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AbstrAct
Over the last few decades, molecularly targeted agents 
have been used for the treatment of metastatic colorectal 
cancer. They have made remarkable contributions to 
prolonging the lives of patients. The emergence of several 
biomarkers and their introduction to the clinic have also 
aided in guiding such treatment. Recently, next- generation 
sequencing (NGS) has enabled clinicians to identify 
these biomarkers more easily and reliably. However, 
there is considerable uncertainty in interpreting and 
implementing the vast amount of information from NGS. 
The clinical relevance of biomarkers other than NGS are 
also subjects of debate. This review covers controversial 
issues and recent findings on such therapeutics and their 
molecular targets, including VEGF, EGFR, BRAF, HER2, 
RAS, actionable fusions, Wnt pathway and microsatellite 
instability for comprehensive understanding of obstacles 
on the road to precision oncology in metastatic colorectal 
cancer.

IntroduCtIon
Colorectal cancer (CRC) is the third most 
common cancer worldwide, comprising a 
considerable portion of the disease burden. 
About half of new cases and deaths occur 
in Asia,1 where awareness of CRC has risen 
in recent times. Approximately 20% of new 
cases present with distant metastases2 and 
20%–25% of localised cases eventually experi-
ence recurrence.3 4 Systemic chemotherapy as 
well as multidisciplinary curative approaches 
have improved the survival of patients with 
metastatic CRC (mCRC).

Although the backbone of systemic therapy 
for mCRC still remains cytotoxic agents, new 
targets and therapeutics have emerged in the 
last few decades based on an improved under-
standing of the biology of CRC. Furthermore, 
the use of next- generation sequencing (NGS) 
tests to guide targeted therapy in mCRC 
has become increasingly prevalent in clin-
ical settings due to falling costs. However, 
the NGS test results provide a bulk of infor-
mation that requires careful interpretation. 
Besides, other biomarkers such as consensus 

molecular subtype (CMS), circulating tumour 
DNA (ctDNA), plasma proteins, microRNA 
and sidedness have been suggested to predict 
the efficacy of targeted agents. However, the 
clinical relevance of these markers remains 
controversial.

This review examines clinical and transla-
tional data concerning targeted agents for 
mCRC and deals with issues regarding the 
predictive value of various biomarkers.

Anti-angiogenic agents: still the universal 
answer to mCrC?
Several anti- angiogenic agents such as 
bevacizumab,5 aflibercept,6 ramucirumab7 
and regorafenib,8 which are designed to 
bind to vascular endothelial growth factor 
(VEGF) or VEGF receptors (VEGFR), have 
been approved for the treatment of mCRC. 
Patient subgroups who benefit more from 
anti- VEGF treatment have not been clearly 
defined based on clinical characteristics or 
biomarkers. Several translational projects 
with randomised trials explored muta-
tions in RAS,9–11 BRAF10 or phosphatidylin-
ositol 3- kinase catalytic alpha polypeptide 
(PIK3CA)11 and other biomarkers (table 1). 
Recently, microsatellite instability (MSI) 
status and CMS, a transcriptome- based 
molecular subtype identified by an interna-
tional consortium study, have been suggested 
to predict the efficacy of bevacizumab. 
Briefly, CMS 1 and high MSI (MSI- H) were 
associated with a clinical benefit from beva-
cizumab, as opposed to cetuximab, in one of 
the largest translational sets analysed thus far, 
the CALGB/SWOG 80405 trial.12 13 However, 
these results were not reproduced in a similar 
FIRE-3 study, which conducted a head- to- 
head trial of bevacizumab versus cetuximab.14 
In contrast, the AGITG MAX study showed 
better progression- free survival (PFS) in 
patients with CMS 2 or 3 (but not CMS 1) 
when they were administered bevacizumab 
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Table 1 Biomarker studies from randomised trials comparing anti- VEGF or anti- EGFR antibodies to NO targeted therapies for 
mCRC

Study
(author/year)

Number of 
patients 
(analysed for 
biomarker/ 
randomised) Design

Biomarker analysis 
platform Analysed markers Results

AVF2107
(Hurwitz et al, 2009)9

230/813 1st line, Bev+IFL vs 
placebo+IFL

Direct sequencing KRAS mutation PFS- related benefit of Bev similar for 
KRAS- mt (HR 0.41, p=0.00008) and 
KRAS- wt (HR 0.44, p<0.0001)

ORR better in Bev arm for KRAS- wt 
(60.0% vs 37.3%, p=0.006), but not for 
KRAS- mt (43.2% vs 41.2%, p=0.86)

VELOUR
(Wirapati et al, 2017)10

482/1226 2nd line, 
aflibercept+FOLFIRI vs 
placebo+FOLFIRI

NGS Extended RAS, 
BRAF mutation and 
transcriptome

Non- significant trend of OS- related 
benefit with aflibercept for BRAF mt 
(interaction p=0.08) and BRAF mt- like 
RNA signature (interaction p=0.2)

Affymetrix gene chip

AGITG MAX
(Price et al, 2015)11

280/471 1st line,
bevacizumab+CTx vs 
CTx

Pyrosequencing RAS, PIK3CA mutation None were prognostic or predictive of 
bevacizumab outcome

AGITG MAX
(Mooi et al, 2018)15

237/471 1st line, 
bevacizumab+CTx vs CTx

Almac Xcel microarray CMS Benefit of bevacizumab in terms of PFS 
in CMS2 (HR 0.44, 95% CI 0.29 to 0.68) 
and CMS3 (HR 0.35, 95% CI 0.14 to 
0.86), interaction p=0.04 in multivariate 
analysis

RAISE
(Tabernero et al, 2018)

894/1072 2nd line, 
ramucirumab+FOLFIRI vs 
placebo+FOLFIRI

Dual- monoclonal 
sandwich immunoassay

VEGF- C, VEGF- D, 
soluble VEGFR-1, soluble 
VEGFR2 and soluble 
VEGFR-3

High VEGF- D level (≥115 pg/mL) 
predicted benefit from OS (HR 0.73, 
95% CI 0.60 to 0.89, interaction 
p=0.0005) and PFS (HR 0.62, 95% CI 
0.52 to 0.74, interaction p<0.0001)

RAISE
(Yoshino et al, 2019)

912/1072 2nd line, 
ramucirumab+FOLFIRI vs 
placebo+FOLFIRI

Multiplex qPCR 
(Modaplex system, 
Qiagen)

RAS, BRAF mutation No treatment- by-RAS/BRAF mutation 
status interaction (p=0.523 for OS, 
0.655 for PFS), but numerically good 
OS in BRAF with ramucirumab (HR 
0.54, p=0.103)

CORRECT
(Tabernero et al, 
2015)119

503/760 
(genetic 
biomarker)
611/760 
(protein 
biomarker)

3rd line, regorafenib vs 
placebo

BEAMing of plasma DNA, 
FoundationOne panel for 
tumour tissue, ELISA for 
15 proteins of interest

KRAS, PIK3CA and BRAF 
mutation, plasma proteins 
including angiopoietin 2, 
interleukin 6, etc

None were predictive of PFS and OS- 
related benefit of regorafenib

CRYSTAL+OPUS
(Bokemeyer et al, 
2012)30

800/1535 1st line, 
cetuximab+FOLFOX or 
FOLFIRI vs FOLFOX or 
FOLFIRI

PCR clamping and 
melting curve method

KRAS, BRAF mutation Similar benefit of cetuximab in terms 
of ORR, PFS and OS in both BRAF- wt 
and BRAF- mt

CO-17
(Karapetis et al, 2014)31

407/572 3rd line, cetuximab vs 
BSC

Nested PCR, IHC PIK3CA, BRAF mutation 
and PTEN expression

None were predictive of PFS and OS- 
related benefit of cetuximab

20100007
(Kim et al, 2018)120

270/377 3rd line, panitumumab 
vs BSC

Sanger sequencing RAS, BRAF mutation In BRAF mt (n=20), HR for OS favoured 
the panitumumab arm (HR 0.39, 
p=0.1597) and marginal benefit in 
terms of PFS was shown (HR 0.277, 
p=0.0502)

Bev, bevacizumab; BSC, best supportive care; CMS, consensus molecular subtype ; CTx, chemotherapy; EGFR, epidermal growth factor receptor; FOLFIRI, folinic acid, 5- fluorouracil 
and irinotecan; FOLFOX, folinic acid, 5- fluorouracil and oxaliplatin; IFL, irinotecan, 5- fluorouracil and leucovorin; IHC, immunohistochemical staining; mCRC, metastatic colorectal 
cancer; mt, mutant; NGS, next- generation sequencing; ORR, overall response rate; OS, overall survival; PFS, progression- free survival; VEGF, vascular endothelial growth factor; 
VEGFR, vascular endothelial growth factor receptor; wt, wild- type.

along with chemotherapy (capecitabine or capecitabine 
plus mitomycin), as opposed to chemotherapy alone.15 
These inconsistent results could be explained by the rela-
tively small number of CMS 1 patients enrolled (less than 
20% of the mCRC cases) and different platforms used for 
gene expression profiling (Almac Xcel array in FIRE-3 
and AGITG MAX, and NanoString in CALGB) (table 2).

Apart from genetic or transcriptomic profiles, 
biomarkers such as polymorphisms in VEGF- A16 or VEGFR-
117 or changes in circulating angiogenic factors18 19 may 
be associated with benefits from bevacizumab in mCRC. 

However, most of these were tested in single- arm studies 
of bevacizumab, making their predictive impact difficult 
to assess. A recent study of second- line randomised trials 
with ramucirumab showed high plasma levels of VEGF- D, 
a ligand to VEGFR-2, predicted benefits with overall 
survival (OS) and PFS.20 These results are contrary to 
those from CALGB/SWOG 80405, which showed that 
low VEGFR- D level predicted benefits from bevacizum-
ab+fluorouracil, leucovorin and oxaliplatin (FOLFOX).21 
In the light of such confounding results, the development 
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Table 2 Biomarker study from randomised trials comparing anti- VEGF to anti- EGFR therapy for mCRC

Study—author, year

Number of patients 
(analysed for 
biomarker/
randomised) Design

Biomarker 
analysis 
platform

Analysed 
markers Results

CALGB80405 Lenz et al,
201912

663/1137 1st line,
Bev+FOLFOX or 
FOLFIRI vs 
Cmab+FOLFOX or 
FOLFIRI

Nanostring CMS Poorer OS (HR 2.34, p<0.001) and PFS (HR 
2.28, p<0.001) with Cmab than with Bev in 
CMS1 (n=104)

Better OS (HR 0.62, p=0.0046) with Cmab 
than with Bev in CMS2 (n=242)

Innocenti et al,
201913

843/1137 FoundationOne 426 genes and 
5 microsatellite 
markers

Better OS (HR 0.16, p<0.001) and PFS (HR 
0.13, p<0.001) with Bev than with Cmab in 
MSI- H (n=52)Promega for MSI

Nixon et al, 
201621

715/1137 ELISA 23 plasma 
biomarkers

Low VEGF- D predicted PFS benefit from 
Bev (HR 1.70) rather than Cmab (HR 0.92) 
(interaction p=0.0097)
Low PlGF predicted PFS benefit from Bev 
(HR 1.50) rather than Cmab (HR 0.94, 
interaction p=0.0298)

FIRE3 Stintzing et al,
201714

313/588 1st line,
Bev+FOLFIRI vs 
Cmab+FOLFIRI

Almac Xcel array CMS Better PFS (HR 0.63, p=0.031) and OS (HR 
0.52, p=0.012) with Cmab than with Bev in 
CMS4 (n=104) in unadjusted analysis

Laurent- Puig 
et al,
201946

340/592 Taqman assay miR-31- 3p Better PFS (HR 0.74, p=0.05), OS (HR 0.61, 
p<0.01), and objective response with Cmab 
than with Bev in low miR-31- 3p expressers; 
no difference in high expressers

Berger et al,
2017121

522/586 PCR- based direct 
sequencing

SVCT1, SVCT2 
and Glut1 gene 
polymorphism

SVCT1 CC genotype was associated poorer 
PFS and OS than any T genotype in Bev 
arm with KRAS mutation but not in Cmab 
arm in unadjusted analysis

Heinemann et al,
2018122

373/592 FoundationOne 426 genes No benefit with Bev in terms of OS (HR 
1.17, p=0.82) in MSI- H (n=10); benefit 
of Cmab was marginally favourable (HR 
0.75, p=0.08) in MAPK- wt (n=178); TMB 
or other markers could not be validated as 
prognostic or predictive

Miller- Phillps et 
al, 2019123

333/592 Almac Xcel array miR-21 Better ORR (80.0% vs 57.9%, p=0.005) and 
OS (HR 0.625, p=0.005) with Cmab than 
with Bev in low miR-21 subgroup (n=166)

Stintzing et al, 
2014124

299/592 Direct 
sequencing

AREG SNP 
rs161511

AREG A/G genotype was associated with 
poorer ORR (38% vs 79%, p=0.02), PFS 
(HR 3.46, p=0.001) and OS (HR 3.87, 
p=0.001) compared with G/G genotype in 
Cmab arm but not in Bev arm

AREG, amphiregulin; Bev, bevacizumab; Cmab, cetuximab; CMS, consensus molecular subtype; EGFR, epidermal growth factor receptor; FOLFIRI, folinic acid, 5- fluorouracil and 
irinotecan; FOLFOX, folinic acid, 5- fluorouracil, and oxaliplatin; Glut, glucose transporter; mCRC, metastatic colorectal cancer; MSI, microsatellite instability; ORR, overall response 
rate; OS, overall survival; PFS, progression- free survival; PlGF, placental growth factor; SVCT, sodium- dependent vitamin C transporter; TMB, tumour mutational burden; VEGF, 
vascular endothelial growth factor.

and validation of a reliable assay method for the plasma 
biomarkers is required (table 1).

Anti-epidermal growth factor receptor antibodies: an arena of 
diverse biomarkers
The anti- epidermal growth factor receptor (EGFR) 
antibodies, cetuximab and panitumumab, have been 
approved for front- line treatment of mCRC in combina-
tion with cytotoxic chemotherapy22 23 and later- line treat-
ment as monotherapy or combination therapy.24 The 
clinical benefit from anti- EGFR antibodies is restricted to 
patients with wild- type RAS.23 25 Other genetic alterations 
in the EGFR signalling pathway such as PIK3CA muta-
tion, phosphatase and tensin homolog (PTEN) loss, BRAF 
mutation and human epidermal growth factor receptor 
2 (HER2) amplification have been associated with anti- 
EGFR resistance in retrospective series or single- arm 
phase II studies.26–29 Although these associations are 

highly plausible, there has been no statistically significant 
evidence from randomised trials showing that the magni-
tude of benefit from anti- EGFR antibodies is significantly 
jeopardised in such subgroups.30–32 This is probably 
because the incidence of these alterations is so rare that 
the subgroup analysis lacked sufficient power to prove 
their association with resistance or because the alterations 
are less potent than RAS mutations in terms of conferring 
resistance (table 2).

RAS and other genetic alterations that emerge during 
anti- EGFR treatment detected in tumour tissue as well as 
ctDNA have recently arisen as markers of acquired resis-
tance. Up to 30%–40% of patients administered with anti- 
EGFR show RAS mutations in their plasma ctDNA at the 
time of disease progression.33–35 Mutations in the EGFR 
ectodomain (S492R) also confer resistance to anti- EGFR 
treatment, although the degree of resistance differs 
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between cetuximab and panitumumab due to their 
different binding epitopes.36 Amplification of receptor 
tyrosine kinases (HER2 or MET) or BRAF mutations that 
emerge during anti- EGFR treatment have been suggested 
to be markers of acquired resistance.37

However, the clinical effectiveness of serial monitoring 
of ctDNA during anti- EGFR treatment has not been well 
established yet. According to a study that serially measured 
ctDNA during anti- EGFR treatment, RAS mutations 
appeared 3–4 months earlier than clinical progression, 
and the emergence of these mutations was not correlated 
with PFS.35 There has been no evidence that early switch 
of regimen in response to the emergence of ctDNA RAS 
mutation is more beneficial in terms of OS than conven-
tional switch on clinical progression. However, once 
clinical progression occurs after anti- EGFR treatment, 
measurement of ctDNA might be helpful in guiding 
further treatment. A phase II study in patients previously 
treated with anti- EGFR proposed ctDNA RAS mutation 
as a predictors of response to anti- EGFR rechallenge.38 
Knowing the dynamics of emergent RAS mutations after 
progression could help determine the optimal timing of 
anti- EGFR antibody rechallenge. A recent study showed 
that anti- EGFR resistant clones with RAS and EGFR muta-
tions at progression after treatment with anti- EGFR anti-
bodies decayed exponentially after anti- EGFR cessation 
with a cumulative half- life of 4.4 months.39

MSI- H has been associated with poor prognosis in 
patients treated with anti- EGFR antibodies, as compared 
with bevacizumab.13 40 Reduced EGFR ligand expression 
due to hypermethylation typically seen in MSI- H tumours 
could explain anti- EGFR resistance; however, not all 
MSI- H tumours exhibit a hypermethylation phenotype, 
especially in Asian countries.41 The precise mechanism of 
resistance in MSI- H tumours remains unknown.

MSI- H largely overlaps with right primary tumours, 
which are also adversely associated with anti- EGFR 
resistance. Subgroup analyses and systematic reviews of 
randomised trials have consistently revealed a lack of 
benefit from cetuximab or panitumumab in terms of PFS 
and OS in right- sided tumours in a front- line setting.42 43 
Right- sided tumours more frequently harbour biomarkers 
associated with anti- EGFR resistance (RAS, BRAF, PIK3CA 
mutations and reduced EGFR ligand expression) than 
their left- sided counterparts. However, the CALGB study 
showed that sidedness was negatively associated with poor 
OS in cetuximab therapy as compared with bevacizumab 
therapy after adjusting for the aforementioned biomarker 
profiles.44 Several studies have shown more favourable 
tumour shrinkage with anti- EGFR therapy than with 
bevacizumab for right- sided tumours, suggesting that 
anti- EGFR antibodies could provide a means of achieving 
rapid control of tumour volume for certain classes of 
right- sided tumours.45

Transcriptional biomarkers have also been studied in 
association with cetuximab efficacy (table 2). Upregula-
tion of a specific microRNA, miR-31- 3p, plays a signifi-
cant role in activating RAS signalling and was identified 

as a potential negative predictor of cetuximab efficacy in 
the FIRE-3 study.46 As seen with bevacizumab, the associ-
ations between CMS subtype and cetuximab efficacy are 
inconsistent between studies. A relative benefit of cetux-
imab as compared with bevacizumab was observed for 
CMS 4 in the FIRE-3 study but for CMS 2 in the CALGB 
dataset. The change in CMS has also been associated with 
acquired resistance; a paired biopsy study revealed that 
transcriptional change (switch of CMS from 2 to 4) with 
increased infiltration of cancer- associated fibroblasts was 
seen in tissues obtained after progression.47

From a clinical perspective, front- line anti- EGFR treat-
ment generally produces better objective response rates 
(ORRs) and increased tumour shrinkage.48 Thus, this 
treatment is favoured over bevacizumab, especially for 
patients with borderline- resectable metastases or with 
high tumour burdens. However, anti- EGFR treatment 
usually causes skin toxicity and emotional stress, which 
could hinder the social lives of patients.49 Therefore, it is 
important to select the best- fit candidates for front- line 
anti- EGFR treatment based on predictive markers such as 
sidedness, RAS mutation or MSI. Comprehensive tumour 
profiling such as the PRESSING panel, a platform incor-
porating NGS, immunohistochemical staining (IHC), in 
situ hybridisation (ISH) and RNA sequencing,40 50 could 
help in optimising anti- EGFR treatment for mCRC.

Strategies targeting BRAF-mutant CrC
The poor prognosis of BRAF V600E mutant mCRC has 
been consistently seen in every clinical trial conducted so 
far, along with real- world data.51 52 Unlike BRAF- mutant 
melanoma, BRAF mutant CRC does not respond to BRAF 
inhibitor monotherapy due to parallel EGFR activation 
by negative downstream feedback.53 Several clinical trials 
have tested the strategy of blocking both of upstream 
(EGFR) and downstream (BRAF) elements of these 
pathways,54–56 which are active in BRAF- mutant mCRC 
(table 3). The SWOG1406 randomised phase II trial 
showed improved PFS with a combination of vemurafenib 
(BRAF inhibitor), cetuximab and irinotecan combina-
tion (VIC) as compared with just cetuximab and irino-
tecan.57 Recently, the BEACON randomised phase III 
trial showed that the triplet combination of encorafenib 
(BRAF inhibitor), binimetinib (mitogen- activated 
protein kinase kinase (MEK) inhibitor) and cetuximab 
showed improved OS when compared with the control 
arm (cetuximab+irinotecan- based chemotherapy). In this 
study, the doublet combination of encorafenib and cetux-
imab also showed improved OS as compared with the 
control arm.58 While this study did not permit cross- over 
between the arms, 48% of patients in the control arm of 
the SWOG trial did cross over to receive VIC, resulting in 
a slight, but statistically insignificant, improvement in OS.

Given the high rate of grade 3 or 4 toxicity of the 
VIC regimen (nausea, diarrhoea and neutropenia in 
more than 20% of patients), encorafenib- based triplet 
or doublet combinations, which do not contain cyto-
toxic agents, appeared to be more feasible options 
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Table 3 Results of recent clinical trials on mCRC with BRAF V600E mutation

Study
(author, year) Phase N Eligibility Treatment Results

BEACON
(Kopetz et al, 2019)58

III 665 PD after 1 or 2 
prior treatments

Triplet: encorafenib+binimetinib+Cmab
Doublet: encorafenib+Cmab
Control: Cmab+irinotecan or 
Cmab+FOLFIRI

Triplet vs doublet vs control:
OS 9.0 m vs 8.4 m vs 5.4 m (p<0.001)
PFS 4.3 m vs 4.2 m vs 1.5 m (p<0.0001)
ORR 26% vs 20% vs 2% (p<0.001)

SWOG S1406
(Kopetz et al, 2017)57

II 106 PD after 1 or 2 
prior treatments

Vemurafenib+cetuximab+irinotecan vs 
cetuximab+irinotecan

PFS 4.3 m vs 2.0 m (p=0.001)
OS 9.6 m vs 5.9 m (p=0.19)

NCT01072175

(Corcoran et al, 2015)56

II 43 Any line Dabrafenib+trametinib ORR 12%, PFS 3.5 m

NCT01750918

(Corcoran et al, 
2018)125

I 20 Any line Pmab+trametinib ORR 0%, PFS 2.6 m

91 ≥1 prior 
treatment

Dabrafenib+Pmab+trametinib ORR 21%, PFS 4.2 m

20 Dabrafenib+Pmab ORR 10%, PFS 3.5 m

NCT01750918

(Van Geel et al, 2017)126

I 28 Encorafenib+Cmab+alpelisib ORR 17.9%, PFS 4.2 m

26 Encorafenib+Cmab ORR 19.2%, PFS 3.7 m

Cmab, cetuximab; FOLFIRI, folinic acid, 5- fluorouracil and irinotecan; m, months; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, 
progression- free survival; Pmab, panitumumab.

for BRAF- mutant patients. The triplet regimen is now 
being tested for untreated populations in a phase II trial 
(NCT03693170). Until now, based on the results from 
subgroup analysis of the TRIBE trial, there has been a 
consensus that the optimal front- line treatment for BRAF 
mutant patients might be intensive chemotherapeutic 
regimens (bevacizumab+5- fluorouracil, oxaliplatin 
and irinotecan; FOLFOXIRI) to mitigate the aggres-
sive biology.59 It would be worthwhile to evaluate if the 
targeted regimen (encorafenib and cetuximab with or 
without binimetinib) without cytotoxic agents could 
prove more effective than this intensive combination as a 
frontline treatment for BRAF V600- mutant mCRC.

Although the V600 mutation is the most common type 
of BRAF mutation, non- V600 BRAF mutations are being 
more frequently detected with NGS tests becoming 
more widely available. Non- V600 mutations account for 
20%–40% of all BRAF mutations in mCRC60–62 and repre-
sent different clinical characteristics from those of V600 
mutants. These differences manifest as fewer female 
patients, lower histological grades and greater incidence 
of left- sidedeness in the non- V600 mutants as compared 
with V600 mutants.60 63 Based on the degrees of RAS- dimer 
and RAF- dimer dependency in the signalling pathway, 
BRAF mutations are categorised as class 1 (V600 mutants: 
RAS- independent, dimer- independent and kinase- active), 
class 2 (RAS- independent, dimer- dependent and kinase- 
active) and class 3 (RAS- dependent, dimer- dependent 
and kinase- inactive). BRAF inhibitors show limited 
activity in class 2 and 3 mutants, which exhibit RAF dimer- 
dependent signalling.64 65 Class 3 BRAF mutations, which 
comprise more than half of non- V600 BRAF mutants, 
frequently overlap with RAS mutations. However, in the 
case of class 3 BRAF mutants with wild- type RAS, inhib-
iting the RAS signal with anti- EGFR antibodies could be 
a reasonable option59; moreover, anti- EGFR inhibitors 
when combined with MEK inhibitor can prevent feedback 

activation by BRAF inhibition and have been proposed 
as a more rational approach.64 Class 2 BRAF mutants are 
difficult to target due to RAS- independent kinase activity, 
although treatment options such as combinations of 
anti- EGFR, MEK and/or ERK inhibitors would be worth 
further exploration. For non- V600 BRAF mutant mCRC, 
the triplet regimen from the BEACON trial is currently 
being tested in a phase II trial (UMIN000031857).

HER2 blockades in CrC
HER2 amplification, observed in 2%–4% of mCRC cases, 
shows a predilection for the left colon or rectum and 
is mainly enriched in RAS and BRAF wild- type cancer; 
however, it has also been associated with anti- EGFR resist-
ance.29 66 67 Unlike breast cancer, anti- HER2 antibody 
(trastuzumab) monotherapy has not been successful 
in treating HER2- amplified mCRC. This is likely due to 
delayed EGFR and HER3 activation following trastu-
zumab monotherapy may cause intrinsic resistance.66 68 
Dual blockade targeting HER2 and EGFR/HER3 is there-
fore required for this disease subset.

Several trials have shown the clinical activity of a combi-
nation strategy for HER2 blockade (table 4). The HERA-
CLES investigators defined certain CRC- specific criteria 
for IHC staining in HER2, which were concordant with ISH 
parameters, and screened more than 900 KRAS wild- type 
patients, of which 5% were HER2 positive. Trastuzumab 
and lapatinib showed promising activity in the heavily 
treated patients,69 and correlative biomarker analysis 
revealed the HER2 copy number in the tissue and ctDNA 
predicted the response to the treatment.70 The results of 
the MyPathway trial demonstrated the effectiveness of the 
combining pertuzumab with trastuzumab for this popu-
lation, with a profound difference in outcome based on 
KRAS mutation status (table 4). DS- 8201a, a novel HER2- 
targeted antibody–drug conjugate with trastuzumab and 
topoisomerase I inhibitor (deruxtecan) payload, also 



Open access

6 Kim SY, Kim TW. ESMO Open 2020;5:e000634. doi:10.1136/esmoopen-2019-000634

Table 4 Results of recent clinical trials of HER2- positive mCRC

Study
(author/year) Phase N Eligibility Treatment Results

HERACLES
(Sartore- Bianchi et al, 2016)69

II 27 KRAS wt, progression after all 
standard treatments, HER2+ 
by HERACLES criteria

Trastuzumab+lapatinib ORR 30% (95% CI 14 to 50)
PFS 21 weeks (95% CI 16 to 32)

Phase 1 dose expansion 
cohort of DS- 8201a
(Yoshino et al, 2018)127

I 19 HER2 IHC ≥1+ or HER2 
amplified

DS- 8201a ORR 15.9% (3/19)
DCR 82.4% (16/19)
PFS 3.9 m (95% CI 2.1 to 8.3)

MyPathway
(Meric- Bernstam et al, 2019)

II 57 ≥7 prior treatments, HER2+ 
by ISH, NGS or IHC

Trastuzumab+pertuzumab ORR 32% (95% CI 20 to 45), PFS 
2.9 m (95% CI 1.4 to 5.3)
ORR 40%, PFS 5.3 m in KRAS wt 
(n=43)
ORR 8%, PFS 1.4 m in KRAS mt 
(n=13)

TRIUMPH
(Nakamura et al, 2019)71

II 18 Tissue and/or ctDNA 
(Guardant360) confirmed RAS- 
wt and HER2- amplified mCRC

Trastuzumab+pertuzumab Tissue- positive: ORR 35% (95% 
CI 14 to 62), PFS 4.0 m (95% CI 1.4 
to 5.6)
ctDNA- positive: ORR 33% (95% 
CI 12 to 62), PFS 4.0 m (95% CI 1.3 
to 5.6)

MOUNTAINEER
(Strickler et al, 2019)72

II 22 HER2+ by NGS, ISH or IHC 
prior 5- FU, OXA, IRI, anti- 
VEGF

Trastuzumab+tucatinib ORR 55%
PFS 6.2 m (95% CI 3.5 to NE)

HERACLES- B
(Sartore- Bianchi et al, 2019)73

II 30 RAS/BRAF wt, HER2+ 
by HERACLES criteria, 
progression after 5- FU, OXA, 
IRI, anti- EGFR

Trastuzumab+T- DM1 ORR 10% (95% CI 0 to 28)
PFS 4.8 m (95% CI 3.6 to 5.8)

ctDNA, circulating tumour DNA; EGFR, epidermal growth factor receptor; 5- FU, 5- fluorouracil; IHC, immunohistochemical staining; IRI, irinotecan; ISH, in situ 
hybridisation; m, months; mCRC, metastatic colorectal cancer; mt, mutant; NE, not estimated; NGS, next- generation sequencing; ORR, overall response rate; OXA, 
oxaliplatin; PFS, progression- free survival; VEGF, vascular endothelial growth factor; wt, wild- type.

demonstrated clinical activity in HER2+mCRC in the 
dose expansion cohort of a phase I trial, thus warranting 
the currently ongoing phase II trial.25 Recently, a study 
from Japan showed that ctDNA could be used for nega-
tive selection of candidates for this combination; patients 
with ctDNA alterations of RAS, BRAF, PIK3CA and HER2 
did not benefit from the dual HER2 blockade.71 Another 
dual combination comprising inhibitors of HER2, tras-
tuzumab and tucatinib showed significant activity, with 
an ORR of 55% and median PFS of 6.2 months in 22 
patients,72 while pertuzumab and trastuzumab- emtansine 
(T- DM1) produced an ORR of 10%, which did not meet 
the primary endpoint.73 With advancements in efficient 
HER2 blockades, including antibody–drug conjugates, 
bispecific antibodies, small molecule inhibitors or combi-
nations with immunotherapy,74 more innovative thera-
peutics could emerge in this field.

rAS inhibitors: targeting the ‘undruggable’ genetic alterations
RAS mutations are notoriously undruggable targets due 
to their molecular structures with deeply seated hydro-
phobic pockets which are difficult to target using small 
molecules.75 Recent discoveries have allowed for the devel-
opment of small- molecule inhibitors that selectively bind 
to a newly discovered allosteric regulatory site of the G12C 
mutant form of KRAS is underway.76 Preliminary data of 
a phase I study of AMG 510, the first- in- class KRAS G12C 
inhibitor, showed that approximately half of patients with 
non- small cell lung cancer achieved a partial response; 
however, an objective response was rare in the case of 

CRC.77 Because of the suboptimal activity in KRAS G12C 
mutant mCRC, which is a rare occurrence comprising 
approximately 4% of CRC cases,78 drug development 
in this field might be more challenging than expected. 
Recently, a preclinical study has suggested synergism 
between cetuximab and AMG 510 in KRAS G12C mutated 
CRC, implying that the combination could be explored 
as an alternative approach.79 Meanwhile, one can explore 
the upcoming results of different KRAS G12C inhibitors, 
as well as mutant- specific agents targeting more common 
variants such as KRAS G12D or G12V.80

treating patients with rare genetic alterations
Other than BRAF or HER2, even rarer genetic alterations 
in mCRC are now being considered as actionable targets. 
ALK, ROS, NTRK, RET or FGFR2,3 fusions are rarely 
detected in mCRC, occurring in less than 1% of cases.81 82 
For ALK, ROS1 and NTRK fusions, entrectinib may be 
useful as a tissue- agnostic therapeutic approach, although 
the response duration of patients with mCRC generally 
seems to be limited as compared with those in other 
disease subsets such as lung cancer or sarcoma.83 84 Laro-
trectinib, a selective TRK inhibitor, was also seen to be 
active in patients with NTRK fusion- positive solid tumours, 
7% (4/55) of whom had mCRC.85 Therefore, patients 
with rare fusions can obtain clinical benefit from targeted 
agents, although the challenge lies in identifying these 
patients. DNA- level sequencing panels have limitations, 
especially for large genes such as NTRK2 or NTRK3, for 
which RNA- based sequencing assays are usually needed 
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for reliable detection of fusions.86 However, it is not 
feasible in daily practice for all patients with mCRC to 
undergo RNA sequencing to detect rare genetic events. 
Although the clinical characteristics of patients with 
actionable fusions have been identified (elderly and 
female patients with right- sided and MSI- H tumours), 
it is uncertain whether limiting fusion testing of those 
patients would be an efficient method of screening.81 IHC 
could be a feasible alternative for fusion detection; these 
methods for detection of ALK and NTRK fusions showed 
varying rates of concordance with fluorescent ISH (FISH) 
and RNA- based sequencing in mCRC.87 88 However, we 
currently lack sufficient data on IHC for ROS1 or other 
fusions.

Ubiquitin ligase ring finger protein 43 (RNF43) is a 
negative regulator of the Wnt pathway. Somatic muta-
tions in RNF43 occur in 6%–18% of CRC cases.89–91 Trun-
cating mutations of RNF43 appear mutually exclusively 
with APC mutations, which is also associated with Wnt 
pathway activation. Fusions in RSPO2 or RSPO3 (secreted 
agonists of the Wnt-β-catenin pathway) are detected in 
approximately 10% of CRC cases and also avert APC 
mutations. These genetic alterations mainly overlap with 
MSI- H, which is a target for immune checkpoint inhib-
itors (ICIs). They may also be targeted by inhibiting 
porcupine, a protein involved in Wnt secretion.92 A high- 
throughput drug screening study using organoids showed 
that a colorectal tumour organoid with an RNF43 muta-
tion was sensitive to IWP2, a small molecule porcupine 
inhibitor.93 Patient- derived xenografts of gastrointestinal 
cancer harbouring an RSPO2 fusion were also effectively 
treated by the porcupine inhibitor CGX1321.94 A recent 
phase I study of the first- in- class porcupine inhibitor 
WNT974 showed tumour regression in a case of appen-
diceal cancer with an RNF43 mutation.95 WNT974 is also 
being tested in patients with mCRC with BRAF V600 and 
RNF43 mutations or RSPO fusions, in combination with 
BRAF inhibitor and anti- EGFR to mitigate acquired resis-
tance through the Wnt-β-catenin pathway96 in a phase II 
study (NCT02278133) and in combination with the ICI 
PDR001 (NCT01351103).

Immunotherapy for CrC: for and beyond MSI-H
MSI- H has been established as a reliable biomarker that 
predicts benefit from ICI in mCRC, as well as other types 
of cancers.97 Although MSI- H tumours comprises only 
3%–5% of mCRC cases, they show high tumour muta-
tional burden (TMB), high programmed- death ligand-1 
(PD- L1) expression and high neoantigen load, making 
the tumour cells easily identifiable by immune system 
and sensitive to PD-1 or PD- L1 antagonists.98 Multicentre 
clinical trials with anti- PD-1 antibodies such as pembroli-
zumab and nivolumab have demonstrated favourable 
ORR (around 30%) and durable survival outcomes, with 
PFS at 12 months of 30%–50% and OS at 12 months of 
70%–80% in pretreated patients with MSI- H mCRC.99 100 
Phase III trials of these agents as compared with standard 
front- line regimens have been conducted and the results 

are awaited within the next few years: KEYNOTE 177 
for pembrolizumab (NCT02563002) and CHECKMATE 
8HW for nivolumab (NCT04008030). A combination of 
nivolumab and ipilimumab, an anti- cytotoxic T- lympho-
cyte–associated antigen (CTLA)−4 antibody, was also 
shown to be active in a pretreated population with MSI- H 
mCRC (ORR 55%, PFS at 12 months 71%)101 as well as 
untreated patients (ORR 60%, PFS at 12 months 77%).102 
The activity of avelumab, an anti- PD- L1 antibody, is under 
investigation for MSI- H mCRC by our group, and the 
preliminary results have been promising in terms of ORR 
(30% in mCRC with MSI- H as defined by Bethesda panel 
or NGS).103 Recent translational studies have focused 
on the molecular heterogeneity within MSI- H tumours 
and its impact on clinical benefits from ICI treatment; 
higher TMB, especially insertion- deletion mutational 
load, has been known to be associated with the extent of 
response.104 105

Despite all the aforementioned developments, 
researchers are still struggling to identify valid immuno-
therapeutic options for microsatellite- stable (MSS) CRC, 
which shows no evidence of objective response to ICIs. A 
combination of MEK inhibitor with anti- PD-1 antibodies 
appeared to be active in preclinical studies106 and a phase 
I trial107; however, the IMblaze370 study, a phase III trial 
of atezolizumab and cobimetinib, showed no improve-
ment in OS or PFS when compared with regorafenib.108 
Another randomised trial of ICIs for mCRC, the MODUL 
study, compared bevacizumab, fluoropyrimidine+atezoli-
zumab with bevacizumab and fluoropyrimidine. The study 
also failed to show benefits in terms of PFS, the primary 
endpoint, as well as overall response rate, disease control 
rate and duration of response.109 Although the TMB of 
MSS mCRC is much lower than that of MSI- H mCRC, 
the cause of intrinsic immune resistance of MSS mCRC 
cannot solely be explained by TMB because other types 
of cancers with similar TMB as MSS mCRC do respond 
to ICIs. Hence, the mechanism of de novo immune 
resistance of MSS CRC remains incompletely addressed. 
Recent translational studies have indicated that activated 
Wnt/β-cathenin signalling and transforming growth 
factor beta (TGF-β) signalling may cause T- cell exclu-
sion and immune evasion in mCRC.110 111 In addition, a 
preclinical study showed that oncogenic KRAS mutations 
induce immunosuppression by downregulating inter-
feron regulatory factor 2 (IRF2), resulting in activation 
of the CXCL3–CXCR2 axis and recruitment of myeloid- 
derived suppressive cells in CRC. This also suggests the 
possibility of combining ICI with CXCR2 inhibitor as 
a viable option to overcome the immunosuppressive 
microenvironment.112

Several clinical trials have suggested that combination 
strategies with ICI could work as therapeutics for MSS 
mCRC. The combination of ICI, tremelimumab (anti- 
CTLA-4 antibody) and durvalumab (anti- PD- L1) showed 
a slight improvement in OS (6.6 vs 4.1 months, strati-
fied HR 0.72, 95% CI 0.54 to 097; p=0.07), but not PFS, 
in heavily treated patients with mCRC, mostly with MSS 
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type.113 In addition, a phase I trial of regorafenib and 
nivolumab showed remarkable objective response (33%, 
8/24) in patients with MSS mCRC, which spurred a phase 
III trial in refractory settings. Other early- phase studies 
of combination strategies, which showed anecdotal objec-
tive responses in MSS mCRC, are also intriguing and 
worth following for updated results, including BBI-608, 
a STAT3 inhibitor, combined with pembrolizumab114 as 
well as monalizumab, an anti- NKG2A (checkpoint of NK 
cell) antibody, with durvalumab+cetuximab.115

ConCluSIon
Even in the current era of precision medicine, there 
remain significant unmet needs for patients with mCRC. 
Most of the known actionable targets (BRAF, HER2, ALK, 
ROS1 and NTRK, as well as MSI- H for immunotherapy) 
are rarely present, and prevalent oncogenic genetic 
alterations such as APC, TP53 and RAS have been gener-
ally undruggable thus far. CMS has emerged as a prog-
nostic or predictive marker of targeted therapy; however, 
substantial work is required for more robust classification 
of subtypes across different platforms and diverse clinical 
settings.116 Ongoing efforts to share and integrate clin-
ical and genomic data could help in the discovery and 
validation of new actionable targets.117 Combinations of 
target blockades and ICIs could provide potential ther-
apeutic opportunities for mCRC cases lacking drug-
gable targets.118 Our ever- growing knowledge of tumour 
biology, including microenvironment and heterogeneity- 
related information, would also increase understanding 
of the precise mechanism of action and resistance of 
targeted agents and help refine the current strategies for 
mCRC treatment.
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