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Abstract
Motivation: Genome-scale metabolic network reconstructions (GENREs) are valuable for understanding cellular metabolism in silico. Several
tools exist for automatic GENRE generation. However, these tools frequently (i) do not readily integrate with some of the widely-used suites
of packaged methods available for network analysis, (ii) lack effective network curation tools, (iii) are not sufficiently user-friendly, and (iv) often
produce low-quality draft reconstructions.

Results: Here, we present Reconstructor, a user-friendly, COBRApy-compatible tool that produces high-quality draft reconstructions with reac-
tion and metabolite naming conventions that are consistent with the ModelSEED biochemistry database and includes a gap-filling technique
based on the principles of parsimony. Reconstructor can generate SBML GENREs from three input types: annotated protein .fasta sequences
(Type 1 input), a BLASTp output (Type 2), or an existing SBML GENRE that can be further gap-filled (Type 3). While Reconstructor can be used to
create GENREs of any species, we demonstrate the utility of Reconstructor with bacterial reconstructions. We demonstrate how Reconstructor
readily generates high-quality GENRES that capture strain, species, and higher taxonomic differences in functional metabolism of bacteria and
are useful for further biological discovery.

Availability and implementation: The Reconstructor Python package is freely available for download. Complete installation and usage instruc-
tions and benchmarking data are available at http://github.com/emmamglass/reconstructor.

1 Introduction

Genome-scale metabolic network reconstructions (GENREs)
are valuable tools for understanding the link between the ge-
notype and phenotype of an organism. GENREs can enable
greater understanding of the effects of genetic and environ-
mental perturbation on cellular function and can help identify
novel drug targets, among many other applications (Haggart
et al. 2011, Kim et al. 2012, Gu et al. 2019).

The generation of GENREs can be an incredibly laborious
and complex process, requiring the integration of data from
multiple sources (Thiele and Palsson 2010). The creation of a
GENRE begins with the annotated genome sequence to pre-
dict reactions to include in the draft GENRE, and then further
model curation steps are performed to gap-fill missing reac-
tions. While GENREs can be generated and curated manu-
ally, methods for the automated creation of GENREs have
emerged (Mendoza et al. 2019).

Several platforms exist for automated GENRE creation, in-
cluding ModelSEED (Seaver et al. 2021), CarveMe (Machado
et al. 2018), and among others (Dias et al. 2015, Aite et al.
2018; Olivier 2018, Wang et al. 2018, Karp et al. 2021)

(Fig. 1B). However, the reconstructions generated by these
tools typically require additional compatibility modules for
integration with COBRApy (Ebrahim et al. 2013), and subse-
quent manual or automated curation (King et al. 2015,
Moretti et al. 2016, Mundy et al. 2017, Camborda et al.
2022, Saadat et al. 2022, Schneider et al. 2022; see
Supplementary).

Here, we introduce Reconstructor, an automated GENRE
creation tool that generates COBRApy-compatible recon-
structions in the ModelSEED namespace. Additionally, we in-
clude a two-step gap-filling technique based on parsimonious
flux balance analysis (pFBA) (Lewis et al. 2010), a more bio-
logically tractable gap-filling technique than other techniques
based exclusively on gene–protein-reaction mapping. pFBA is
motivated by the possible notion that high metabolic flux has
high enzyme turn-over and that the synthesis of enzymes is en-
ergetically costly. Consequently, the model will minimize
overall flux (and thus costly high enzyme turn-over), but still
maximize for a given objective function (Lewis et al. 2010).
Using a pFBA approach to gap-filling ensures that we account
for all reactions with genetic evidence while generating a re-
construction that is consistent with these principles of
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parsimony. We also demonstrate how metabolic network
models derived from Reconstructor can be used to generate
experimentally testable hypotheses.

2 Results
2.1 Universal reaction database construction

A universal database of metabolic reactions was adapted
from the ModelSEED database, removing all reactions that
are unbalanced (see Supplementary). From this modified
ModelSEED database, we generated reaction and metabolite
dictionaries, missing exchange reactions were identified and
corrected, and the biomass function was updated. The result
was a universal database that contains a reaction collection
from which the genome-informed model can select reactions
for inclusion and gap-filling. The user can also curate their
own universal database to use with Reconstructor by altering
the ModelSEED reaction and metabolite dictionaries. The
ability to readily curate this existing universal database or to
make use of any other user-provided universal database in the
same name-space is a key feature of Reconstructor.

2.2 Input data formats and draft GENRE scaffold

extraction

Reconstructor automates the build of a GENRE from three
different types of user-defined inputs. Type 1 requires inputs
of an annotated genome sequence in the form of an amino
acid FASTA file. It is important to note that the user must an-
notate the genome beforehand, as genome DNA files are cur-
rently not supported as inputs in Reconstructor. Type 2
requires an input of BLASTp hits, bypassing the BLASTp
search step. Type 3 requires an existing GENRE in SBML for-
mat in the same namespace and with the same construction
(e.g. definition of intracellular/extracellular compartments) as
Reconstructor network reconstructions, and further pFBA
gap-filling is performed (as described in Supplementary).
Additionally, for input Types 1 and 2, the user can define
their own media conditions for a given GENRE by providing
metabolite names in their defined media condition (further
discussed in Supplementary).

The GENRE creation process is described below from the
starting point of a Type 1 input. The amino acid FASTA file is
aligned to the KEGG database by performing a BLASTp
search with the DIAMOND sequence aligner tool (Buchfink
et al. 2015). Then, the KEGG gene hits are processed and
translated into ModelSEED reactions. These reactions and as-
sociated gene names are used to create a draft GENRE based
solely on gene-associated reactions. Additionally, reactions
are added to the draft GENRE based on media conditions.

2.3 Parsimonious flux balance analysis-based

approach to gap-filling draft GENREs

Several gap-filling methods exist (Pan and Reed 2018), many
of which use parsimony as a guiding principle in which a min-
imum number of reactions are added to satisfy criteria like
growth in defined media (Prigent et al. 2017, King et al. 2018,
Zimmermann et al. 2021). In Reconstructor, we introduce a
two-step gap-filling process based on (i) parsimonious flux
principles and (ii) user-defined media conditions. Our gap-
filling technique works by minimizing the flux through an op-
timal reaction set (all gene-associated reactions and a set of
non-gene associated reactions that minimizes flux), rather
than minimizing the number of reactions added to the net-
work (see Supplementary). After the optimal reaction set is
chosen, reactions are added to the GENRE.

2.4 Component annotation and final GENRE output

The final gap-filled GENRE is then annotated with KEGG
(Kanehisa et al. 2016) gene IDs, ModelSEED metabolites, and
reaction names. Finally, basic model statistics are reported in-
cluding the number of genes, reactions, and metabolites in the
draft and final GENREs, how many reactions were the result
of gap-filling, and the final biomass objective flux so the user
can ensure the gap-filling process was successful. Finally, the
model is saved in SBML format, the current community stan-
dard (Hucka et al. 2003).

2.5 COBRApy compatibility

Current widely-used GENRE creation tools, ModelSEED and
CarveMe, both require additional modules to be used in con-
junction with COBRApy (Moretti et al. 2016, Mundy et al.
2017). Reconstructor GENREs are directly compatible with
COBRApy; they can be generated via command line and eas-
ily imported into Python, or generated directly in a Python
script using the reconstruct() function to easily and

Figure 1. Reconstructor overview. (A) Flowchart detailing the functionality

of the Reconstructor tool. (B) Comparison of other widely used GENRE

construction tools including Reconstructor, adapted from Mendoza et al.

(2019). (C) Flux sampling was performed on 20 bacterial reconstructions

generated with Reconstructor (five strains for each of four species). Each

dot represents a sampled flux distribution. Five hundred sampled flux

distributions were captured for each reconstruction. Samples were

dimensionally reduced using non-metric multidimensional scaling and

plotted on a 2D plane for visualization. (D) GENREs were created via

Reconstructor for each of the 10 bacterial species listed, genome

sequences were downloaded from the BV-BRC (Davis et al. 2020), BV-

BRC IDs for each species are listed. (E) Essential genes for a generated

Pseudomonas aeruginosa (strain NCGM2.S1) reconstruction, existing

drugs that target those essential genes according to DrugBank, and

whether the identified drugs are known antimicrobials. 1Ricke et al.

(2020), 2Alzahrani et al. (2022), 3Chrószcz et al. (2022), 4Kondratenko et al.

(2020), 5Narui et al. (2009), 6Murthy et al. (1945), and 7Yazdankhah et al.

(2006).
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immediately take advantage of the powerful COBRApy
analysis toolbox. Reconstructor’s direct COBRApy compati-
bility allows users to streamline GENRE analysis pipelines,
potentially accelerating GENRE-based discovery and hypoth-
esis generation.

2.6 Reconstructor utility

We demonstrate the utility of Reconstructor GENREs by
addressing three key aspects: (i) quality of reconstructions for
a range of bacteria with different levels of literature investiga-
tion, (ii) ability of GENREs to capture strain-level differences,
and (iii) ability to quickly generate testable biological
hypotheses.

While Reconstructor could be used for any annotated
amino acid .fasta file, we demonstrate here the utility of
Reconstructor with bacterial reconstructions. We generated a
total of 10 GENREs representing unique bacterial strains for
analysis and benchmarking through the metabolic model test-
ing suite (MEMOTE) (Lieven et al. 2020). We selected a
diverse set of bacterial species to ensure we can generate high-
quality reconstructions for both well studied/annotated spe-
cies like Clostridium difficile and lesser-known species like
Tropheryma whipplei. MEMOTE scores and SBML recon-
structions for each of the 10 species (Fig. 1C) are available at
http://github.com/emmamglass/reconstructor. The overall
MEMOTE scores for the reconstructions ranged from 83%
to 85% (Fig. 1D). MEMOTE score comparisons between sim-
ilar ModelSEED and CarveMe reconstructions are discussed
in Supplementary.

While the benchmarking quality of Reconstructor GENREs
is high, we wanted to ensure that Reconstructor creates
GENREs that are capable of capturing strain-, species-, and
class-level variation in metabolic functionality. To address
this question, we further generated reconstructions for five
distinct strains of each of four bacterial species, Pseudomonas
aeruginosa, Mycobacterium tuberculosis, Escherichia coli,
and Rickettsia rickettsii, for a total of 20 reconstructions.
Through flux balance analysis and visualization with nonmet-
ric multidimensional scaling, we show that the Reconstructor
network reconstructions are able to capture functional
metabolic differences in strain, species, and class, as evidenced
by distinct clustering of flux samples (Fig. 1C) (see
Supplementary).

Since we determined that Reconstructor GENREs are able
to capture differences in metabolic functionality with signifi-
cant detail, we wanted to demonstrate the utility of
Reconstructor GENREs for generating testable biological hy-
potheses rapidly through integration with COBRApy. We
generated a metabolic network reconstruction of a
Pseudomonas aeruginosa strain, NCGM2.S1, that has not
been previously created. Because of Reconstructor’s direct
COBRApy compatibility, we were able to apply COBRApy
tools to run a gene essentiality analysis. We then mapped
these essential genes to targets of existing drugs in DrugBank
(Wishart et al. 2018). We determined that 7 identified drugs
are known inhibitors of microbial growth, while 13 other
drugs had not been tested previously (Fig. 1E). These untested
drugs represent new hypotheses that can readily be tested ex-
perimentally (see Supplementary).

3 Conclusion

Reconstructor automatically creates and curates COBRApy-
compatible, genome-scale metabolic network reconstructions
in the ModelSEED namespace and uses a pFBA based gap-
filling technique (Fig. 1A) that is more consistent with parsi-
mony principles in metabolic modeling than conventional
gap-filling techniques (Jenior et al. 2020). Direct COBRApy
compatibility enables the user to import GENREs directly
into Python for further downstream analysis via the robust
COBRApy toolbox. Reconstructor generates high-quality
GENREs as evidenced through MEMOTE benchmarking,
captures class-, species-, and even strain-level differences in
functional metabolism and can be used for rapid experimental
hypothesis generation.

Supplementary data

Supplementary data are available at Bioinformatics online.
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