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The wetting of soft polymer substrates brings in
multiple complexities when compared with the
wetting on rigid substrates. The contact angle of
the liquid is no longer governed by Young’s Law,
but is affected by the substrate’s bulk and surface
deformations. On top of that, elastic interfaces exhibit
a surface energy that depends on how much they are
stretched—a feature known as the Shuttleworth effect
(or as surface-elasticity). Here, we present two models
through which we explore the wetting of drops in
the presence of a strong Shuttleworth effect. The first
model is macroscopic in character and consistently
accounts for large deformations via a neo-Hookean
elasticity. The second model is based on a mesoscopic
description of wetting, using a reduced description
of the substrate’s elasticity. While the second model
is more empirical in terms of the elasticity, it enables
a gradient dynamics formulation for soft wetting
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dynamics. We provide a detailed comparison between the equilibrium states predicted by
the two models, from which we deduce robust features of soft wetting in the presence of a
strong Shuttleworth effect. Specifically, we show that the (a)symmetry of the Shuttleworth
effect between the ‘dry’ and ‘wet’ states governs horizontal deformations in the substrate.
Our results are discussed in the light of recent experiments on the wettability of stretched
substrates.

1. Introduction
Drops on elastic substrates represent a paradigmatic example of ‘soft wetting’, where capillarity-
induced elastic substrate deformations dramatically affect the static and dynamic wetting
behaviour of partially and completely wetting liquids [1]. Recent work has shown that substrates
made from cross-linked polymer networks offer versatile routes to manipulate contact angles
of droplets [2–6], as well as their spreading dynamics [7–10], directed motion [11–13] and
condensation [14]. However, the full richness of these phenomena is only beginning to emerge
and at present even a quantitative understanding of the behaviour of a single drop of non-
volatile simple liquid is not yet complete. Key challenges lie in the intricate effects of solid
surface tension, and how it affects the force balance near the static three-phase contact line,
while dynamics involves viscoelasticity of the substrate and elastocapillary interactions between
droplets [1].

The capillarity of soft solids introduces a major complication when compared with liquid
interfaces. Namely, in general, one expects the surface free energy to depend on the surface
strain. This is known as surface elasticity or the Shuttleworth effect [15–20]. Therefore, one needs
to distinguish the (scalar) surface energy from the (tensorial) surface tension, neither of which
can be treated as a universal material constant [1,20]. The influence of strain-dependent surface
tension was recently explored experimentally by measuring contact angles on stretched substrates
[21–24], but the results were contradictory. On the theoretical side, the Shuttleworth effect is only
beginning to be explored for soft amorphous materials [25,26], but so far work was restricted to
isolated contact lines.

Here, we explore the static wetting of droplets on elastic substrates in the presence of the
Shuttleworth effect (figure 1). We simultaneously present two modelling approaches, each of
which has its own specific merits. On the one hand, we expand the macroscopic approach of
[26], which consistently accounts for large elastic deformation via a neo-Hookean elasticity in
the presence of the Shuttleworth effect. The previous approach for single contact lines is now
extended to droplets of finite volume (figure 1, top row). On the other hand, we extend the
mesoscopic thin-film model developed in [27], where we now incorporate the Shuttleworth effect
and allow for larger contact angles (figure 1, bottom row). The elasticity in this mesoscopic
model is described using a reduced ‘Winkler’ foundation, which sacrifices some detail on
the substrate’s deformation but offers a great potential towards dynamical modelling of large
ensembles of drops. We now show how the Shuttleworth effect can be introduced into the
mesoscopic model, and offer a detailed comparison of the equilibrium states obtained with
the macroscopic neo-Hookean model. This comparison includes the presentation of consistency
conditions [27,28] that ensure the correct relation between macro- and mesoscale descriptions of
wettability, in the presence of the Shuttleworth effect. As can already be inferred from figure 1,
both models recover the ‘sinking’ of the drop into the substrate as the elastic modulus is
decreased.

Our central finding is that the Shuttleworth effect has a major influence on the horizontal
deformations of the substrate, while its effect on the normal displacements is relatively minor.
Specifically, any asymmetry of the Shuttleworth effect between the ‘dry’ and ‘wet’ parts of the
substrates induces large horizontal displacements. This is in line with previous predictions made
in the rigid limit for very small deformations [17,19], but now shown for arbitrary stiffness and
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Figure 1. Drops on elastic substrates of decreasing stiffness, described using twodifferentmodelling approaches: amacroscopic
model based on a neo-Hookean bulk elasticity (top) and a mesoscopic gradient dynamics model using a Winkler foundation
(bottom). In the top row (a–c), the substrate’s elastic deformation is visible from the grids that in the reference state are straight
horizontal/vertical. In the bottom row (d–f ), the lines indicate the interface displacement induced by the presence of the drop.
Bothmodels capture the transition from ‘rigid’ to ‘liquid’ wetting: the droplet sinks into the substrate and its liquid angle (with
respect to the horizontal) decreases. This process is governed by the elastocapillary length �ec normalized by the drop radius r.
Model parameters are Young’s angle θ 0

Y = 48.19◦, Shuttleworth coefficientsγ 1
SV = γ 1

SL = γ 0
SL and liquid contact angles (left)

θL ≈ 42◦, (centre) θL ≈ 32◦ and (right) θL ≈ 22◦. (Online version in colour.)

for large deformations. In addition, we for the first time model the change of the liquid contact
angle with stiffness in the presence of the Shuttleworth effect; again we find that Shuttleworth
(a)symmetry is essential for the effective wettability.

The paper is organized as follows. In §2, we give a detailed description of the Shuttleworth
effect. We develop both the Lagrangian formulation (common in solid mechanics) and the
Eulerian formulation (common in fluid mechanics). Then, we develop the macroscopic and
mesoscopic descriptions of wetting in §3, where we address subtleties of contact lines in the
presence of the Shuttleworth effect. Then, the two models are presented in §4 followed by the
results in §5. The paper closes with a Discussion in §6, where we also sketch a perspective in
terms of dynamics, showing how the mesoscopic model also allows the exploration of dynamical
wetting in the presence of the Shuttleworth effect.

2. The Shuttleworth effect: capillarity with a stretch-dependence

(a) Kinematics of surface stretch
(i) Lagrangian description

Elastic deformations are described in terms of a mapping, where a point R in the reference
configuration of the soft substrate (prior to deformation) is displaced to a point r in the current
configuration (after deformation) [29,30]. The mapping can be written as r = χ (R), where χ is
called the deformation, which is assumed to be differentiable and invertible. As figure 2, we
focus on a substrate that is two-dimensional (assuming plain strain elasticity), so that its free
surface is one-dimensional. This will facilitate a physical discussion in terms of scalar quantities,
avoiding the tensor algebra associated with two-dimensional manifolds. To be explicit, we
employ Cartesian coordinates R = (X, Y) (also called ‘material coordinates’) and r = (x, y) (also
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Figure 2. Substrate deformation defined by the mapping from material coordinates R= (X , Y) to current coordinates r=
(x, y), which can be expressed via a displacement vector (U, V)= r − R. The free surface is defined as Y = 0 and y = ξ (x),
respectively. The surface stretchλ is defined as the ratio ds/dX . (Online version in colour.)

called ‘current coordinates’ or ‘spatial coordinates’), as indicated in figure 2. The mapping can
then be written as

x = X + U(X, Y) (2.1)

and

y = Y + V(X, Y), (2.2)

where we introduced the horizontal and vertical displacements U and V, respectively.
To facilitate the presentation, but without any essential restrictions, we now consider the free

surface of the substrate in the reference configuration to be flat and to be located at Y = 0. The
relation of the lengths of a surface element in the reference configuration, dX, and the current
deformed configuration, ds, then follows as:

ds2 = dx2 + dy2 =
[(

∂x
∂X

)2
+

(
∂y
∂X

)2
]

dX2, at Y = 0. (2.3)

The ‘surface stretch’ λ is defined as the ratio of the surface measure in the deformed and
undeformed configurations, i.e.

λ2 =
(

∂x
∂X

)2
+

(
∂y
∂X

)2
= (1 + U′)2 + V′2 at Y = 0. (2.4)

This gives the ‘Lagrangian definition’ of stretch, expressed in terms of functions that depend on
the material coordinate X.

(ii) Eulerian description

In fluid mechanics, capillarity is usually described using the shape of the interface, defined as
y = ξ (x) in figure 2. Such a description is intrinsically ‘Eulerian’ in nature, since it uses the current
coordinate x as a variable, and no allusion is made to any underlying material coordinate X. The
length of a surface element is ds =

√
1 + ξ ′2 dx. However, in order to compute the surface stretch

λ, we need to relate ds to the original length dX (figure 2). This relation can be found by defining
the inverse mapping, R = χ−1(r), or in Cartesian coordinates X(x, y) and Y(x, y). We remind the
reader that the free surface is located at Y = 0 (Lagrangian), or y = ξ (x) (Eulerian). Evaluating the
inverse mapping at the surface, we thus find

X = x − U(X(x, ξ (x)), 0) ≡ x − u(x) (2.5)

and

Y = 0. (2.6)

Here, we introduced the horizontal displacement at the surface, u(x), expressed as a function of
the Eulerian coordinate x.
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With these definitions in place, we can compute the original length of a surface element by
taking the derivative of (2.5), giving dX = (1 − u′) dx. Combined with ds =

√
1 + ξ ′2 dx, this gives

the Eulerian definition of surface stretch

λ = ds
dX

=
√

1 + ξ ′2
1 − u′ . (2.7)

From this expression, it is clear that one can change the material configuration of the substrate
without changing its shape. Namely, even when the surface profile ξ (x) is kept constant, one can
vary the surface stretch upon changing u′(x).

(b) Surface energy, surface tension, surface-chemical potential
We consider a soft solid with a free interface ΩSL to a macroscopic liquid layer of thickness h(x)
that completely covers it and has itself a free surface ΩLV. The total capillary energy of the system
reads

Fcap =
∫
ΩLV

ds γLV +
∫
ΩSL

ds γSL(λ), (2.8)

where γLV and γSL are the liquid–vapour and solid–liquid surface energy densities, respectively.
Variation of the energy with respect to the substrate degrees of freedom gives rise to two distinct
physical quantities: the surface tension Υ and the surface-chemical potential μ [1,25,26]. Here, we
show how these quantities emerge from the parameterization based on h(x), ξ (x) and u(x), where
h(x) refers to the liquid-layer thickness. In terms of these functions, equation (2.8) becomes

Fcap[h, ξ , u] =
∫

dx {m(h′ + ξ ′)γLV + m(ξ ′)γSL(λ)}, (2.9)

where we introduced metric factors m(z) =
√

1 + z2 for the two interfaces, facilitating a description
of the problem on the x-domain. Note that m′(z) = z/m(z).

The surface tension Υ and chemical potential μ indeed appear during the variations of Fcap.
We therefore present the functional derivatives, keeping in mind that the final minimization
scheme will include additional energies and Lagrange multipliers related to side conditions like
fixed volume. The functional derivative of (2.9) with respect to the liquid layer thickness, h(x),
gives

δFcap

δh
= −γLV

∂

∂x

(
h′ + ξ ′

m(h′ + ξ ′)

)
. (2.10)

On the right-hand side, we can recognize the usual Laplace pressure; namely, working out
the derivative with respect to x gives the curvature of the liquid–vapour interface (h′′ + ξ ′′)/
m(h′ + ξ ′)3. A similar result is obtained from the functional derivative of (2.9) with respect to
the shape of the solid–liquid interface ξ (x)

δFcap

δξ
= − ∂

∂x

(
ΥSL

ξ ′

m(ξ ′)

)
− γLV

∂

∂x

(
h′ + ξ ′

m(h′ + ξ ′)

)
. (2.11)

An important difference with respect to the liquid–vapour interface is that this expression now
involves the surface tension

ΥSL ≡ γSL + λ
∂γSL

∂λ
, (2.12)

which contains an extra term associated with the stretch-dependence, ∂γSL/∂λ. This reflects the
Shuttleworth effect and also is the reason why one needs to distinguish between surface energy
γSL and surface tension ΥSL. Another important feature is that ΥSL is no longer constant and can
not be pulled out of the x-derivative. The stretch-dependence of ΥSL is similar to the dependency
of surface tension on surfactant concentration for liquid surfaces covered by surfactant molecules
[28,31]. In consequence, in analogy to the solutal Marangoni effect [32], a gradient in local stretch
λ will give rise to a tangential Marangoni-like force [26].
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We can change the ‘material composition’ of the substrate independently of the interface
shape. This is achieved by varying the horizontal displacements u(x) at constant ξ (x). Taking the
functional derivative with respect to u(x), we obtain

δFcap

δu
= −∂μSL

∂x
(2.13)

where we define a surface-chemical potential

μSL ≡ λ2 ∂γSL

∂λ
, (2.14)

related to the conservation of the material points at the surface of the elastic substrate. The surface-
chemical potential μSL governs the composition of material points along the substrate’s interface.1

Note, however, that the μSL defined in (2.14) will not remain constant when the substrate’s bulk
elasticity is incorporated.

We thus conclude that shape variations of the solid–liquid interface are governed by the
surface tension ΥSL, while its composition involves the surface-chemical potential μSL. This is
perfectly in line with previous results derived in Lagrangian formalism [26].

(c) Constitutive relation for the solid interface
In a previous work [26], we proposed the constitutive relation for the surface elasticity of the
solid–liquid interface as

γSL(λ) = γ 0
SL(1 − c0 log λ + c1(λ − 1)). (2.15)

This empirical form reduces to a linear ‘surface elasticity’ used previously [10,23] when expanding
around the minimum for small strains. A convenient property of the proposed nonlinear form is
that it diverges for λ → 0, avoiding a singular mapping. Thermodynamic admissibility requires γ

to remain positive and convex, which puts constraints on the values of c0 and c1.
In the remainder, we will focus on the simplified case where c0 = c1, such that the minimal

surface energy is attained for the unstretched state λ = 1. With this, we write (2.15) as

γSL(λ) = γ 0
SL + γ 1

SLg(λ), with g(λ) = λ − 1 − log(λ) (2.16)

where the parameter γ 1
SL = γ 0

SLc0 governs the strength of the Shuttleworth effect; in the linear
description of surface elasticity in [23], the coefficient γ 1

SL is referred to as the modulus of surface
elasticity. The corresponding surface tension (2.12) reads

ΥSL(λ) = γ 0
SL + γ 1

SL[2(λ − 1) − log λ]. (2.17)

The chemical potential then follows as:

μSL(λ) = λ2 ∂γSL

∂λ
= γ 1

SLλ(λ − 1). (2.18)

Note that the above expressions for γSL, ΥSL and μSL are all nonlinear expressions in λ, and can
be consistently applied at large deformations. The specific choice for g(λ), however, is empirical;
its practical accuracy for real polymeric systems remains to be established.

In what follows, the liquid will only cover part of the elastic substrate. Then we will use the
same expressions (2.15)–(2.18) derived above for the solid–liquid interface as well for the solid–
vapour interface, replacing the subscript ‘SL’ by ‘SV’. Further, we will distinguish the cases of
symmetric (γ 1

SL = γ 1
SV) and asymmetric (γ 1

SL �= γ 1
SV) Shuttleworth effect.

1This can be directly seen when taking into account that the surface stretch λ is inverse to the density ρs of the material points
at the surface of the elastic layer. Namely, λ = ρ0/ρs where ρ0 is the constant reference surface density of the undeformed layer.
Expressed in ρs, we have μSL = −ρ0(∂γSL/∂ρs) and ΥSL = γSL − ρs(∂γSL/∂ρs) instead of (2.14) and (2.12), respectively, implying
that μSL is up to sign and units a usual chemical potential.
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3. Wetting

(a) Macroscopic approach
In the macroscopic description of wetting, the contact line represents a sharp boundary between
the ‘wet’ and the ‘dry’ regions of the substrate. On a wet substrate, the solid–liquid interface
energy is denoted γSL(λ). Similarly, on a dry substrate the solid–vapour energy reads γSV(λ),
which like γSL will in general be a function of the local stretch. At the contact line, the
fluid-solid-surface energy is discontinuous in general, and jumps from γSL to γSV.

When the liquid is at equilibrium on a rigid homogeneous substrate, the energy of the system
must be invariant with respect to a virtual displacement of the contact line along the substrate.
Such an equilibrium is only possible when the substrate is perfectly homogeneous, so that the
contact line does not exhibit any pinning to a material point on the solid. In this case, energy
minimization leads to Young’s Law for the contact angle, i.e.

γLV cos θY = γSV − γSL. (3.1)

On soft substrates, the situation is much more intricate since there are two distinct, independent
types of virtual displacements possible at the contact line [1]: (i) Eulerian displacement, exploring
the variation of the horizontal and vertical contact line position in the lab-frame, (ii) Lagrangian
displacement, exploring the variation of the substrate’s material point that is located at the contact
line. At equilibrium, where there is no contact line pinning to a specific material point, the energy
should be minimal with respect to both kinds of virtual displacements. Variation (i) has been
shown to lead to Neumann’s Law at the contact line [25,26]. Variation (ii) is needed to prevent
pinning to a material point, and gives a second local condition

μSL = μSV. (3.2)

This relation expresses that the surface-chemical potential μ as defined in (2.14) needs to be
continuous across the contact line. It was shown that (3.2) indeed leads to liquid contact angles,
measured with respect to the horizontal, that satisfy Young’s Law for infinitely large drops—when
drops are large compared to typical elastic deformations [26]. However, the equality of chemical
potentials across the contact line is a local condition at the contact line, independently of the drop
size. To date, (3.2) was only explored for infinitely large drops. Here, we will extend this to the
case where substrate deformations are comparable to the drop size, for which the liquid angle is
known to decrease [1–4,33]; see also figure 1.

(b) Mesoscopic approach
The macroscopic features of the contact line, as discussed above, should emerge naturally in a
mesoscopic description, which explicitly accounts for the finite range of molecular interactions.
In the mesoscopic framework, the transition from the ‘wet’ to ‘dry’ is not perfectly sharp, and
hence the contact line itself is not sharp. Instead, it becomes a contact-line region described by
a continuous function that interpolates between the wet and the dry state. This is achieved by
supplementing the surface energy (2.9) by a wetting energy

Fwet[h, ξ , u] =
∫

dx f (h, λ) m(ξ ′), (3.3)

where we introduce the wetting potential f (h, λ), which in principle can depend on the stretch
λ. In the limit where the liquid layer thickness lies outside the range of molecular interactions,
one recovers the macroscopic description with a total surface energy as described by (2.9). We
thus require a wetting potential that on the one hand vanishes as h → ∞. On the other hand, for
standard wetting potentials the ‘dry’ substrate corresponds to an adsorption layer of thickness ha,
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for which (∂f/∂h)|h=ha = 0 [28,34]. So, for h = ha, the combined effect of γLV + γSL(λ) augmented
with the wetting potential f (ha, λ) should recover the macroscopic solid–vapour energy, i.e.

γSV(λ) = γLV + γSL(λ) + f (ha, λ). (3.4)

In consequence, the total mesoscopic capillary energy can be written as the sum of (2.9) and (3.3).
Then, the resulting mesoscopic surface-chemical potential is

μ = λ2 ∂

∂λ
[γSL(λ) + f (h, λ)]. (3.5)

Similarly, the mesoscopic surface tension follows as:

Υ = γSL(λ) + f (h, λ) + λ
∂

∂λ
[γSL(λ) + f (h, λ)]. (3.6)

Using Young’s Law, the correspondence between the mesoscopic and the macroscopic description
(3.4) can be rewritten as

f (ha, λ) = γLV(cos θY(λ) − 1). (3.7)

This relates the wetting potential to the macroscopic Young’s angle θY(λ), which now depends
on λ. We remind, however, that on elastic substrates Young’s Law is valid only for drops that are
very large as compared to the wetting ridge.

We remark that the energy due to molecular interactions would in general be a more complex
functional that depends on the entire shape of the liquid domain. When the layer is nearly flat,
however, the functional reduces to a simple dependence on the local layer thickness, as is assumed
above. Strictly speaking, the presented formulation of molecular interactions is thus only valid in
the long-wave limit where all interface slopes are small. However, such a mesoscopic model also
shows the correct behaviour for larger contact angles [35]. We will comment on this in more detail
when presenting the complete mesoscopic elasto-capillary model.

(c) Symmetric versus asymmetric Shuttleworth effect
We can now distinguish two different scenarios that we will refer to as symmetric versus
asymmetric Shuttleworth effect. In the symmetric case, the wet (γSL) and dry (γSV) energies exhibit
the same dependence on λ, i.e. in (2.16) one has γ 1

SV = γ 1
SL. Then, identity (3.4) conveys that the

mesoscopic wetting potential only depends on film thickness, but not on stretch, i.e. f (h, λ) = f (h).
In this case, (3.7) implies that Young’s angle is independent of the stretch. Such a situation was
indeed observed in experiments of drops on elastomers where the liquid angle θL, which was
assumed ≈ θY, was found to be unaffected when stretching the substrate [22], even though for
some systems, a Shuttleworth effect was identified [21,25]. Furthermore, (2.18) indicates that the
functional dependence of μSV(λ) is the same as that of μSL(λ). The equality of chemical potential
(3.2) then amounts to the stretch λ being continuous across the contact line.

In general, however, we need to consider the possibility of an asymmetric Shuttleworth effect,
macroscopically corresponding to ∂γSV/∂λ �= ∂γSL/∂λ, i.e. in (2.16) one has γ 1

SV �= γ 1
SL, and due to

equation (3.4) the mesoscopic wetting potential depends on stretch as

∂f
∂λ

∣∣∣∣
h=ha

= ∂γSV

∂λ
− ∂γSL

∂λ
. (3.8)

This difference in the strength of the Shuttleworth effect in the wet and dry states renders
condition (3.2) non-trivial. In this case, one expects θY to depend on the imposed stretch; a stretch-
dependent θL as was indeed observed on stiff glassy polymer substrates [22]. Therefore, both the
symmetric and asymmetric Shuttleworth effect are of interest.
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(d) Specific wetting energy
While the above expressions are general, we need to make a specific choice for f (h, λ) in order to
perform calculations. We first recall the specification of the macroscopic surface energies as

γSL(λ) = γ 0
SL + γ 1

SL g(λ) (3.9)

and
γSV(λ) = γ 0

SV + γ 1
SV g(λ), (3.10)

with g(λ) already defined in equation (2.16). Then, in the mesoscopic description, we propose a
product form

f (h, λ) = ν(λ) f̃ (h), (3.11)

where the stretch-dependence is encoded via an empirical dimensionless function ν(λ).
The correspondence between the mesoscopic and macroscopic approaches is found via the
consistency condition (3.4), which becomes

ν(λ) f̃ (ha) = γLV(cos θ0
Y − 1) +

(
γ 1

SV − γ 1
SL

)
g(λ). (3.12)

Here, we introduced θ0
Y as the Young angle at the unstretched state (i.e. using (3.7) for λ = 1),

defined as
f̃ (ha) = γ 0

SV − γ 0
SL − γLV = γLV

(
cos θ0

Y − 1
)

. (3.13)

We base the thickness-dependent part of the wetting potential on a commonly used, regularized
van der Waals interaction for partially wetting liquids on a rigid substrate. In particular,

f̃ (h) = A
2h2

[
2
5

(
ha

h

)3
− 1

]
, (3.14)

where A > 0 is the Hamaker constant. Introducing (3.14) at h = ha into (3.12), we thus require the
stretch-dependence to be

ν(λ) = −10h2
a

3A

[
γLV(cos θ0

Y − 1) +
(
γ 1

SV − γ 1
SL

)
g(λ)

]
. (3.15)

Then (3.11) with (3.14) and (3.15) finally gives

f (h, λ) = −5h2
a

3h2

[
2
5

(
ha

h

)3
− 1

] [
γLV(cos θ0

Y − 1) + (γ 1
SV − γ 1

SL) g(λ)
]

. (3.16)

As such, the wetting behaviour is specified by the adsorption thickness ha, the energies γLV,
γ 0

SL, γ 0
SV, and the Shuttleworth coefficients γ 1

SL, γ 1
SV. Note that in the absence of stretch g(λ = 1) = 0.

It follows that ν(λ = 1) = 1 when using (3.13) to replace γLV(cos θ0
Y − 1) in (3.15) with f̃ (ha) =

−(A/h2
a)(3/10). This then finally leads to f (h, λ = 1) = f̃ (h).

4. Two elasto-capillary models
The soft wetting problem with Shuttleworth effect can be closed upon introducing the bulk elastic
energy of the substrate. Below we propose two different approaches that will be employed, each
of which has its own benefits (and drawbacks):

— Macroscopic Neo-Hookean model. This in principle offers the most complete description
of the bulk elasticity of the substrate, resolving the interior stress while consistently
accounting for large deformations. This substrate will be coupled to the macroscopic
description of wetting.

— Mesoscopic gradient dynamics model. We use a reduced description of the bulk
elasticity by resorting to a Winkler foundation model. When coupled to the mesoscopic
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description of wetting, this reduced model enables a description of the dynamics of soft
wetting.

Below we define both modelling approaches and discuss their numerical implementation. The
results from the two approaches will be compared in detail in §5.

(a) Macroscopic Neo-Hookean model
The Neo-Hookean model for (macroscopic) soft wetting was presented in detail in Pandey et al.
[26] for deformations induced by a single contact line. Here, we extend the formalism to droplets
of finite (two-dimensional) volume. A hyperelastic solid is characterized by an energy density
W(F), where F = ∂r/∂R is the (gradient) deformation tensor. In two dimensions, the combined
elastic and capillary energy (per unit length) reads

F [χ ] =
∫∫

dX dY W(F) +
∫

dX λγ (λ), (4.1)

where γ may stand for γSL or γSV, depending on whether the surface is locally wet or dry. This
energy is a functional of the mapping r = χ (R). Since the hyperelastic description is Lagrangian,
we have also expressed the surface energy as an integral over X at Y = 0. To account for the correct
surface metric, we used the connection ds = λ dX, where λ is the stretch at the surface (cf. (2.7)).
In the calculations below, we use an incompressible Neo-Hookean energy density, which in two
dimensions reads

W(F) = 1
2

G
(

tr(F · FT) − 2
)

− p(det(F) − 1). (4.2)

Here, G is the shear modulus, while we have included the constraint of incompressibility via the
Lagrange multiplier p.

The wetting is accounted for via the traction that is exerted by the drop onto the substrate. This
traction is sketched in figure 3. It consists of two localized forces γLVt pulling along the liquid–
vapour interface at the two contact lines, located at X = ±R and Y = 0. Here, t is the tangential
unit vector, i.e. the force pulls at an angle θL. It is noteworthy that the localized loads would lead
to an ill-posed minimization problem in the absence of solid surface energy, and that the solid
surface energy provides sufficient regularization to render the minimization problem well-posed.
In between the contact lines, the droplet’s (Laplace) pressure �P is exerted on the substrate. It is
related to the liquid angle θL as �P = γLV sin θL/r, with r being the (Eulerian) base radius of the
droplet. Formally, this traction is captured by a work functional

R[χ ] = γLVtR · r(R, 0) + γLVt−R · r(−R, 0) −
∫R

−R
dXλ�Pn · r(X, 0), (4.3)

where n is the surface normal in the current configuration. The problem is then defined by
minimization of F − R, with respect to the mapping (X, Y) 	→ r = χ (X, Y). Importantly, the
Neumann condition at the contact line emerges within this framework, since the minimization is
explicitly done with respect to the Eulerian contact line position, δr. However, the work functional
(4.3) still contains an unknown liquid angle θL; this angle can be found by imposing the no-
pinning condition (3.2), which reflects the variation of the Lagrangian contact line position (see the
discussion in §3). The problem is therefore closed by introducing the liquid angle as an additional
variable, with the no-pinning condition (3.2) as the corresponding residual.

In summary, the elastocapillary problem thus consists of minimizing the functional

F [χ ] − R[χ ] =
∫∫

dX dYW(F) +
∫

dXλγ (λ) − γLVtR · r(R, 0)

− γLVt−R · r(−R, 0) +
∫R

−R
dXλ�Pn · r(X, 0), (4.4)

subject to the no-pinning condition μSV = μSL at the contact line, to consistently determine the
equilibrium liquid angle θL. The minimization of the energy functional F − R is based on the



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220132

..........................................................

qL qL���P
�P

(a) (b)

LV LV LV LV

Figure 3. The traction exerted by the droplet onto the substrate, consisting of two localized contact line forces and the Laplace
pressure�P inside the drop. The liquid contact angle θL, measured with respect to the horizontal in both the (a) reference and
(b) deformed configurations, is not known a priori, but determined consistently from (3.2). (Online version in colour.)

method in [26], adapted to the specific problem at hand. For simplicity, the goal-adaptive finite-
element method used in [26] is replaced by a residual-based method, in which elements are selected
for refinement based on the residuals when the current solution is projected on a refined mesh.
This method is implemented using the open-source numerical framework Nutils [36].

The solid substrate measures 8R × 8R in the undeformed configuration. The left and right
boundaries of the substrate are only fixed in horizontal direction, allowing for movement in the
vertical direction. The bottom boundary is fixed in both directions. We verified that results are
nearly independent of domain-size. For example, doubling the thickness from 8R to 16R, the angle
changes by 5 × 10−5 degrees and the wetting ridge height by 1 × 10−6. The substrate is initially
divided into a mesh of 48 × 48 elements and subsequently undergoes a total of 13 refinement
iterations. At maximum refinement, the element size is reduced by a factor 2−13, and a minimum
element size of approximately 2R × 10−5 is reached. Since these elements are significantly smaller
than the elastocapillary length, this ensures that wetting ridges are accurately resolved.

(b) Mesoscopic gradient dynamics model
The second approach is in the spirit of the gradient dynamics approach (see, e.g. [31,37]) to the
dynamics of drops on simple compressible elastic substrates presented by Henkel et al. [27], using
a mesoscopic wetting description as given in §3b. In this approach, the hyperelastic model for
the bulk elasticity is replaced by a simpler ‘Winkler-type’ approximation, for which the elastic
energy depends only on the displacements of the interface. Using this reduced elastic energy
together with a compressible substrate dynamics coupled to a mesoscopic model for the dynamics
of the liquid (thin-film, long-wave or lubrication model [38,39]) one obtains a versatile modelling
framework. In contrast to the hyperelastic model, it allows one to study dynamical effects like
viscoelastic braking in droplet spreading as well as film dewetting and subsequent coarsening of
ensembles of drops on elastic substrates [27]. Here, we extend this type of mesoscopic model to
incorporate the Shuttleworth effect considering full-curvature [37,40] and long-wave versions.

The total free energy of the gradient dynamics model is a functional of the scalar Eulerian
fields h(x, t), ξ (x, t), u(x, t), and reads

F [h, ξ , u] =Fel[ξ , u] + Fcap[h, ξ , u] + Fwet[h, ξ , u], (4.5)

with the capillary and wetting energies defined above, respectively, in (2.9) and (3.3). The elastic
energy is approximated by

Fel[ξ , u] =
∫

dx
κ

2

(
ξ2 + u2

)
, (4.6)

which involves an integral only over the interface (and not over the substrate depth, as is the case
for the Neo-Hookean model). The Winkler foundation model employed in [27] only describes
the vertical displacement ξ , where κ is the effective stiffness of the substrate. In (4.6), we have
now added a rigidity with respect to lateral displacements. For reasons of simplicity, we use the
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same effective stiffness κ . To enable the possibility of a prestretched substrate (as is common in
experiments and in the Neo-Hookean model), we adapt the energy as

Fel[ξ , u] =
∫

dx
κ

2

[
ξ2 + (u − u′

∞x)2
]

, (4.7)

where u′∞ corresponds to an imposed prestretch λ∞ = 1/(1 − u′∞) prior to placing a droplet.
It should be mentioned that the Winkler foundation model is strictly speaking only valid for
the description of thin compressible layer deformations but can not be expected to provide
quantitatively satisfying results beyond that case, i.e. thick layers and/or incompressible media.
Nevertheless, we decided to treat accuracy for simplicity and will show that it fits the direct
simulations surprisingly well.

The static, equilibrium properties of a drop of some finite volume V can be inferred by
minimizing (4.5) together with the condition for volume conservation

∫
h dx = V with respect to

the three steady fields h(x), ξ (x) and u(x). However, the formulation furthermore naturally admits
a gradient dynamics structure that, as a bonus, gives a time evolution towards this equilibrium.
For this, we consider the time-dependent fields h(x, t), ξ (x, t) and u(x, t), and define the gradient
dynamics model

∂h
∂t

= ∂

∂x

[
h3

3η

∂

∂x

(
δF
δh

)]
(4.8)

∂ξ

∂t
= − 1

ζ

δF
δξ

(4.9)

∂u
∂t

= − 1
ζ

δF
δu

, (4.10)

where we assumed the same ‘elastic friction constant’ ζ governs the relaxation of ξ and u. As
for the considered non-absorbing substrate, there is no mass transfer between the liquid layer
and the elastic substrate and the considered liquid is non-volatile, the liquid dynamics (4.8) is
fully conserved. The non-conserved dynamics (4.9) and (4.10) for the deformations ξ and u,
respectively, reflect the assumed full compressibility of the elastic substrate. For the derivation
of such equations based on the Onsager variational principle see, e.g. [37,41].

The variations of (4.5) are

δF
δh

= −γLV
∂

∂x

(
h′ + ξ ′

m(h′ + ξ ′)

)
+ ∂f

∂h
m(ξ ′) (4.11)

δF
δξ

= −γLV
∂

∂x

(
h′ + ξ ′

m(h′ + ξ ′)

)
− ∂

∂x
Υ

(
ξ ′

m(ξ ′)

)
+ κξ (4.12)

δF
δu

= −∂μ

∂x
+ κ(u − u′

∞x), (4.13)

where m(z) =
√

1 + z2 is again the metric factor. The variation with respect to h expresses the
(liquid–vapour) capillary pressure and the disjoining pressure due to the molecular interactions.
The variation with respect to ξ expresses the capillary pressures and the substrate elasticity.
Finally, the variation with respect to u controls the substrate’s composition, leading to a shift of
μ due to elasticity. In the long-wave approximation (valid at small slopes) the above expressions
can be simplified (see appendix A). Other dynamic long-wave models without considering the
Shuttleworth effect or lateral displacements were developed for the dynamics of a liquid drop on
a viscoelastic layer [42–44] and for the durotaxis of a liquid drop on a compliant Kirchhoff plate
[45] while certain elasticity aspects also enter long-wave models for drops on polymer brushes
[46] and on growing layers of ice [47]. These long-wave descriptions are further discussed in §2.1
of [27]. We emphasize that the gradient dynamic model (4.8)–(4.10) represents a ‘full-curvature
formulation’, i.e. it combines the exact form of the interface energies with the usual long-wave
approximation of the mobility in (4.8), in analogy to [40,48,49]. See §3 of [37] for a detailed
discussion of the merits of this approach.
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Table 1. Summary of parameters in the macroscopic and mesoscopic models. The connection of macroscale parameters γ 0
SV,

γ 1
SV and mesoscale wetting potential f (h, λ) is given by the consistency conditions (3.13) and (3.15).

quantity macroscopic mesoscopic

surface energies (λ = 1) γLV, γ 0
SL, γ

0
SV γLV, γ 0

SL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shuttleworth constants γ 1
SL, γ

1
SV γ 1

SL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

adsorption layer thickness — ha
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wetting potential — f (h, λ)= ν(λ)f̃ (h)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

substrate stiffness G κ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

elasto-capillary length γLV/G
√

γLV/κ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

liquid viscosity — ηL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

elastic friction constant — ζ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Equations (4.8)–(4.10) as well as their long-wave equivalents (appendix A) are simulated in
time employing the FEM-based software package OOMPH-LIB [50]. An adaptive time stepping
is used based on a backward differentiation method of order 2 (BDF2) from which the next
state is obtained via a Newton procedure. The efficient adaptive time stepping and mesh
refinement routines allow for a treatment of even very large systems. Branches of steady states
are as well followed in parameter space employing the continuation routines [51–53] bundled in
PDE2PATH [54].

Finally, note a peculiar property of the chosen elasticity model and setting without additional
body forces: Even though the elastic layer is locally compressible, all steady states (characterized
by δF/δξ = 0) have a zero global vertical displacement Ξ = ∫

ξ dx = 0 (when using periodic or
Neumann boundary conditions). This is seen when integrating (4.12) over the domain. When
similarly integrated, the non-conserved dynamics (4.9) reduces to ∂Ξ/∂t = −(κ/ζ )Ξ , i.e. Ξ = 0 is
a stable fixed point. The described behaviour directly follows from the simple parabolic elastic
energy (4.6), i.e. the Winkler foundation model. The inclusion of a body force like gravity shifts
this fixed point away from zero. For comparison, the incompressible neo-Hookean substrate is
strictly volume conserving, locally and globally, also in the presence of body forces.

(c) Model parameters and the elastocapillary length
The two models contain various different parameters, so great care must be taken when
comparing the results. The parameters are summarized in table 1. The macroscopic surface
energies can be chosen identical in both models, and require a choice for the energy coefficients
γLV, γ 0

SL, γ 0
SV, and the Shuttleworth coefficients γ 1

SL, γ 1
SV, as defined in (3.9) and (3.10). The

mesoscopic model contains the adsorption layer thickness ha as an additional parameter. We
choose ha to be sufficiently small such that it does not affect the macroscopic elastic deformations
and the contact angle of the drop.

While the capillarity and wetting energies of the two models can be set to fully agree in the
macroscopic limit, this is not the case for the elastic energy. The elasticity of the (incompressible)
Neo-Hookean model is described by the shear modulus G. In the gradient dynamics model,
elasticity is implemented through a Winkler foundation model, which contains an empirical
elastic constant κ . For compressible layers, the constant κ can be expressed in terms of G using
a long-wave expansion for a thin elastic layer [27]. However, the expansion for incompressible
elastic layers does not reduce to the Winkler form, and the systematic connection cannot be
established. However, motivated by [27], the connection between the two models can be made
via the elastocapillary length. For the two models, it is respectively defined as
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Figure 4. Liquid contact angle θL versus substrate softness �ec/r, for symmetric and asymmetric Shuttleworth effect.
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SL. Black symbols and red lines correspond to the macroscopic neo-Hookean and
to the mesoscopic gradient dynamics model, respectively. Results without (λ∞ = 1) and with (λ = 1.2) prestretch are shown
as closed symbols/solid lines andopen symbols/dashed lines, respectively. Parameter values areθ 0
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�NH
ec = γLV

G
Neo-Hookean (4.14)

and

�GD
ec =

(γLV

κ

)1/2
gradient dynamics. (4.15)

In what follows, we will therefore quantify the ‘softness’ using �ec/r. This dimensionless number
scales the elastocapillary length of the models to the half-width of the drop (quantified by the
contact line position x = r in the deformed configuration). This enables a one-to-one comparison
between equilibrium shapes (drop and substrate) obtained in the two models, without any
adjustable parameters.

Besides these energetic parameters, the gradient dynamics model involves dynamical
parameters: the viscosity of the liquid layer η and the elastic friction constant ζ that encodes
the timescale of the substrate.

5. Contact angles and substrate deformations
Typical results of the two models are shown in figure 1. On relatively stiff substrates, the droplet
induces small wetting ridges at the contact line. Upon decreasing the substrate stiffness the
drops gradually sink into the substrate, until attaining a liquid-like geometry. This rigid-to-soft
transition is characterized in quantitative detail below, focusing on the liquid contact angle θL and
the deformations of the substrate.

(a) Contact angles
In figure 4, we report the transition of the liquid contact angle θL between the limiting cases of
rigid and liquid substrates as a function of the softness �ec/r, in the presence of the Shuttleworth
effect with (λ∞ �= 1) and without (λ∞ = 1) prestretch. The black symbols correspond to the results
of the macroscopic neo-Hookean model, while the red lines represent the mesoscopic gradient
dynamics model. In all calculations, the surface energies without stretch (γ 0

LV, γ 0
SV, γ 0

SL) were fixed
to constant values, such that the corresponding Young’s angle θ0

Y = 21.06◦. All curves exhibit a
transition from ‘Young’ to ‘Neumann’, namely, θL decreases as the substrate gets softer, i.e. as one
increases �ec/r. The details of this transition depend on the choice of the Shuttleworth coefficients
γ 1

SV, γ 1
SL (different panels), and on the prestretch of the substrate (λ∞ = 1 versus λ∞ = 1.2, see

legends).
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(i) Symmetric Shuttleworth effect

Figure 4b corresponds to a situation with a symmetric Shuttleworth effect, for which γ 1
SV = γ 1

SL. In
the limit of rigid substrates (�ec/r � 1), we find that the liquid angle is independent of prestretch
λ∞. This independence reflects that for a symmetric Shuttleworth effect the difference in surface
energies γSV − γSL is not affected by the imposed λ∞. In other words, stretching a very rigid
substrate does not render it more hydrophilic or more hydrophobic. However, the effect of
stretching becomes apparent when the substrate is deformable. In the soft limit (�ec/r � 1) of
this particular example, we find θL = 10.3◦ without prestretch and θL = 11.1◦ for λ∞ = 1.2. This
difference in contact angles can be attributed to the changes in the surface tensions due to
stretching, which affect the vectorial Neumann’s balance (even though Young’s angle based on
surface energies remains unaffected).

Let us now discuss the predictions by the macroscopic neo-Hookean model (symbols) in
comparison to those of the mesoscopic gradient dynamics model (lines). First, we note that
both models predict the same angles θL in the rigid and soft limits. This reflects that these
limiting values for the liquid angle are solely dictated by capillarity (Young and Neumann,
respectively)—and capillarity is rigorously implemented in both models. However, it is clear that
the rigid-to-soft transition is much more abrupt in the gradient dynamics model when compared
with the neo-Hookean simulations. The contact angle in the gradient dynamics model sharply
changes within about one order of magnitude around �ec/r ∼ 1, while the neo-Hookean model
takes two to three orders of magnitude in softness to effectuate the transition. In consequence,
the neo-Hookean liquid angles are larger than those in the gradient dynamics model during
the transition. We attribute the slow transition for the neo-Hookean solid to the long-range
nature of elastic interactions [55]: the displacement induced by a localized traction exerted onto
a two-dimensional elastic medium decays only logarithmically with distance, until the size of
the system is encountered. This long-ranged nature of elasticity is lost when approximating the
substrate by Winkler’s foundation, for which the relation between traction and displacement is
perfectly local. We return to this long-range interaction below, when discussing the substrate
deformations.

We thus conclude that the mesoscopic gradient dynamics model with a reduced description of
elasticity faithfully reproduces the equilibrium angles in the rigid and soft limits, including the
effect of prestretch. When expressing the stiffness through �ec/r, the reduced model captures the
trends qualitatively, but significant quantitative differences appear in the transition range. Similar
observations regarding the two models apply to all panels in figure 4.

(ii) Asymmetric Shuttleworth effect

We now turn to the case of an asymmetric Shuttleworth effect, for which γ 1
SV �= γ 1

SL. Figure 4a
corresponds to a situation with γ 1

SV < γ 1
SL, such that the solid–liquid energy increases more with

stretch than the solid–vapour energy. In this case, the substrate becomes more ‘hydrophobic’ once
it is stretched. Indeed, one observes larger contact angles θL for λ∞ = 1.2 when compared with the
unstretched case λ∞ = 1. We verified that in the rigid limit, the increase of θL exactly matches that
predicted by Young’s Law based on the energies at λ∞. This enhanced θL with stretch is apparent
irrespective of the substrate softness.

The asymmetric Shuttleworth effect with γ 1
SV > γ 1

SL is shown in figure 4c. This case is opposite
to that of (a), since now the substrate becomes more ‘hydrophilic’ when stretched. In the rigid
limit (�ec/r � 1), one indeed observes smaller contact angles θL for λ∞ = 1.2 when compared with
λ∞ = 1. Again, this is in accordance with Young’s Law based on the imposed λ∞. Interestingly,
the difference in contact angle is no longer apparent in the soft limit (�ec/r � 1). To predict the
contact angle in this soft, Neumann limit, however, is not straightforward: Neumann’s balance
depends on the local values of surface tensions at the contact line. These local surface tensions
depend not on λ∞ but on the local values of the stretches at the contact line, which, as we see
below, take on non-trivial values.
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macroscopic and (d–f ) mesoscopic model in the cases of symmetric and asymmetric Shuttleworth effect as indicated above
the panels. The central result is that horizontal displacements induced by the droplet are governed by the (a)symmetry of
the Shuttleworth effect. In the top row (a–c), the deformation is visible from the grids that in the reference state are straight
horizontal/vertical. In the bottom row (d–f ), the lines indicate the interface displacement induced by the presence of the drop.
The substrate is prestretched with λ∞ = 1.2. Further parameters are θ 0
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(left) γ 1
SV = γ 1

SL, (centre) γ
1
SV = 3γ 1

SL, (right). Note that for each panel �ec/r is selected by θL, cf. figure 4. (Online version in
colour.)

(b) Substrate deformations
We now turn to a detailed discussion of the substrate deformations, where once again we
investigate the effect of the (a)symmetric Shuttleworth effect in both the macroscopic and the
mesoscopic models. Figure 5 shows magnifications of the vicinity of the contact line. To compare
the results of the two models, we employ the results from figure 4 as a ‘calibration’ curve,
mapping the effective stiffness between the models by selecting an identical liquid contact
angle. Specifically, in figure 5 and the remaining graphs, we took θL ≈ 16◦. When comparing
the various panels with different Shuttleworth effect, one notices a clear difference in horizontal
displacements.

Detailed quantitative comparisons are presented in figure 6, where black lined and red dotted
data are obtained with the macroscopic and the mesoscopic model, respectively. To enable a ‘fair’
comparison between the two models, we select data at nearly identical liquid angles, at θL ≈ 16◦,
which lies halfway the rigid-to-soft transition. The data in figure 6 are taken for a prestretch of
λ = 1.2.

The top row of figure 6 shows the vertical substrate displacements h(x), normalized by the
drop size, for symmetric and asymmetric Shuttleworth effect. The profiles all look very similar,
with a very good agreement between the neo-Hookean (black) and mesoscopic (red) models. We
observe the latter to produce slightly higher ridges than the former model. Away from the drop,
the black wetting ridges systematically decay more slowly than the red ones. This signals the
previously mentioned long-ranged elastic interactions, which are not faithfully captured by the
Winkler foundation used in the mesoscopic model.

The middle row of figure 6 shows the horizontal substrate displacements induced by
the droplet, u(x) − λ∞X, where we corrected for the imposed prestretch. Now significant
differences appear between the (a)symmetric cases. Comparing the leftmost panel (γ 1

SV < γ 1
SL)

to the rightmost panel (γ 1
SV > γ 1

SL), we observe a change from ‘inward’ to ‘outward’ horizontal
displacements. This can be interpreted along the lines of [17,19], who show that—in the rigid
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limit—a resultant horizontal force γ 1
SL − γ 1

SV is exerted onto the substrate, oriented towards the
droplet. Indeed, here we find that the horizontal displacement changes its orientation when
this difference changes sign. Consistently, for the case of symmetric Shuttleworth effect only a
very small horizontal displacement is observed. Note that despite the localized nature of the
Winkler Foundation model the deformations in both vertical and horizontal direction are laterally
extended beyond the contact line. This is for once caused by the diffuse phase transition due
to the nature of the mesoscopic description using a wetting potential, but more importantly
by the Laplace pressure caused by the surface tension of the substrate. The latter suppresses
strong curvatures and smoothes out the flanks. Since the vertical and horizontal displacements
are coupled via the stretch λ these effects are translated as well.

Finally, the bottom row of figure 6 shows the stretches λ(x) along the surface of the substrate.
These stretches are subject to the conditions of continuous chemical potential μSV = μSL across
the contact line. In case of symmetric Shuttleworth effect, this continuity of μ implies a continuity
of stretch λ. Indeed, the middle panel exhibits continuous λ at the contact line, with only mild
variations around the imposed value of λ∞ = 1.2. This is in stark contrast to the case of the
asymmetric Shuttleworth effect (left and right panels), for which the stretch is observed to exhibit
a jump across the contact line—in the macroscopic model it is truly a discontinuity, while in the
mesoscopic model, the jump is smooth on the scale of molecular interactions. The jump in stretch
is necessary to ensure continuous μ. One side of contact line is larger than the imposed prestretch
value λ∞, while the other side of the contact line lies below; this generates a non-monotonic
behaviour of λ along the substrate. Overall, stronger variations in λ are observed for asymmetric
Shuttleworth effect. Thereby the larger λ are observed for the interface with the smaller γ 1,
i.e. outside the drop in figure 6g and inside the drop in figure 6i.
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For completeness, in figure 7, we also report the data for the case without prestretching of
the substrate, i.e. for λ = 1. In comparison to the prestretched case (λ = 1.2), in figure 6, the
Shuttleworth effect is much weaker. The reason for this is that our choice for the function g(λ) that
governs the stretch-dependence of the surface energy exhibits a minimum at λ = 1. Owing to the
weak Shuttleworth effect, the horizontal displacements in figure 7 are much smaller than those in
figure 6. Similarly, the surface-stretch λ(x) exhibits only small variations along the interface. Note
finally that there is no qualitative change anymore between the cases of different asymmetry.

6. Discussion
In summary, we have investigated the static wetting behaviour of drops on elastic substrates in the
presence of the Shuttleworth effect. We have presented two rather different models: a macroscopic
one admitting a detailed description of large-deformation elasticity, and a mesoscopic one
offering the possibility of extensions to dynamics and multiple drops. Below we summarize the
implications of our work, from the experimental perspective and from the modelling perspective.

A central finding is that the influence of the Shuttleworth effect depends strongly on whether
the strain-dependence of the surface energy is symmetric or asymmetric between the ‘wet’ and
‘dry’ parts of the substrate. The most prominent aspect that is governed by the Shuttleworth effect
pertains to the horizontal displacements below the contact line. When the Shuttleworth effect is
strongly asymmetric (∂γSV/∂λ �= ∂γSL/∂λ), significant horizontal displacements appear oriented
to the side where the Shuttleworth effect is largest. By contrast, for a symmetric Shuttleworth
effect (∂γSV/∂λ = ∂γSL/∂λ), the horizontal displacements remain much smaller than the typical
vertical displacements. A similar conclusion was already drawn in the limiting case of stiff
substrates [17,19], for which a tangential force ∂γSL/∂λ − ∂γSV/∂λ was found to be exerted onto
the elastic layer. Our results generalize this observation for substrates of arbitrary softness,
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including the possibility of large elastic deformations. We remark that very large tangential
displacements were recently observed for wetting of drops on hydrogels [56]. In that case,
however, there was also a strong contact angle hysteresis. The pinning of the contact line leads
to additional pinning forces that can enhance/reduce the horizontal displacements. Importantly,
our findings show that strong horizontal displacements can persist at equilibrium, in the absence
of pinning, when the Shuttleworth effect is strongly asymmetric.

Both symmetric and asymmetric Shuttleworth effects have been reported in experiments that
explore the dependence of the liquid angle on prestretching of the substrate [21,22,25]. According
to Young’s Law, which involves only surface energy differences, the change in liquid angle
directly reflects the asymmetry in the Shuttleworth effect. While Young’s Law only holds in
the limit of rigid substrates, our results confirm that the magnitude and sign of the change in
θL with changing prestretch correlates with the Shuttleworth-asymmetry up to substrates with
�ec � r; as is typically the case in experiments. This makes the prestretch-induced variation of the
liquid angle a powerful tool to assess the Shuttleworth effect. Both symmetric and asymmetric
Shuttleworth effect have been indeed reported in experiments on polymeric substrates.
A prestretch-independent θL was observed for various types of elastomers [22]. Also for the
case of PDMS, a strong Shuttleworth effect was inferred by a number of different techniques
[21,25,57]. From the perspective of physical chemistry, this suggests that the ‘surface-elasticity’
that is responsible for the prestretch-dependence is independent of whether or not the substrate
is wetted. The case of an asymmetric Shuttleworth effect was observed for glassy polymers [22].
Indeed, the physico-chemical properties that determine the surface energy for glassy polymers
are quite different in nature when compared with elastomers [22].

In summary, our work emphasizes that horizontal displacements and stretches offer an
important quantitative probe for the Shuttleworth effect, which to date has not been explored as
such. A jump in the stretches is direct evidence for an asymmetric Shuttleworth effect. However,
even in the absence of a jump, i.e. for symmetric Shuttleworth effect, the stretch at the contact line
offers information on the strength of the Shuttleworth effect (see [26]). We hope that our work
motivates further experiments in this direction. Ideally, such experiments are complemented with
simultaneous measurements of the contact angles (of both the drop and of the solid ridge), as by
now we have a clear interpretation framework to relate all these quantities.

From the modelling perspective, we have seen that the gradient dynamics model is able to
capture the non-trivial equilibrium features of soft wetting, including the Shuttleworth effect, in
spite of its reduced description of elasticity. This validation is very promising as the mesoscopic
gradient dynamics model naturally admits dynamical phenomena, such as viscoelastic braking
and the Cheerios-effect [27]. To illustrate this perspective, now including the Shuttleworth effect,
figure 8 shows some typical dynamical results. They are obtained for a droplet of Young’s angle
θY = 30◦ spreading over an initially flat substrate towards its equilibrium state characterized by
θY = 10◦. The panel (a–c) shows space–time plots of the liquid–vapour interface h(x, t) + ξ (x, t),
the vertical displacement ξ (x, t) and the horizontal displacement u(x, t), respectively, for a case
with asymmetric Shuttleworth effect. To investigate the influence of the latter on the spreading
dynamics, the difference of the liquid–vapour contact angle to its equilibrium value �θL =
θ

dyn
L (t) − θ

eq
L was calculated and displayed against the corresponding velocity of the contact line2

on a doubly logarithmic scale (figure 8d). The substrate softness and viscosity ratio were chosen
such that the dissipation in the substrate is significantly stronger than the one within the liquid
[27]. For all three symmetry cases, the curves exhibit the same characteristic linear dependency
�θL ∼ v in the low velocity regime v < 10−3, though shifted by up to a factor 1.5 to each other
indicating a difference in dissipation [10]. In the regime of small velocity, the symmetric case
γ SV

1 = γ SL
1 is the most mobile—due to the absence of horizontal displacements, the dissipation is

2In contrast to the static case, the drop profile can not be assumed to be spherical during the dynamics. Therefore, the contact
line position is estimated as the position of the tip of the wetting ridge, i.e. the maximum of ξ , instead of fitting the drop
with a circle segment. To reduce oscillations caused by finite spatial discretization, the profiles were additionally interpolated
using cubic splines. The wetting ridge opening angle is obtained from the maximum/minimum slope of ξ , respectively,
θS = π − tan−1(∂xξ |max) − tan−1(−∂xξ |min).



20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220132

..........................................................

(a)

(d)

h + � �

x

u

x

t t0.106 0.008 0.006

0 0 0
00

1 1

t

0

1

0

�q
L
(r

ad
)

	�
q S

|(
ra

d)10–1

1

10–2

10–3

10–1

1

10–2

10–3

10–5 10–3

velocity

0.010

0

0.2

10–1 10–5 10–3

velocity
10–1

1.5 1.25
0.25 x 1.25

0.25

(b) (c)

(e)
�
SV

 <   �
SV

�
SV

 =   �
SV

�
SV

 >   �
SV

Figure8. The spreadingof adroplet as determinedby themesoscopic gradient dynamicsmodel (4.8)–(4.10): (a–c) space–time
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in arbitrary units, while all lengths are given in units of the final drop radius r. (d) The dynamic liquid–vapour contact angle
relative to the equilibrium contact angle�θL = θ

dyn
L − θ

eq
L over the corresponding spreading velocity. In (e), the analogous

curves for the absolute difference of thedynamicwetting ridgeopening angle to its equilibriumvalue |�θS| = |θdyn
S − θ

eq
S |

are shown. The spreading velocity is scaled in terms of the characteristic velocity γLV/(3η). The softness of the substrate is
characterized by the elastocapillary length normalized by the drop size �ec/

√
V ≈ 8 × 10−2 and the ratio of ‘viscosities’ is

given by ζ ha/3η = 10. The remaining parameters including the Shuttleworth coefficients correspond to those of figure 6.
(Online version in colour.)

smallest in this case. Note, however, that there is more to the dynamics as observed in the inset of
figure 8d, showing the same data on a linear scale. Specifically, it highlights that the large velocity
regime, reached immediately after drop deposition, is non-trivial, with the blue line standing out
(γ SV

1 > γ SL
1 ). This initial stage involves a rapid formation of the wetting ridges, and is different in

nature from the regime of viscoelastic braking, characterized by a power-law dynamics, reached
at low velocity. These two regimes are also observed for the dynamic opening angle of the wetting
ridge θS as shown in figure 8e. The solid angle initially is θS = π at t = 0 (i.e. at large speeds), and
rapidly decreases during this initial relaxation phase. For all cases, θS passes through a minimum,
and subsequently increases again to the equilibrium value θ

eq
S at slow velocity. In figure 8e, we

therefore plot the absolute value of �θS = θ
dyn
S − θ

eq
S , as this difference may transiently take on

negative values. As for the liquid contact angle, also here the asymmetric case γ SV
1 > γ SL

1 clearly
differs from the others and again all of them seem to satisfy a power law for low velocities. Future
systematic investigations using the presented model can demonstrate how the Shuttleworth effect
changes dynamical wetting on elastic substrates.
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Appendix A. Long-wave approximation of mesoscale model
The mesoscopic gradient dynamics model obtained in §4b combines an energy functional based
on exact metric factors m(z) =

√
1 + z2 and a cubic mobility for the liquid dynamics that can, in

analogy to [38,58], be determined via a long-wave approximation of the Navier–Stokes equations.
Here, we obtain a long-wave approximation of our dynamical model for the case where all
interface slopes are small by expanding the metric factor in the energy functional to m(z) ≈
1 + z2/2. Then, instead of the variations (4.11)–(4.13) obtained in the main text, we obtain

δF
δh

≈ −γLV(h′′ + ξ ′′) + ∂f
∂h

(A 1)

δF
δξ

≈ −γLV(h′′ + ξ ′′) − (Υ ′ξ ′ + Υ ξ ′′) + κξ (A 2)

δF
δu

≈ −μ′ + κ (u − u′
∞x), (A 3)

where all dashes refer to derivatives w.r.t. x. Further, we have (3.5)

μ = λ2 ∂

∂λ

[
γSL(λ) + f (h, λ)

]
. (A 4)

with

λ ≈ 1 + 1
2 (ξ ′)2

1 − u′ (A 5)

and (3.6)

Υ = γSL(λ) + f (h, λ) + 1
λ

μ(h, λ). (A 6)

Introducing (A 1)–(A 6) into the kinetic equations (4.8)–(4.10), one obtains a consistent mesoscopic
gradient dynamics model in long-wave approximation.

Note, however, that the model might be seen as not being asymptotically correct as for small
Young angles the interface energy γLV is much larger than the wetting energy f (making the
two terms in (A 1) the leading balance). Then μ and Υ each combine terms of different order
of magnitude. We argue that nevertheless the much smaller terms in (A 4) and (A 6) need to be
kept as dropping them would destroy the gradient dynamics structure ensuring thermodynamic
consistency. Keeping them also ensures correct long-wave forms of Neumann’s law. Also see the
related discussion in [37] and appendix A of [31].
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