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Abstract. Chitinase‑3 like‑protein‑1 (CHI3L1), a glycopro‑
tein belonging to the glycoside hydrolase family 18, binds to 
chitin; however, this protein lacks chitinase activity. Although 
CHI3L1 is not an enzyme capable of degrading chitin, it plays 
significant roles in abnormal glucose and lipid metabolism, 
indicating its involvement in metabolic disorders. In addition, 
CHI3L1 is considered a key player in inflammatory diseases, 
with clinical data suggesting its potential as a predictor of 
cardiovascular disease. CHI3L1 regulates the inflamma‑
tory response of various cell types, including macrophages, 
vascular smooth muscle cells and fibroblasts. In addition, 
CHI3L1 participates in vascular remodeling and fibrosis, 
contributing to the pathogenesis of cardiovascular disease. At 
present, research is focused on elucidating the role of CHI3L1 
in cardiovascular disease. The present systematic review was 
conducted to comprehensively evaluate the effects of CHI3L1 
on cardiovascular cells, and determine the potential implica‑
tions in the occurrence and progression of cardiovascular 
disease. The present study may further the understanding 
of the involvement of CHI3L1 in cardiovascular pathology, 
demonstrating its potential as a therapeutic target or biomarker 
in the management of cardiovascular disease.
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1. Introduction 

Cardiovascular disease remains the predominant cause of 
morbidity and mortality worldwide, accounting for almost 
one‑third of global mortality  (1). Despite advancements in 
diagnosis and treatment, effectively managing the progression of 
cardiovascular disease and enhancing patient outcomes in a timely 
manner continue to present significant challenges (2). Therefore, 
the early prediction and diagnosis of cardiovascular disease are 
crucial for the development of effective treatment options. 

Previous studies have highlighted the significant role of 
chronic inflammation in the progression of cardiovascular 
disease (3‑5). At present, research is focused on establishing 
treatment targets and regulating inflammation to enhance cardio‑
vascular outcomes (6‑8). Chitinase‑3‑like protein 1 (CHI3L1) 
is a pro‑inflammatory protein that plays a role in the develop‑
ment of chronic inflammatory diseases in multiple systems, 
including the nervous, digestive and respiratory systems. 
CHI3L1 exhibits potential as a biomarker for various inflam‑
matory diseases (9‑11). Results of previous studies revealed that 
CHI3L1 is closely associated with inflammatory cardiovascular 
disease, such as atherosclerosis (AS), highlighting its potential 
as a predictive marker for cardiovascular disease (12,13) (Fig. 1). 
The present article systematically reviewed the role of CHI3L1 
in the occurrence and development of cardiovascular disease. 

2. CHI3L1 is associated with cardiovascular disease risk 
factors 

Biological characteristics of CHI3L1. CHI3L1, also known 
as breast regression protein 39 in mice and YKL‑40 in 
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humans, belongs to the glycoside hydrolase 18 family and 
is categorized as a non‑enzymatic chitinase‑like protein. In 
humans, CHI3L1 is encoded by the CHI3L1 gene located 
on chromosomes 1q31‑1q32. The gene consists of 7,498 base 
pairs and 10 exons, with genomic DNA that is ~8 kbp in 
length (14). The name ‘YKL‑40’ reflects the molecular weight 
of the protein, at ~40 kDa, and the presence of the first three 
amino acids in the N‑terminal sequence; namely, tyrosine (Y), 
lysine (K) and leucine (L) (15,16). Crystal diffraction studies 
revealed that CHI3L1 contains two distinct domains; namely, a 
(β/α)8‑barrel domain, with a carbohydrate binding cleft of ~43 
amino acids at the end of the β chain, and a second domain 
composed of an α helix and six inverted parallel β strands (17). 
This structural analysis suggested that CHI3L1 interacts 
with heparin and different cytokines, such as interleukin‑13 
receptor α2 (IL‑13Rα2), CD44  (18). Despite its ability to 
bind to chitin, CHI3L1 lacks chitinase activity due to muta‑
tions in two critical catalytic residues, rendering it incapable 
of breaking down chitin or any other carbohydrates (19,20). 
CHI3L1 is secreted by various cell types, including macro‑
phages, neutrophils, chondrocytes, synoviocytes, osteoblasts 
and smooth muscle cells (SMCs) (15). Although the specific 
function of CHI3L1 remains to be elucidated, this protein has 
been implicated in various biological processes, including cell 
proliferation, tissue remodeling, extracellular matrix (ECM) 
turnover, inflammation and fibrosis (21). 

CHI3L1 is closely associated with inflammation and regu‑
lates the occurrence of inflammatory responses (22). A previous 
study using CHI3L1‑/‑mice revealed that CHI3L1 promoted the 
activation and enrichment of CD4+T cells and macrophages, 
subsequently regulating the TH2 inflammatory response. In addi‑
tion, CHI3L1 promotes the production of the TH2 inflammatory 
factor, IL‑13 (23). In addition, CHI3L1 induced macrophages 
to secrete monocyte chemotactic protein‑1 (MCP‑1), C‑X‑C 
motif chemokine ligand 2 (CXCL2), matrix metalloproteinase 9 
(MMP‑9) and other pro‑inflammatory factors, promoting tumor 
growth and metastasis in a mouse model of breast cancer (24). 
In addition to promoting the production of inflammatory cyto‑
kines, CHI3L1 acts as an inflammatory target molecule that is 
regulated by a variety of other cytokines and hormones (25). 
For example, inflammatory factors; namely, TNF‑α and IL‑1, 
induce the expression of CHI3L1 in chondrocytes through the 
NF‑κB signaling pathway (26,27). Thus, CHI3L1 demonstrates 
potential as a biomarker and therapeutic target. In Alzheimer's 
disease, the level of CHI3L1 in cerebrospinal fluid (CSF) is 
considered a biomarker of early neuroinflammation, which may 
be indicative of stress‑induced neurotoxicity (28,29). CHI3L1 
is also associated with the degree of liver inflammation and 
fibrosis; thus, exhibiting potential as a therapeutic target (10).

Metabolic diseases. Type 2 diabetes mellitus (T2D), caused by 
obesity and insulin resistance, is characterized by abnormal 
lipid metabolism, which effects the occurrence of cardiovas‑
cular disease (30,31). Clinical data suggests that obese patients 
with T2D exhibit elevated CHI3L1 serum levels (Fig. 1) (32). 
Notably, elevated CHI3L1 levels are associated with insulin 
resistance in T2D (33,34). In addition, plasma CHI3L1 is asso‑
ciated with fasting plasma glucose and plasma IL‑6 levels (35) 
and the development of coronary artery disease in patients 
with asymptomatic T2D (36).

Adiponectin is a colloidal protein secreted by adipose 
tissue, with a molecular weight of 29 kDa. Plasma adiponectin 
not only plays a role in obesity‑related insulin resistance, but 
also stimulates the phosphorylation and activation of AMP 
kinase. Thus, adiponectin produces anti‑inflammatory effects 
and protects endothelial cells (37). Results of a previous study 
revealed that CHI3L1 and adiponectin expression levels were 
elevated in patients with asymptomatic T1D in a European 
Mediterranean population, thus highlighting the potential of 
these proteins as markers of early inflammation in diabetic 
patients (38). 

Collectively, these results reveal that CHI3L1 may be 
involved in insulin resistance, metabolic syndrome char‑
acterized by obesity and cardiovascular and metabolic 
disorders (39,40). Further research is required to fully elucidate 
the mechanisms underlying these associations and to explore 
the potential of CHI3L1 as a therapeutic target or biomarker 
for T1D/T2D and the associated complications.

Vascular inflammation. Vascular inflammation is also a 
common cause of numerous cardiovascular diseases  (41). 
Giant cell arteritis (GCA) is the most common systemic 
vasculitis in adults (42), and macrophages mediate the destruc‑
tion and formation of blood vessels (43,44). Abdominal aortic 
aneurysm is a vascular inflammatory disease characterized 
by inflammatory cell infiltration, neovascularization, and the 
production of various proteases and cytokines. The formation 
of abdominal aortic aneurysm is associated with the degen‑
eration of aortic elastic mediators, and vascular rupture is 
considered the most serious complication (45). Serum levels 
of CHI3L1 are elevated in patients with GCA and abdominal 
aortic aneurysm (43,44,46). 

AS is also a vascular inflammatory disease. The lesion site 
is infiltrated by inflammatory cells, such as macrophages and 
T lymphocytes, and pro‑inflammatory cytokines produced 
by these immune cells are a key cause of plaque rupture. In 
addition, results of previous studies reveal that regulating the 
gene expression of inflammatory factors affects the occurrence 
and development of AS (47,48). Results of previous studies 
also emphasize that AS progression is closely associated with 
CHI3L1 expression levels. Thus, CHI3L1 exhibits potential as 
a marker of coronary AS severity and plaque instability (49,50). 
Results of previous studies demonstrate that serum CHI3L1 
expression levels are associated with arterial wall fibrosis and 
arterial stiffness (51‑53). These findings support the notion that 
CHI3L1 upregulates abnormal lipid metabolism and vascular 
inflammation, which are risk factors for cardiovascular disease. 
Collectively, these results suggest that CHI3L1 may play a 
role in accelerating the development of cardiovascular disease 
through promoting the progression of these risk factors.

3. CHI3L1 is involved in regulating the function of 
vascular‑related cells

CHI3L1 exhibits potential as a predictor of cardiovascular 
disease. Previous research indicates that CHI3L1 serum levels 
may affect the risk of adverse cardiovascular outcomes and 
mortality (54). Results of a previous study using clinical data 
reveal that CHI3L1 levels are elevated in patients with cardio‑
vascular disease and these elevated levels are often associated 
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with disease progression (55). In addition, CHI3L1 is associated 
with mortality in individuals with cardiovascular disease (56). 
Serum CHI3L1 levels are increased in patients with essential 
hypertension, which is positively correlated with the incidence 
of hypertension in pre‑hypertensive subjects (57). Monitoring 
CHI3L1 serum levels may aid in predicting the occurrence 
of cardiovascular events in patients with hypertension during 
long‑term follow‑up for 7.89±0.12  years  (58). Results of 
previous studies also reveal that increased CHI3L1 serum 
levels in patients with aortic stenosis and peripheral artery 
disease are associated with a poor prognosis (59,60). Notably, 
CHI3L1 levels are elevated during the acute phase of ischemic 
stroke and are independently associated with recurrent stroke, 
complex vascular events and adverse functional outcomes (61). 
In patients with atrial fibrillation, CHI3L1 is highly expressed 
in epicardial tissue. Thus, serum CHI3L1 levels may be used 
to predict the recurrence of atrial fibrillation and may be 
associated with atrial fibrosis (62,63). Assessment of serum 
CHI3L1 may exhibit potential in identifying the risk of future 
cardiovascular events in additional diseases, such as essential 

thrombocythemia and polycythemia vera (64). In addition, 
CHI3L1 may affect the progression of coronary artery disease 
(CAD), affecting the stability of the fibrous cap of athero‑
sclerotic plaques and the occurrence of complications. Thus, 
CHI3L1 may exhibit potential as significant indicator for the 
early diagnosis of CAD (65,66). Results of a previous study 
demonstrated a strong correlation between CHI3L1 levels and 
the progression of cardiovascular disease (67). These levels not 
only allow for the monitoring of disease progression, but also 
offer effective prediction of mortality caused by cardiovas‑
cular events, showcasing the potential of CHI3L1 as a valuable 
predictor of cardiovascular disease. Results of previous studies 
also highlight the effect of CHI3L1 on cardiovascular disease 
through the regulation of cardiovascular‑related cells. In 
disease models of AS and pulmonary hypertension, CHI3L1 
is closely associated with functions in specific cells, including 
macrophages and SMCs (25,55,68,69). 

CHI3L1 and macrophages. During the maturation of macro‑
phages, the expression of CHI3L1 is upregulated due to the 

Figure 1. CHI3L1 is associated with a variety of diseases. CHI3L1 expression is increased in various inflammatory diseases affecting different systems. 
In Alzheimer's disease, elevated CHI3L1 expression levels in cerebrospinal fluid contribute to neurotoxicity and neuroinflammation. In intervertebral disc 
degeneration, CHI3L1 reduces the expression of P21 and MMP‑13, thereby protecting nucleus pulposus cells. Immune cells release CHI3L1 to regulate 
cardiovascular‑associated tissue cells, which may exacerbate disease, such as abdominal aortic aneurysm and giant cell arteritis. CHI3L1 also affects glucose 
metabolism and the production of inflammatory factors, such as IL‑6, which may increase the risk of cardiovascular disease, including type 1 and type 2 
diabetes. In addition to adiponectin, CHI3L1 exhibits potential as a marker for diabetes. In addition, elevated levels of serum CHI3L1 are observed in inflam‑
matory diseases, such as hypersensitivity pneumonitis, allergic asthma, psoriasis and rheumatoid arthritis. CHI3L1, chitinase‑3 like‑protein‑1; CSF, cerebral 
spinal fluid.
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binding of nuclear transcription factor sp1 to the promoter of 
the CHI3L1 gene. Thus, CHI3L1 is considered a marker of 
macrophage maturation (70). 

Results of a previous study indicated that individuals 
with Prader‑Willi syndrome (PWS), a neurodevelopmental 
disorder, exhibit an increased risk of obesity and cardiovas‑
cular disease (71). The occurrence of PWS is associated with 
compromised macrophage suppression and increased ECM 
remodeling. Notably, patients with PWS exhibit elevated levels 
of MMP‑9 and myeloperoxidase, along with reduced levels of 
macrophage inhibitory factor. In addition, patients with PWS 
exhibit elevated CHI3L1 expression levels, highlighting the 
potential association between CHI3L1 and macrophages (72). 
CHI3L1 expression has been detected in CD68+ macrophages 
and circulating monocytes in GCA, mediated by B cells (25). 
Cytokines produced by B cells promote the transformation of 
macrophages into pro‑inflammatory phenotypes, and results of 
this study also demonstrated that CHI3L1, IL‑6, IL‑1β, TNF‑α 
and MMP‑9 expression levels were significantly increased (43). 
In GCA, CHI3L1 is mainly derived from CD206+MMP9+ 
macrophage subsets. As an upstream regulator of MMP‑9+ 
macrophages, CHI3L1 binds to the IL‑13Rα2, which is 
highly expressed in the vascular wall of GCA layers. Notably, 
IL‑13Rα2 mediates tissue destruction and angiogenesis. In 
macrophages, CHI3L1 knockdown rescues the aforementioned 
effects (44). In M1 macrophages, IL‑6 decreases the expression 
of microRNA (miR)‑24‑1, and upregulates the expression of 
CHI3L1 and inflammatory mediators, TNF‑α and C‑C motif 
chemokine ligand 2 (CCL2)\MCP‑1 during the progression of 
vascular inflammation. IL‑6 mediates these effects through 
RelA (p65)/Nfkb1 (p50). In addition, upregulated CHI3L1 and 
its downstream inflammatory factor, CCL2, promote SMC 
migration through JNK and ERK phosphorylation pathways, 
stimulates the expression of vascular endothelial cell adhesion 
molecules, such as vascular cell adhesion molecule‑1, intercel‑
lular cell adhesion molecule‑1 and P‑selectin and enhances the 
adhesion function of monocytes (Fig. 2) (46). 

The formation of plaque following accumulation of fat 
and/or fibrous material in the lining of the arteries is a major 
feature of AS, which involves the phagocytosis of plasma 
lipoproteins deposited in the lining of the arteries, with macro‑
phages transforming them into foam cells (73). Serum CHI3L1 
is significantly elevated in patients with symptomatic carotid 
AS (74). The initiation factor of AS, oxidized low‑density 
lipoprotein (OX‑LDL), also stimulates macrophages to secrete 
CHI3L1. These results suggest that CHI3L1 may play a role in 
the development of vascular diseases characterized by macro‑
phage/monocyte accumulation and activation (Fig. 2) (25). 
Results of a previous study reveal that CHI3L1 gene knockout 
suppresses the expression of pro‑inflammatory mediators, 
decreases plaque lipid and macrophage levels, and increases 
collagen and SMC content in ApoE (‑/‑) mice (75). In addition, 
CHI3L1 inhibits the activation of Caspase‑9 and decreases 
the apoptosis of macrophages, resulting in plaque fiber cap 
damage (76). 

MCP‑1 is a chemokine secreted by adipose tissue that 
induces monocyte migration and macrophage infiltration and 
participates in the formation of atheromatous lipostreaks and 
the development of unstable plaques (77). Results of previous 
studies demonstrate that patients with obesity may exhibit 

increased CHI3L1 expression levels (78). However, CHI3L1 
expression levels are reduced following weight loss in these 
patients. These results indicate that increased CHI3L1 expres‑
sion levels induced the excessive accumulation of macrophages 
in obese patients, leading to a sub‑inflammatory state and the 
occurrence of AS and other diseases (39,79,80).

Collectively, these results demonstrate that CHI3L1 is not 
only secreted by macrophages, but also acts on macrophages, 
facilitating macrophage activation and inflammation. This, in 
turn, leads to damage in cardiac vascular tissue. Thus, CHI3L1 
may play a key role in the advancement of AS. Targeted 
elimination of CHI3L1 may delay the pathological progres‑
sion of AS, highlighting its potential as a specific target in the 
treatment of AS, through the inhibition of inflammation.

CHI3L1 and endothelial cells. Results of a previous study 
reveal that CHI3L1 stimulated the chemotaxis and migra‑
tion of human umbilical cord vascular endothelial cells (81). 
Sun et al (68) demonstrate that CHI3L1 inhibits endothelial 
cell apoptosis during vascular remodeling in pulmonary 
hypertension, by co‑binding to the transmembrane protein 
219 (TMEM219) receptor and the corresponding IL‑13Rα2 
receptor. In addition, CHI3L1 upregulates oxygen regulatory 
protein through the peroxisome proliferator‑activated receptor 
(PPAR)‑δ‑dependent pathway, reducing lipopolysaccharide 
(LPS)‑induced phosphorylation of NFκB and inhibiting 
the expression of endothelial cell adhesion molecules, such 
as ICAM‑1, VCAM‑1 and E‑selectin (Fig. 2)  (82). Results 
of a previous study revealed that CHI3L1 and Lp‑PLA2 
RNAi in combination are superior to Lp‑PLA1 or CHI3L1 
RNAi alone in the treatment of AS  (83). In a transgenic 
mouse model of amyloid precursor protein, miR‑342‑3p 
targeted the CHI3L13'‑untranslated region (UTR) to inhibit 
CHI3L1 expression in endothelial cells, thereby inhibiting 
IL‑6‑induced monocyte‑endothelial cell adhesion and 
platelet‑derived growth factor (PDGF‑BB)‑induced cell 
migration and proliferation (Fig. 2) (69). Notably, CHI3L1 
regulates endothelial cells to promote tumor angiogenesis. 
Small interfering RNA‑mediated CHI3L1 knockdown inhibits 
tumor growth rate and blood vessel density in the glioblas‑
toma U87 cell line. Anti‑VEGF antibody exerts no effect on 
CHI3L1‑mediated endothelial angiogenesis; thus confirming 
that CHI3L1 promotes tumor blood vessel formation as an 
angiogenic factor, independent of VEGF (84,85). In xenograft 
experiments, CHI3L1 expressed by tumor‑derived mural cells 
(GSDCs) activates neural cadherin/β‑catenin/smooth muscle α 
actin (SMA) and VE‑cadherin/β between GSDC and endothe‑
lial cells. The catenin/actin pathway plays a role in mediating 
intercellular adhesion and permeability, enhancing the inter‑
action between GSDCs and endothelial cells and stabilizing 
the vascular network. Results of a previous study reveal that 
CHI3L1 silencing in GSDCs leads to a significant reduction 
in tumor blood vessel density and stability, ultimately inhib‑
iting tumor growth (86). In osteoblastoma cell lines; namely, 
MG‑63 and U87, mouse monoclonal anti‑CHI3L1 antibodies 
effectively inhibit the CHI3L1‑induced activation of MAPK 
and ERK (1/2), thereby inhibiting the tube formation of micro‑
vascular endothelial cells (87). CHI3L1 also interacts with 
TGF‑β to increase endothelial cell permeability and promote 
endothelial‑to‑mesenchymal transition (EMT). The treatment 
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of bovine pulmonary artery endothelial cells with CHI3L1 
in combination with TGF‑β downregulates VE‑cadherin 
in vascular endothelial cells and reduces the expression of 
α‑SMA, a mesenchymal cell marker (Fig.  2)  (68). Thus, 
CHI3L1 may play a role in promoting tumor angiogenesis and 
in mediating endothelial cell apoptosis and EMT. Targeting 
CHI3L1 may inhibit tumor growth, thus highlighting the 
potential of this protein in the development of novel treatment 
strategies.

CHI3L1 and fibroblasts. Fibrosis is a tissue repair response 
that relies on fibroblast activation and is characterized by the 
excessive accumulation of ECM components, such as collagen 
and fibronectin (88). CHI3L1 stimulates fibroblast growth in 

a dose‑dependent manner through MAPK and PI3K‑AKT 
signaling pathways. Results of a previous study reveal that 
CHI3L1 mediates mitotic reactions, stimulates the proliferation 
of connective tissue cells and participates in fibrosis (89). During 
the wound healing process in diabetic foot ulcer, fibroblasts 
overexpressing CHI3L1 are enriched and M1‑type macro‑
phages are polarized (90). Notably, CHI3L1 is associated with 
atrial fibrosis in patients with atrial fibrillation (62). Results of a 
previous study reveal that CHI3L1 affects the degree of fibrosis 
in mouse cardiomyocytes by modulating the long non‑coding 
(lnc)RNA TUG1/miR‑1‑495‑3p/ETS proto‑oncogene 1 (ETS1) 
axis. CHI3L1 increases the expression of lncRNA TUG1 and 
reduces the expression of miR‑495‑3p, thereby weakening the 
targeted binding of miR‑495‑3p to the 3'UTR sequence of the 

Figure 2. CHI3L1 regulates the function of vascular‑associated cells. In giant cell arteritis, MMP‑9 and CHI3L1 secreted by CD206+ macrophages medi‑
ated vascular rupture by binding to IL‑13Rα2. In a model of pulmonary hypertension, CHI3L1 inhibits endothelial cell apoptosis through the co‑binding of 
TMEM219 receptor and IL‑13Rα2 receptor and acts with TGF‑β to mediate EMT. CHI3L1 upregulates ORP150 through the PPAR‑pathway, inhibits the 
expression of endothelial cell adhesion molecules, such as ICAM‑1, VCAM‑1 and E‑selectin, and weakens the adhesion between endothelial cells and mono‑
cytes. In APP transgenic mice, endothelial cell microRNA‑342‑3p binds to the CHI3L1 3'‑untranslated region to inhibit CHI3L1 expression, thereby inhibiting 
the adhesion between endothelial cells and monocytes. In addition, both antibody‑mediated and small interfering RNA‑induced CHI3L1 knockdown inhibits 
endothelial angiogenesis. In asthma bronchial remodeling, CHI3L1 promotes smooth muscle cell proliferation and migration through PAR‑2, AKT, ERK 
and p38‑dependent mechanisms and the MAPK pathway. In atherosclerosis, CHI3L1 may enlarge plaques and increase plaque stability. CHI3L1 mediates 
mitosis through MAPK and PI3K‑AKT signaling pathways, stimulates fibroblast growth and promotes mouse cardiomyocyte fibrosis through regulating the 
long non‑coding RNA TUG1/microRNA‑1‑495‑3p/ETS1 axis. CHI3L1, chitinase‑3 like‑protein‑1; IL‑13Rα2, interleukin‑13 receptor α2, TMEM219, trans‑
membrane protein 219; EMT, endothelial‑to‑mesenchymal transition; ORP 150, 150‑kDa oxygen‑regulated protein; PPAR, Peroxisome proliferator‑activated 
receptor; ICAM‑1, intercellular cell adhesion molecule‑1; VCAM‑1, vascular cell adhesion molecule‑1; APP, amyloid precursor protein; MAY, monoclonal 
anti‑YKL‑40 antibody; TMEM, transmembrane; EMT, endothelial‑to‑mesenchymal transition; TUG1, taurine upregulated 1; ETS1, ETS proto‑oncogene 1; 
ox‑LDL, oxidized low‑density lipoprotein.
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ETS1 gene. Thus, ETS1 gene expression levels are increased 
in mice, ultimately leading to increased levels of myocardial 
fibrosis (Fig. 2) (91). Collectively, these studies revealed that 
CHI3L1 may play a crucial role in the advancement of fibrosis 
in cardiovascular patients; thus highlighting its potential in the 
development of novel treatment options for fibrosis.

CHI3L1 and SMCs. CHI3L1 participates in the morphological 
and phenotypic transformation of SMCs (92). During bronchial 
remodeling in patients with asthma, CHI3L1 stimulates IL‑8 
expression through PAR‑2, AKT, ERK and P38‑dependent 
mechanisms and promotes the proliferation and migration 
of bronchial SMCs  (93,94). Although pulmonary artery 
SMCs do not express CHI3L1, CHI3L1 interacts with the 
G‑protein‑coupled receptor, chemoattractant receptor‑homolo‑
gous molecule expressed on Th2 cells (CRTH2), expressed by 
vascular SMCs. Thus, CHI3L1 promotes the proliferation of 
vascular SMCs and the formation of fibrosis during pulmonary 
hypertension vascular remodeling (68). TGF‑β, a stimulator 
of hypoxia and fibrosis, also upregulates the expression of 
CRTH2, which exerts synergistic effects with CHI3L1 (68). 
Results of a previous study demonstrate that CHI3L1 and 
α‑SMA co‑localize in unstable plaques and CHI3L1 inhibits 
vascular SMC proliferation. In apo‑/‑mouse, CHI3L1 gene 
knockout results in a decrease in α‑SMA+ cells localized in 
the plaque cap region and decreases plaque stability (95,96) 
(Fig. 2). In addition, in the presence of the atherosclerotic 
stimulant OX‑LDL, large tumor suppressor kinase 2 (LATS2) 
expression levels are increased in human carotid SMCs. In 
addition, LATS2 knockdown in vitro inhibits the expression 
of the macrophage marker, advanced glycation end‑product 
receptor 3 (LGALS3), and inflammatory cytokines, such as 
IL‑6 and IL‑1β. Results of a previous study highlights that 
CHI3L1 may reduce the expression of LATS2 and homologous 
domain‑associated protein kinase 2 (96). These results reveal 
the role of CHI3L1 in the transition to a synthetic phenotype 
and in inhibiting SMC proliferation in atherosclerosis. Notably, 
the regulatory effect of CHI3L1 on SMCs varies depending on 
the disease; thus, further investigations are required to eluci‑
date the specific underlying mechanisms.

Collectively, these results suggest that CHI3L1 may play a 
role as a crucial mediator in the development and progression 
of cardiovascular disease. Prolonged nicotine consumption 
exacerbates inflammatory responses through upregulation of 
CHI3L1, thereby heightening the risk and advancement of 
abdominal aortic aneurysm. Notably, this may be associated 
with reduced microRNA‑24 expression (97). In male patients 
with end‑stage renal disease, CHI3L1 expression is associated 
with vascular calcification, indicating the sex‑specific role of 
CHI3L1 as a novel marker for cardiovascular disease that may 
affect the development of cardiovascular comorbidities (22). 
Through proteomics and Mendelian randomization, results 
of a previous study reveal that CHI3L1 acts as a circulating 
protein that is causally associated with the treatment of heart 
failure. Thus, CHI3L1 may exhibit potential in the treatment 
of heart failure (98).

CHI3L1 is not only associated with the development of 
cardiovascular disease, but also serves as a valuable indicator 
for monitoring the prognosis of patients. Notably, CHI3L1 may 
affect disease progression by modulating the functional status 

of cells associated with the cardiovascular system. As a novel 
predictor of cardiovascular disease, CHI3L1 exhibits potential 
as a target for disease management.

4. CHI3L1 regulates molecules involved in cardiovascular 
disease

CHI3L1 and chemokines. As signaling proteins, chemo‑
kines bind to corresponding receptors on the cell surface, 
to play key roles in angiogenesis and in the regulation of 
leukocyte adhesion and migration (99). Notably, CHI3L1 
gene expression is negatively correlated with the expres‑
sion of CCL2/MCP‑1. Interference with the CHI3L1 gene 
inhibits the occurrence of inflammation in AS  (83). In 
addition, CHI3L1 induces the secretion of IL‑8 and CCL2 
in macrophages, promoting the migration of macrophages 
and endothelial cells (100). In lung macrophages, CHI3L1 
promotes CXCL2 production. Results of a previous study 
also demonstrate that CHI3L1 promotes the expression of 
LPS‑treated macrophage angiogenesis factors, leading to 
further increases in angiogenesis (101). 

CHI3L1 and adhesion molecules. As an inflammatory 
molecule, CHI3L1 is used in combination with VCAM‑1 
and ICAM‑1 to evaluate the occurrence of vascular inflam‑
mation  (102). Serum CHI3L1, VCAM‑1 and ICAM‑1 are 
significantly increased in vascular endothelial injury and 
vascular inflammation induced by high cholesterol  (103). 
Results of a previous study reveal that CHI3L1 promotes a 
decline in endothelial barrier function by reducing the expres‑
sion of VE‑cadherin (68). During the formation of tumor blood 
vessels, CHI3L1 stimulates endothelial cells to upregulate the 
membrane receptor sydecan‑1 protein to coordinate integrin 
αvβ3, triggering a signaling cascade of focal adhesion kinase 
and ERK‑1/2; thus promoting angiogenesis (104). Proteoglycan 
also plays a key role in regulating cell adhesion and migration. 
Notably, CHI3L1 binds to proteoglycans, such as chitosaccha‑
rides and hyaluronic acid; thus playing a regulatory role in a 
variety of diseases (105). 

CHI3L1 and ILs. ILs play a key role in inflammatory response 
and regulate the progression of AS (106). In high‑cholesterol 
rats with vitamin D deficiency, IL‑6 and CHI3L1 levels are 
simultaneously increased, promoting vascular inflamma‑
tion (103). Results of a previous study reveal that CHI3L1 
specifically binds to IL‑13Rα2, increases the phosphoryla‑
tion of ERK1/2 and JNK, promotes the recruitment of 
members of the activator protein‑1 family in the nucleus, 
targets the MMP family and degrades the ECM (107). In 
lung tissue and airway remodeling, IL‑13 upregulates the 
expression of CHI3L1 and plays a key role in the inflamma‑
tory response (108). 

CHI3L1 and MMPs. MMPs are a class of zinc‑dependent 
endoproteases secreted by endothelial cells, vascular SMCs, 
fibroblasts, macrophages and neutrophils. MMP expression 
levels are associated with vascular remodeling and stiff‑
ening and plaque stability (109). In AS, MMP‑7 regulates 
the function of macrophages, leading to the generation of 
atherosclerotic unstable plaques. MMP‑2, MMP‑9, MMP‑13, 
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MMP‑35 and MMP‑42 increase the risk of plaque rupture 
through degradation of arterial elastin and increasing 
vascular calcification, leading to further AS develop‑
ment (109,110). Results of a previous study demonstrated that 
both MMP‑9 and CHI3L1 were independent risk factors for 
unstable plaque formation (111). Mechanical stress, including 
shear force, is involved in vascular remodeling through the 
regulation of MMPs. Results of a previous study reveal that 
vascular inflammatory factor MMP‑8 expression levels 
are decreased in a model of AS, following CHI3L1 gene 
knockout (83). 

5. Conclusions 

Results of previous studies reveal that CHI3L1 is closely asso‑
ciated with the occurrence and development of cardiovascular 
disease; thus stressing the potential of CHI3L1 in predicting 
the prognosis of patients and the management of disease. 
However, the present study possesses limitations. The regula‑
tory function of CHI3L1 in SMCs in atherosclerotic diseases 
is associated with cell‑cell interactions and the atherosclerotic 
microenvironment. Additional negative feedback pathways 
may play a role in CHI3L1 synthesis and secretion and these 
were not investigated in the present study. In addition, results 
of previous studies were inconsistent in demonstrating the role 
of CHI3L1 in cells, which may be due to differing disease 
processes and experimental environments. However, CHI3L1 
may promote plaque formation in the early stage of AS, 
inhibit plaque progression in the late stage and improve plaque 
stability. Through the analysis of clinical samples, results 
of a previous study revealed that CHI3L1 serum levels are 
elevated in patients with cardiovascular disease, suggesting 
that CHI3L1 may promote the development of cardiovascular 
disease. Thus, further experiments are required to determine 
the mechanisms underlying CHI3L1 in the prevention and 
treatment of cardiovascular disease. 
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