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PURPOSE AND APPROPRIATE SAMPLE TYPE

THIS 16-color, 18-parameter panel was designed to allow a detailed dissection of

human B cell subsets and their phenotype in peripheral blood mononuclear cells

(PBMC) in healthy donors and in the context of chronic viral diseases such as

Human Immunodeficiency Virus 1 (HIV-1) infection. The panel encompasses a

range of backbone markers for the accurate definition of common B cell subsets with

a focus on memory B cells and a unique collection of phenotypic markers (chemo-

kine receptors, cytokine receptor, B cell receptor isotypes, and proliferation marker)

not combined in multicolor flow cytometry B cell phenotyping thus far. This new

panel allows highly detailed phenotypic and functional investigations of B cell sub-

sets. The panel was validated using cryopreserved PBMC from healthy and HIV-1

infected donors allowing the retrospective analysis of clinical samples (Table 1).

BACKGROUND

Chronic viral diseases such as HIV-1 and Hepatitis C virus result in dramatic

perturbations of the B cell compartment, most strikingly a shift toward mature and

exhausted phenotypes and increased frequencies of immature CD101 transitional B

cells (1–3). As a consequence, B cell responses in HIV-1 infection are frequently

impaired, resulting in delayed and, in part, insufficient humoral responses to diverse

infectious agents and vaccines (4–10). The comprehensive 18-parameter panel

described herein will allow in-depth analysis of B cell dynamics with a focus on

memory B cells in healthy individuals and during disease in frozen, banked PBMC

samples.

B cells can be defined by expression of the canonical marker CD19. We used a

dump channel including CD3, CD14, CD16, and a Live/Dead dye to achieve optimal

resolution between CD191 and CD19- cell types to allow definition and inclusion of

CD19dim plasmablasts into the analysis (Fig. 1A).

CD10 was included in the panel for detection of CD101 transitional B cells

(Figs. 1A and B and Supporting Information Fig. S10). While transitional B cells can

also be defined by the classical Bm1-Bm5 classification based on CD38 and IgD

expression (11), we found that this was less reliable compared to using CD10 expres-

sion (11,12).

CD38 was included to define plasmablasts. Using a CD38 specific reagent labeled

with the dim fluorochrome Alexa Fluor 700 (AF700) allowed to define plasmablasts

readily as these cells express high levels of CD38 (Fig. 1C and Supporting Information

Fig. S11) (11). Plasmablasts are defined as CD38high. According to their lower CD38

levels CD101 transitional B cells are referred to as CD381 (Fig. 1B and Supporting

Information Fig. S10). As the AF700 conjugated CD38 antibody cannot distinguish

between CD38- and CD381 na€ıve or between CD38- and CD381 switched memory B

cells, we refer to these cells as CD38- (11). Integrating CD38 and IgD in the panel

allowed a dissection of CD10- mature B cells in IgD1 unswitched B cells (IgD1CD38-),

memory B cells (IgD-CD38-) and plasmablasts (PB; IgD-CD38high) (Fig. 1C) (11).
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IgD1 unswitched B cells encompass antigen-

inexperienced na€ıve B cells and marginal zone (MZ) B cells

(13,14), which can be distinguished by the differential expres-

sion of the memory B cell marker CD27 (Fig. 1C). Na€ıve B

cells do not express CD27 but express high levels of IgD,

whereas IgD on MZ B cells is lower and paired with

Table 1. Summary table for application of OMIP-047.

PURPOSE B CELLS

Species Human

Cell types PBMC

Cross-reference n.a.

Figure 1.
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expression of CD27 (13). IgD is a well-established marker to

define memory B cells. The majority of memory B cells lose

IgD expression and only low frequencies of IgD1 memory B

cells in the periphery have been described (15–17).

Analysis of B cell subsets based on CD21 and CD27

expression has been frequently used in the literature, but bears

a limitation. Naive B cells with a phenotype of CD211CD27-

are commonly not distinguished from memory B cells with

the same expression profile (5,8,9,18). This OMIP panel

defines the na€ıve B cell population separately based on IgD

and CD27 expression. This allows for the exclusion of this

subset from the analysis of memory B cells and the definition

of CD211CD27- intermediate memory (IM) B cells (18). The

differential expression of CD21 and CD27 further facilitates

the definition of the maturation state of memory B cells: qui-

escent resting memory (RM, CD211CD271), activated

Table 2. Reagents used for OMIP-047.

SPECIFICITY CLONE FLUOROCHROME PURPOSE

CD3 SK7 APC-Cy7 Dump

CD14 HCD14 APC-Cy7 Dump

CD16 3G8 APC-Cy7 Dump

Dead cells – Near-infrared Dump

CD19 SJ25C1 Brilliant violet 786 Lineage

CD10 HI10a BV650 B cell subsets

IgD IA6-2 PE-Cy5

(in-house conjugation)

B cell subsets

CD38 HIT2 AF700 B cell subsets

CD21 B-ly4 BV711 B cell subsets/Exhaustion

CD27 M-T271 PE-CF594 Differentiation, Memory

IgG1 HP6001 PE IgG1 class-switched B cells

IgG3 Polyclonal Sheep IgG FITC IgG3 class-switched B cells

IgA Polyclonal goat IgG APC IgA class-switched B cells

CCR7 G043H7 BV605 Migration pattern

CXCR3 G025H7 PE-Cy7 Migration pattern

CXCR4 12G5 PE-Cy5.5

(in-house conjugation)

Migration pattern

CXCR5 RF8B2 BV510 Migration pattern

IL-21R 2G1-K12 BV421 Cytokine receptor

Ki67 20Raj1 PerCP-eFluor710 Proliferation marker

Figure 1. Characterization of B cell subsets by flow cytometry. (A) A Time versus SSC-A gate was set to exclude fluorescence intensity

fluctuations due to eventual irregular acquisition of the flow cytometer. Single cells were further defined based on SSC-A and FSC-A and

a gate for doublet discrimination based on FSC-H/FSC-A. B cells were defined as Dump-negative (Dump set as CD3, CD14, CD16 positive

and dead cells) and CD19-positive cells. A major B cell subset discrimination is based on CD10 and, therefore, B cells were divided into

CD10- and CD101 subpopulations. (B) CD101 B cells can be further refined into transitional B cells (CD381IgD1). The gating of CD381 cells

was done based on a FMO control for CD38 AF700 shown in the left panel. (C) CD10- B cells comprise IgD1 unswitched B cells (CD38-IgD1),

memory B cells (CD38-IgD-) and plasmablasts (PB; CD38highIgD-), which can be defined based on the surface expression pattern of CD38

and IgD. The unswitched IgD1 fraction can be further divided in na€ıve (CD27-IgDhigh) and marginal zone (MZ) B cells (CD271IgD1) as

shown in the right panel. (D) Memory B cells derived from the memory B cell gate (CD38-IgD-) in Figure 1C can be further divided in sub-

sets based on their maturation state by expression patterns of CD21 and CD27 as described (3,18,29). In HIV-1 infected patients the distri-

bution is known to be skewed toward activated (AM) and tissue-like (TLM) memory B cells (3,18,29). The analysis of cell samples from

HIV-1 infection (Figure 1D, right panel) was thus useful to verify sufficient resolution of CD21 staining. (E) Alternatively, memory B cells

can be divided in subsets based on their expressed B cell receptor isotype. The panel includes antibodies specific for IgG1, IgG3, and IgA.

IgA-expressing switched memory B cells (right panel) are defined from cells within the “Non-IgG1 and -IgG3” gate (left panel, transparent

green gate). (F) To characterize the potential migratory activity of B cell subsets, we included antibodies for the chemokine receptors

CCR7, CXCR3, CXCR4 and CXCR5 in our panel. To measure responsiveness to IL-21, an important cytokine for development of high-

affinity antibody responses, IL-21R levels were measured. The resolution of anti-CXCR4, -CXCR5, and –IL-21R antibodies was sufficient as

judged by staining differences between the full stained sample (blue) and the corresponding FMO control (grey). (G) Resolution of CCR7

proved high so that FMO was not necessary to define positive populations. (H) In healthy donors the frequency of CXCR3- and Ki67-

expressing B cells is genuinely low necessitating FMO controls. FMO control and fully stained sample are shown as a dot plot in combina-

tion with CD27. Both markers show sufficient separation in combination with full staining panel. Data in panels 1A, B, C, and E are from

measurements of the same sampling time point of one healthy donor. Data shown in right panel of Figure 1D is from measurements of

PBMC from a chronically HIV-1 infected individual. All percentages are related to total Dump-CD191 B cells except in Figures 1D and E

where percentages are related to memory B cells as gated in Figure 1C. Percentages stated in brackets in Figure 1B are related to total

CD101 B cells. [Color figure can be viewed at wileyonlinelibrary.com]
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memory (AM, CD21-CD271) and exhausted tissue-like mem-

ory (TLM, CD21-CD27-) B cells (Fig. 1D) (3,18). To obtain a

refined dissection of phenotypic differences amongst the

memory B cell subsets our staining panel monitors IgA, IgG1,

and IgG3 B cell receptor isotypes (Fig. 1E). We included in

our panel IgG1 and IgG3 as these specificities were of interest

in the context of the research question we addressed when

developing the panel, where we were aimed to monitor HIV-1

Env IgG1 and IgG3 responses linked with the development of

neutralization breadth. Depending on the research topic

addressed the addition of IgM to also define IgM-only mem-

ory B cells may be of interest. For an easy adaptation of the

panel to incorporate IgM or other markers we recommend

markers in the FITC and PE channel, which in the present set-

ting of our panel are occupied by IgG1 and IgG3. These

markers can, however, be readily swopped to other markers

(e.g., pan IgG or IgM) as needed since PE and FITC labeled

reagents are among the most widely available reagents.

Chemokine receptors CCR7, CXCR3, CXCR4, and

CXCR5 are measured herein to provide insight into the poten-

tial tissue destination and migratory profiles of the diverse B

cell subsets, (Figs. 1F–H). CXCR4, the chemokine receptor for

CXCL12, is important for homing of B cells to bone marrow

and lymphoid organs, including the spleen (19,20). In B cell

follicles, follicular dendritic cells secrete high levels of

CXCL13, which attract CXCR5-expressing B cells. CCR7 plays

an important role guiding cells to the T cell areas in secondary

lymph organs. CXCR3-expressing B cells are attracted to

inflamed tissues by CXCL9 and CXCL10 produced at sites

with ongoing immune activation.

An additional marker included in our panel is IL-21R

(Fig. 1F). IL-21, mainly secreted by follicular helper T cells in

the GC, supports somatic hypermutation (SHM) and isotype

switching through signaling of the IL-21R and is crucial for

the development of high-affinity antibody responses (21–25).

Including IL-21R in the B cell panel enables analysis of the

dynamics of IL-21R expression. This allows one to determine

whether chronic viral infections manipulate the responsive-

ness of B cells to SHM and isotype class switching through

regulation of IL-21R (22,23,26).

Examination of the proliferation marker Ki67 identifies

recently activated B cells and makes it possible to define their

phenotype and dynamics during ongoing immune responses

(Fig. 1H) (27).

Combining classical lineage markers with a range of phe-

notypic parameters (Table 2) our comprehensive 18-

parameter B cell panel provides the possibility for a highly

detailed characterization of the B cell compartment in healthy

individuals, as well as in response to infections or in autoim-

mune diseases.

SIMILARITY TO PUBLISHED OMIPS

This panel can be used for in-depth phenotyping of B

cells in peripheral blood samples. The panel differs from the

panel described by Wei et al. [OMIP-003 (28)] which focused

on memory B cells. In contrast, the panel described here

allows the analysis of most known B cell subsets and in addi-

tion includes phenotypic assessment of chemokine receptors,

IL-21R, B cell receptor isotypes and the proliferation marker

Ki-67.
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