical framework. These difficulties will
have to be addressed through development of rigorous quality
control measures for standardizing data analysis in the future.

Category 2: Guidance of metabolic
engineering

Metabolic engineering involves the use of recombinant DNA
technology to selectively alter cell metabolism and improve a
targeted cellular function (Bailey et al, 1990). Traditionally,
metabolic engineering has been performed on a small scale
through manipulation of a few genes to affect yield of a target
metabolite. Enzymatic targets are chosen through analysis of
literature-derived central metabolic pathway maps, or intui-
tive engineering based on local metabolic knowledge. These
local approaches have yielded success in the past, enabling

engineering of new metabolic pathways and improvement of
existing processes in E. coli (Bailey et al, 1990), S. cerevisiae
(Nevoigt, 2008), and other microorganisms (Park and Lee,
2008). However, the complexity of metabolic networks,
compounded by multiple layers of transcriptional, protein,
and substrate-level regulation of metabolic enzymes, renders
predictable metabolic engineering extremely difficult, and
often causes unwanted consequences or sub-optimal out-
comes when local network maps or intuitive knowledge are
the basis of engineering decisions (Kim et al, 2008; Nevoigt,
2008). The inherent drawbacks of using local analysis tools to
guide cell-scale metabolic engineering efforts have motivated
the use of metabolic GENREs and other genome-scale
technologies, in what has been termed ‘systems metabolic
engineering’ (Park and Lee, 2008). The use of metabolic
GENREs represents a major evolution for the field, wherein
whole-cell networks and systems-level analyses are for the
first time being leveled to determine optimal engineering
strategies on a whole-cell basis (Park and Lee, 2008).

Because of the industrial importance and metabolic
centrality of TCA intermediates such as malic acid and succinic
acid, many recent metabolic engineering efforts have focused
on increasing production of these metabolites. In a recent
study, S. cerevisiae was engineered to produce 59 g/l of malate,
an amount five times higher than earlier efforts (Zelle et al,
2008). This remarkable improvement was validated by
13C-NMR flux determination, using a metabolic GENRE as
the basis for the 13C flux model. Several other examples of
metabolic GENRE-guided metabolic engineering involve
genome-scale reconstructions of the succinic acid producing
bacterium Mannheimia succiniciproducens. In the initial
publication of the M. succiniciproducens genome sequence, a
constraint-based metabolic model was presented including
373 reactions and 352 metabolites (Hong et al, 2004). This
model was used to compare metabolic flux distributions
between M. succiniciproducens and E. coli, and to identify a
combination of three pyruvate-forming enzymes whose
removal from E. coli would likely increase succinic acid
production. Genetic engineering efforts targeting those three
genes were successful, and a succinic acid producing strain of
E. coli was generated (Lee et al, 2008c). Later, an expanded
metabolic GENRE was published for M. succiniciproducens,
including 686 reactions and 519 metabolites (Kim et al, 2007).
This expanded reconstruction, which was used to predict
succinic acid production in a variety of experimental circum-
stances, is currently being used to further investigate the
metabolic capabilities and guide engineering strategies in
M. succiniciproducens (Lee et al, 2008c).

Metabolic GENREs have been used to guide other types of
genetic engineering efforts aside from increasing production of
value-added chemicals. In one study, an algorithm called
Optknock (Burgard et al, 2003) was applied to the metabolic
GENRE of Geobacter sulfurreducens to determine optimal gene
knockouts to maximally increase respiration rates (Izallalen
et al, 2008). G. sulfurreducens is a bacterium whose ability to
oxidize organic compounds using metals as terminal electron
acceptors has made it highly attractive for bioremediation
efforts. The Optknock analysis predicted that increasing ATP
demand would increase NADPH oxidation rates, and subse-
quent alteration of membrane-bound F0F1 ATP synthase
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achieved the predicted increase in G. sulfurreducens respira-
tion rate (Izallalen et al, 2008). Metabolic GENRE-guided
genetic engineering has also been used to aid the scale-up for
bulk production of a vaccine against the pathogen, Neisseria
meningitides (Baart et al, 2007a). These examples serve to
highlight the various ways in which metabolic GENREs have
aided genetic engineering by casting the engineering efforts in
context of the whole-cell metabolism of the organism being
studied.

Although metabolic GENREs are powerful tools of great
utility for metabolic engineering, issues such as pleiotropy
(a single gene that affects multiple phenotypic traits),
unaccounted for or inactive isozymes, and mis-annotation of
critical genes can weaken the efficacy of computational
predictions in determining engineering targets. In addition,
it is sometimes not clear whether the considerable effort it
takes to build a metabolic reconstruction is a good investment
when developing a metabolic engineering strategy, as issues
such as allosteric enzyme regulation can necessitate detailed
dynamic modeling of a specific pathway to accurately predict
phenotypes (Stephanopoulos and Vallino, 1991; Contador
et al, 2009). Still, even when such approaches are necessary for
the engineering process, metabolic GENREs are uniquely
capable of predicting secondary effects of a given metabolic
perturbation on other, often nonobvious portions of metabo-
lism (Nevoigt, 2008), and therefore nearly always have the
potential to be useful in developing such strategies. Further,
kinetic constants for metabolic interactions can be extremely
difficult to ascertain, so constraint-based modeling remains an
attractive alternative to these methods (Contador et al, 2009).
Another hurdle in metabolic engineering is the importance of
transcriptional regulation in determining metabolic pheno-
types. Regulatory genes are often important targets in
metabolic engineering efforts due to their primary function
in determining the distribution of metabolic flux (Bailey et al,
1990). With the inclusion of some regulatory rules, the
usefulness of a metabolic GENRE can be significantly
increased for guiding these efforts. However, regulatory
networks are generally less well characterized than metabolic
networks, and tend to be far more species and strain specific
(Herrgard et al, 2004). This makes it difficult to reliably predict
good metabolic engineering targets, as some crucial regulatory
information is generally unknown for a given organism.
Therefore, an increased effort into the reconstruction and
analysis of regulatory networks will be of major utility for
GENRE-guided metabolic engineering efforts in the future.

Category 3: Directing hypothesis-driven
discovery

Much of what is known in biology today is the result of
meticulous, hypothesis-driven discovery. This research has
been guided by heuristic, informal models of biology devel-
oped in the minds of experts during years of work in a
particular field or on a particular problem. However, with the
tremendous expansion of biological data in recent years, the
need has arisen for new method development to integrate
high-throughput data with the biological discovery process.
Gene microarrays serve as a prime example; a traditional

hypothesis-driven study might include examination of 1 or 2
genes in a microarray that are of particular interest. This
approach would ignore the thousands of other genes on the
chip, however, and could miss important information or trends
embedded in those data. Therefore, a systematic framework
for incorporating genome-scale data available from multiple
high-throughput methods would allow hypothesis-driven
biology to benefit from the full range of tools available today.

Metabolic GENREs represent concise collections of existing
hypotheses, and taken together as a broad context they enable
systematic identification of new hypotheses that can be tested
and resolved. Therefore, they represent a crucial framework
for incorporating the flood of biological data now available
into the biological discovery process.

Beyond computational predictions, metabolic GENREs have
been used to frame investigations into specific biological
questions, using a mix of traditional biological approaches and
computational systems-level thinking. This type of mixed
analysis has been used extensively in G. sulfurreducens to
determine pathway usage in redundant cellular systems.
In one study, metabolic GENRE-derived flux predictions were
compared with growth phenotypes of G. sulfurreducens to
elucidate which of eight sets of redundant pathways are used
in vivo (Segura et al, 2008), and several functions were shown
to be carried out by only one gene despite the existence of
seemingly redundant pathways. This finding bolstered an
earlier study, in which it was shown through computational
analysis and in vivo deletion studies that isozymes are often
not perfectly redundant (Harrison et al, 2007). Another study
used 13C-labeling to track fluxes through a known threonine-
associated isoleucine biosynthetic pathway in G. sulfurredu-
cens (Risso et al, 2008). With the discovery that only a fraction
of isoleucine is generated through this pathway, a putative
citramalate synthase gene was tested and shown through
knockout experiments to comprise part of a previously
uncharacterized citramalate-associated isoleucine synthesis
pathway, which produces the majority of isoleucine in the cell.
The initial search for the citramalate synthase gene was
motivated by model simulations in which addition of a
citramalate pathway significantly improved agreement of
experimental and predicted isotopomer distributions in the
13C experiment (Risso et al, 2008).

Some biological questions investigated using metabolic
GENREs involve cellular-level phenomena difficult to
approach without a whole-cell model of metabolism. In one
analysis, the proximity of in vivo transposon-disrupted genes
to downstream essential genes was compared with the in silico
essentiality of the transposon-disrupted genes using a meta-
bolic GENRE of Pseudomonas aeruginosa (Oberhardt et al,
2008). It was shown that transposon inserts in one published
genome-wide transposon study affected downstream genes,
whereas transposon inserts in another published study did
not, consistent with claims in the two studies. In another
analysis, the transcriptional timing of metabolic genes in
defined sub-networks of a metabolic GENRE of S. cerevisiae
was studied using time courses of transcriptomic and
proteomic data, as well as protein binding affinity data from
ChIP-chip assays (Chechik et al, 2008). This analysis suggested
that under relatively static environmental conditions, meta-
bolism is primarily controlled through protein-level regulation,
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whereas during times of environmental change, transcrip-
tional control guides metabolic function. Transcriptional
control has also been studied by identification of ‘reporter
metabolites,’ which represent the most highly transcriptionally
regulated metabolites in a system (Patil and Nielsen, 2005;
Raghevendran et al, 2006; David et al, 2008). Like the analysis
of transcriptional timing in S. cerevisiae, reporter metabolites
represent a marriage of metabolic GENRE-network analysis
and traditional biological investigation, and they enable study
of functional phenomena in cells that would be difficult to
assess otherwise.

Metabolic GENREs intrinsically represent a simplification of
cellular function. The distinct biochemical networks categor-
ized by scientists (e.g. metabolism, regulation, and signaling)
blend together in a living cell, creating a far more complicated
web of interactions than is convenient or possible to model
(Featherstone and Broadie, 2002). This web is fundamentally
stochastic, and co-habits the cell with many other simulta-
neous phenomena including transcription and translation,
protein modification, cell division, adhesion, motility, and
mechanical transduction of external forces. The very simpli-
fications that make metabolic GENREs powerful tools also
make them challenging to use for the study of totally unknown
or novel phenomena.

Ostensibly, these challenges would limit the usefulness of
metabolic GENREs to analyzing purely metabolic processes
and refining our knowledge of already characterized cellular
systems. However, the examples highlighted above in this
section suggest otherwise. Metabolic GENREs enable integra-
tion of large datasets for analysis of whole-cell phenotypes,
and when wielded effectively, these analyses can be targeted to
answer profound questions in biology. The key to unlocking
the potential of metabolic GENREs is to ask tractable
questions, and to understand well the limitations of the
technology used to determine the answers.

Category 4: Interrogation of multi-species
relationships

Few cells grow in pure cultures outside of the laboratory, and
in many cases it is through the interactions of species that the
most interesting phenotypes emerge (Riedel et al, 2001;
Filoche et al, 2004; Fernandez et al, 2008). Metagenomics
studies particularly have shown most ecosystems to be
extremely diverse, including up to thousands of distinct taxa
(Vieites et al, 2009). Further, higher-eukaryotic biology
necessitates the study of multi-cellular systems, as it inher-
ently focus on interactions between different cell types.
Metabolic GENREs are increasingly being applied to these
multi-cell problems, as well as to the study of functional
differences between species. These avenues of research offer
exciting prospects for deepening our understanding of the
workings of multi-cellular communities and bridging the
phenotype–genotype gap in the future.

A promising direction for computational systems biology is
the incorporation of network-level analysis into the field of
comparative genomics, which is currently driven by bioinfor-
matics. Comparative network-level analysis is not completely
new, as some of the first metabolic reconstructions generated

were compared with discern phenotypic differences between
species (Schilling et al, 2002; Forster et al, 2003). However,
several studies have emerged in recent years that either
compare metabolic reconstructions of highly related species or
use models of interacting species to predict communal
phenotypes. As more metabolic GENREs become available,
these comparisons become more feasible and relevant for a
wide variety of organisms. However, most multi-species
analyses reported to date have involved either sub-genome-
scale metabolic models or models that have not been carefully
annotated. For instance, an analysis of the syntrophic bacteria
Desulfovibrio vulgaris and Methanococcus maripaludis in-
cluded creation of a dual-species stoichiometric model,
including 170 reactions and 147 metabolites that comprised
the central metabolism of both species (Stolyar et al, 2007).
This work represents an important step in applying
scalable computational methods to mutualistic bacterial
communities, but it is focused on central metabolism rather
than the genome scale.

Several multi-species analyses have focused on highly
related cell types, attempting to discern differences in
metabolic phenotypes based on network analysis. One group
developed genome-level reconstructions of four halophilic
bacteria, and compared their metabolic phenotypes by high-
lighting differences in various pathways between the four
organisms (Falb et al, 2008). Although the group used
computational flux methods in a separate publication to
analyze a highly developed metabolic GENRE of a halophilic
bacterium (Gonzalez et al, 2008), the comparison study itself
included no in silico flux analysis. Another recent study did use
in silico flux methods to compare two whole-cell metabolic
networks, those of the human fibroblast and the diseased
fibroblast suffering from Leigh’s syndrome (Vo et al, 2007).
The networks were derived from the global human metabolic
network reconstruction (Duarte et al, 2007), and 13C-flux,
literature-derived phenotypic data, and in silico computed flux
states were used to discern differences between the normal
and diseased states. Other efforts have included highly
automated comparisons between species, sometimes taking
many species into account (Verkhedkar et al, 2007; Borenstein
et al, 2008; Lee et al, 2009).

Of the five categories of uses of metabolic GENREs described
in this paper, multi-species studies have been represented the
least in literature so far. With more genome-scale metabolic
models being built and an increased focus on studying multi-
cellular systems, however, we anticipate that this field will see
a major increase in activity in the coming years. The difficulty
and time required to build a well-curated metabolic GENRE is a
major bottleneck toward these efforts, as a comparison of
multiple species or the interactions between a host and a
pathogen requires the building of two or more genome-scale
models. Also, meaningful modeling of multi-species interac-
tions often necessitates augmentation of a metabolic GENRE
with some regulatory and signaling information, which further
increases the complexity and difficulty of this type of modeling
(de Kievit and Iglewski, 2000).

Along with intracellular signaling and regulatory pathways,
spatial and temporal constraints can also become important
for interactions between different cell types in a biofilm or
tissue, leading to other computational and experimental
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challenges. Various modeling methods have been proposed to
address these issues (Robertson et al, 2007; Chavali et al,
2008a), but coupling metabolic GENREs with models at
varying spatiotemporal scales will require novel computa-
tional approaches (Jiang et al, 2005; Lee et al, 2008b; Zhang
et al, 2009). A merging of metabolic GENREs, regulatory and
signaling networks into multi-cell or multi-species models will
be a major achievement of systems biology, and will move us
closer to the goal of accurately modeling cells in therapeuti-
cally and environmentally important contexts.

Category 5: Network property discovery

With the development of powerful molecular biology tools
over the last half century, a reductionist mindset has
dominated the practice of biology (Singh, 2003). However,
scientists have long understood the importance of holistic
thinking when approaching biological systems, as complex
cellular networks can spawn emergent phenomena that would
be undetectable by reductionist approaches (Waliszewski et al,
1998; Westerhoff and Palsson, 2004). Conditionally essential
genes (i.e. ‘synthetic lethals’) would be overlooked, for
instance, if genes were studied purely in isolation (Scherens
and Goffeau, 2004). In recent years, some of the same tools
that underpinned reductionist biology have been expanded to
high-throughput methods, enabling the development of gene-
based holistic network analysis techniques (Westerhoff and
Palsson, 2004). Metabolic GENREs have enabled analysis of
emergent phenomena through a focus on whole networks
rather than individual pathways or genes, and many computa-
tional techniques have been developed to probe network
properties. These types of network-level analyses will be
critical to fully unravel the complex genotype–phenotype
relationships in cells.

One of the most direct contributions of metabolic GENREs to
our understanding of metabolism has been its enabling of the
study of otherwise inaccessible network properties. Metabolic
properties such as the existence of loops (Kun et al, 2008;
Wright and Wagner, 2008), optimal pathway usage (Nishikawa
et al, 2008), metabolite connectivity (Becker et al, 2006; Samal
et al, 2006; Guimera et al, 2007), and pathway redundancy
(Papin et al, 2002b; Mahadevan and Lovley, 2008) have all
been studied in metabolic GENREs using computational
methods. Many of these network analyses are performed
through variants of FBA (see ‘Model building and analysis’
section). A primary end toward which network analyses have
been used is the improvement of existing genome annotations,
such as in the FBA-driven gap-analysis process of model
building. However, other more systematic methods have been
developed for improving genome annotations based on the
analyses afforded by a metabolic GENRE. One such method
used a metabolic GENRE of S. cerevisiae to derive condition-
dependent annotations of metabolic genes, achieving higher
accuracy than gene ontology annotations in determining gene
function (Rokhlenko et al, 2007; Shlomi et al, 2007). Another
major application of network analysis tools has been the
discovery of co-regulated genes, through a computational
process called flux coupling analysis (Burgard et al, 2004).
This computational method has been validated recently

through NMR-derived metabolite profiles of single-gene
knockouts in yeast (Bundy et al, 2007). Coupled reaction sets
have been used for a variety of purposes, including prediction
of novel drug targets in Mycobacterium tuberculosis (Jamshidi
and Palsson, 2007).

The field of computational systems biology has produced a
rich array of methods for network-based analysis, offering
tremendous insight into the functioning of metabolic net-
works. However, many of these methods produce results that
can be difficult to link to observable phenotypes. Forging this
link poses the greatest challenge toward development of useful
network-based tools. For instance, several methods exist to
analyze redundancy in metabolic networks (Price et al, 2002,
2003; Papin et al, 2002a, b; Mahadevan and Lovley, 2008).
Although these techniques define ‘redundancy’ intuitively in
terms of the number of available paths between a given set of
inputs and outputs, relating ‘redundancy’ to an observable
phenotype poses a difficult challenge.

Although some network analysis techniques focus on
phenotypes that are currently difficult to measure, there still
exists great value in this research. With improvements in
experimental technology, some currently unobservable phe-
notypes will become measurable, and the gap between in silico
and observable phenotypes will shrink. Also, some network
analyses have already deeply influenced biological thinking,
even in some cases where the methods yield no easily
measured phenotypes (Jeong et al, 2000). Network analysis
tools will continue to be critical to the success of systems
biology, by both expanding the scope of what is thought
possible, and by anticipating the emergence of cutting-edge
wet-lab technologies.

Exploring evolutionary relationships

Significant interest exists in using metabolic GENREs to
investigate functional evolution of metabolic and regulatory
networks, especially considering the strongly evolutionary-
based assumptions underlying analysis techniques such as
FBA. Some studies have examined the phenomenon of short-
term adaptive evolution, and have shown that as a particular
strain adapts to media it is grown in, its growth characteristics
will converge toward the FBA-predicted optimal solution (Fong
and Palsson, 2004; Fong et al, 2005). Although these studies
support the theory that evolution has honed organisms to
optimize for fitness-related phenotypes (Maynard Smith,
1978), the historical evolutionary process itself remains fairly
unstudied in context of metabolic GENREs. This fascinating
research direction represents a promising area of study. There
have been a few recent attempts to use metabolic models
toward this end. In particular, it has been suggested that
certain topological properties of metabolic networks (such
as degree distribution) might be formed as a byproduct of
selection for some other phenotypes (such as growth rate),
rather than because the topological properties themselves
elicit a selective advantage (Pfeiffer et al, 2001; Papp et al,
2009). Genome-scale metabolic models have yet to be
significantly used toward answering these important ques-
tions, but the breadth of organisms for which GENREs are
available today (see Figure 3) represent a tremendous

Uses of metabolic reconstructions
MA Oberhardt et al

& 2009 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2009 9



opportunity to merge evolutionary genomics with network-
based metabolic analysis, and gain unique insight into the
evolutionary forces that have on metabolism.

Current status of genome-scale metabolic
reconstructions

Metabolic GENREs are contributing to the development of
predictive, mechanistic models of an entire cell, an unrealistic
goal before the genomic revolution. These models provide a
broad framework whose predictions can be continually refined
as more data and computational methods become available.
Figure 4 shows the analyses that have already been performed
on metabolic GENRE of various species, and also highlights
many gaps where some possibly informative analyses have yet
to be done. These gaps represent a roadmap for future efforts.
Metabolic GENREs are best viewed as low-resolution blue-
prints on top of which other systems, constraints, and
perturbations can be overlaid. As these features are overlaid
on metabolic GENREs, they continually improve the resolution
of model predictions. With incorporation of regulatory and
signaling data as well as other high-order systems into the
constraint sets, metabolic GENREs are becoming increasingly
agile and expressive of realistic cell phenotypes.

As one of the simplest and most informative methods in
constraint-based modeling, FBA has become a standard in the
field, with a biomass reaction usually serving as the objective.
Although the biomass objective yields accurate predictions
under simple growth conditions for prokaryotic cells (Fong
and Palsson, 2004), it is unclear to what degree optimization of
biomass is descriptive of growth conditions in nature. Some
studies have explored this by examining whether cells follow
nonbiomass objective functions under certain conditions
(Schuetz et al, 2007; Gianchandani et al, 2008), but even
these studies stop short of questioning the optimization
premise itself. Furthermore, although FBA predicts metabolic
flux values through a network, FBA notably produces only one
optimal solution, whereas it is quite common for multiple
equally valid optima exist. This concept has been examined
through an extension of FBA called flux variability analysis,
which explores the entire optimal solution space as opposed to
picking just one optimal solution (Mahadevan and Schilling,
2003), but it is an important caveat that should curb over-
interpretation of FBA results.

Given a fully defined metabolic, regulatory, and signaling
network, we would hypothesize that no extrinsic objective
would be necessary, but rather that what we call an ‘objective’
would be intrinsically built into the rules of the network itself.
Therefore, as metabolic GENREs are increasingly augmented
with regulatory and signaling rules, at what point does the
‘objective function’ hypothesis break down entirely? Where
exactly in a cell is the information content we call an
‘objective’ held? These questions will become increasingly
crucial and addressable as systems biology models become
more sophisticated, and will stand to provide enormous
insight into evolutionary biology.

An assumption underlying most approaches with metabolic
GENREs is that networks modeled at steady state can still yield
valuable information, regardless of the lack of detailed kinetic

data. However, the steady state flux approximation unravels at
the edges of metabolic activity, where stochasticity, enzyme
kinetics, spatial distributions, and varying levels of metabolic
regulation become dominant forces in cell activity. These edge
effects become increasingly relevant as more accurate results
are demanded from metabolic GENREs, and they represent the
major challenges to building models of an entire cell. We have
already described some efforts to incorporate dynamics and
transcriptional control into metabolic GENREs (Herrgard et al,
2006; Lee et al, 2008b). A framework was also recently
proposed for incorporating genome-scale kinetic data into
metabolic GENREs for whole-cell dynamic modeling (Jam-
shidi and Palsson, 2008). However, a standing challenge is the
determination of enough kinetic parameters to enable use of
such a framework. In some cases, it has been shown that
knowledge of a few key parameters can be sufficient for
predicting metabolic and regulatory dynamics (Lee et al,
2008b), but it is unclear how effective these reduced-
parameter models can be. Also, we are only now beginning
to tackle different temporal and spatial scales at work in cells,
and efforts to incorporate stochasticity into genome-scale
regulatory and metabolic models are in their infancy (Zhu
et al, 2004; Ghosh et al, 2007).

With transcriptional regulatory interactions, stochastic
effects, nonlinear enzyme regulation, and other unac-
counted-for cellular events intrinsically limiting the accuracy
of predictions, validation of metabolic GENREs becomes a
difficult and open-ended goal. Metabolic GENREs are often
validated with comparisons between in silico phenotypes and
various sets of in vivo data. However, no standard exists for
how a model should be validated, which is apparent from the
scattered representation of methods in validation of existing
models (see Figure 4). Recent efforts have been made to
quantify the level of discrepancy expected between in silico
and in vivo metabolic phenotypes. In one notable study, 465
single-gene mutants of S. cerevisiae were grown and quantified
under 16 different growth conditions each (Snitkin et al, 2008).
An analysis of the performance of two published S. cerevisiae
metabolic GENREs revealed sensitivity (correctly predicted
nonessential genes versus the total number of nonessential
genes) to be on the order of 95%, and specificity (correctly
predicted essentials versus the total number of essential genes)
to range between 50 and 60%. These numbers were
significantly improved to approximately 95–98% and 69–
86% (respectively) through disqualification of some in vivo
experiments, which were discovered on further analysis to be
in error. These final numbers are a gauge of the accuracy that
might be expected from metabolic GENREs of well-studied
organisms, given a preponderance of well-verified experi-
mental data for comparison of in vivo and in silico results.

Many of the most pressing questions in basic and applied
biology involve studying relationships between multiple cell
types. Comparisons of diseased versus normal networks in the
human will continue to yield insight into disease and drug
activity (Vo et al, 2007), whereas development of more
sophisticated modeling methods for interacting species (Sto-
lyar et al, 2007) will enable increasingly realistic prediction of
communal phenotypes. Evolutionary genomics will be en-
riched by the incorporation of network data into the analysis of
species relationships. Also, methods developed to examine
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dynamic model activity (Klipp et al, 2005; Jamshidi and
Palsson, 2008), to integrate metabolic models with regulatory
and signaling information (Lee et al, 2008b), and to model

interactions on multiple spatial or temporal scales (Chavali
et al, 2008a; Zhang et al, 2009) have yet to be significantly
applied to metabolic GENREs. These extensions of metabolic
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Figure 4 Analyses of metabolic GENREs. A heat map of studies that have been published for all reconstructed species (y-axis) using a variety of analysis techniques
(x-axis). Analyses are broken into two categories: ‘model validation,’ indicating the use of a technique in a publication of a new metabolic GENRE to establish the validity
of a model, and ‘model-guided discovery,’ indicating the use of a technique either in an original metabolic GENRE publication or in a follow-up study to perform one of the
five types of studies outlined in this paper. Species are grouped according to the most relevant broad category to which the metabolic GENRE has been applied. Colors in
the heat map indicate the number of publications performing the given analysis on a metabolic GENRE of the organism. References for each species in the figure are
as follows: M. barkeri (Becker et al, 2006; Feist et al, 2006; Kun et al, 2008; Mahadevan and Lovley, 2008; Wright and Wagner, 2008), R. etli (Resendis-Antonio
et al, 2007), Synechocystis sp. (Kun et al, 2008), M. genitalium (Suthers et al, 2009), H. sapiens (Duarte et al, 2007; Ma et al, 2007; Vo et al, 2007;
Shlomi et al, 2008, 2009; Veeramani and Bader, 2009), M. musculus (Sheikh et al, 2005; Quek and Nielsen, 2008; Selvarasu et al, 2009), A. thaliana (Radrich
et al, http://hdl.handle.net/10101/npre.2009.3309.1), H. influenza (Edwards and Palsson, 1999; Papin et al, 2002a; Papin et al, 2002b; Price et al, 2002; Price
et al, 2003; Schilling and Palsson, 2000), H. pylori (Price et al, 2002, 2003; Schilling et al, 2002; Papin et al, 2002b; Thiele et al, 2005; Becker et al, 2006; Guimera
et al, 2007; Kun et al, 2008; Wright and Wagner, 2008), M. tuberculosis (Beste et al, 2009; Beste et al, 2007; Jamshidi and Palsson, 2007; Kun et al, 2008),
N. meningitides (Baart et al, 2007a, 2007b), P. aeruginosa (Oberhardt et al, 2008), S. aureus (Becker and Palsson, 2005; Becker et al, 2006; Heinemann
et al, 2005; Kun et al, 2008; Samal et al, 2006), S. typhimurium (Abuoun et al, 2009; Raghunathan et al, 2009), Y. pestis (Navid and Almaas, 2009),
P. gingivalis (Mazumdar et al, 2009), L. major (Chavali et al, 2008b), C. reinhardtii (Boyle and Morgan, 2009), H. salinarum (Gonzalez et al, 2008),
B. subtilis (Oh et al, 2007; Henry et al, 2009a, b), C. acetobutylicum (Lee et al, 2008a; Senger and Papoutsakis, 2008a), C. glutamicum (Kjeldsen and
Nielsen, 2009; Shinfuku et al, 2009), L. plantarum (Teusink et al, 2006, 2009; Stevens et al, 2008), L. lactis (Oliveira et al, 2005; Kun et al, 2008),
M. succiniciproducens (Kim et al, 2007; Song et al, 2008; Lee et al, 2008c), P. putida (Nogales et al, 2008; Puchalka et al, 2008), S. coelicolor (Borodina
et al, 2005; Hiratsuka et al, 2008; Kun et al, 2008), S. thermophilus (Pastink et al, 2009), A. nidulans (David et al, 2006, 2008; Panagiotou et al, 2008, 2009),
A. niger (Andersen et al, 2008; Thykaer et al, 2009), A. oryzae (Vongsangnak et al, 2008), S. cerevisiae (Famili et al, 2003; Forster et al, 2003; Daran-Lapujade
et al, 2004; Duarte et al, 2004; Prinz et al, 2004; Kuepfer et al, 2005; Patil and Nielsen, 2005; Becker et al, 2006; Cakir et al, 2006; Herrgard et al, 2006, 2008;
Raghevendran et al, 2006; Samal et al, 2006; Usaite et al, 2006; Bundy et al, 2007; Harrison et al, 2007; Rokhlenko et al, 2007; Shlomi et al, 2007; Chechik et al, 2008;
Deutscher et al, 2008; Kun et al, 2008; Mahadevan and Lovley, 2008; Nookaew et al, 2008; Notebaart et al, 2008; Wright and Wagner, 2008; Zelle et al, 2008; Cimini et al,
2009; Mintz-Oron et al, 2009; Mo et al, 2009), A. baylyi (Durot et al, 2008), G. sulfurreducens (Izallalen et al, 2008; Kun et al, 2008; Leang et al, 2009; Mahadevan
et al, 2006; Mahadevan and Lovley, 2008; Risso et al, 2008; Scheibe et al, 2009; Segura et al, 2008), G. metallireducens (Sun et al, 2009).
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GENREs will likely yield great insight in the future. Metabolic
GENREs represent a bold attempt to characterize the ‘black
box’ of genotype–phenotype relationships within a fully
mechanistic model. These models have already led to many
advances, ranging from theoretical to highly practical applica-
tions. The five categories outlined in this paper show many of
these uses, and explain both the limitations and the promise of
metabolic GENREs. As systems biology matures and continues
to deepen the marriage between cutting-edge wet-lab technol-
ogy and sophisticated computational modeling, metabolic
GENRE will serve a crucial function in the years to come.
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