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ABSTRACT: Identification of the usefulness of lipid-based
formulations (LBFs) for delivery of poorly water-soluble drugs
is at date mainly experimentally based. In this work we used a
diverse drug data set, and more than 2,000 solubility
measurements to develop experimental and computational
tools to predict the loading capacity of LBFs. Computational
models were developed to enable in silico prediction of
solubility, and hence drug loading capacity, in the LBFs. Drug
solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and
Capmul MCM EP) correlated (R2 0.89) as well as the drug
solubility in Carbitol and other ethoxylated excipients (PEG400, R2 0.85; Polysorbate 80, R2 0.90; Cremophor EL, R2 0.93). A
melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was
accurately calculated from solubility data in single excipients (R2 0.91). In silico models, without the demand of experimentally
determined solubility, also gave good predictions of the loading capacity in these complex formulations (R2 0.79). The framework
established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set
studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid
state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using
molecular information extracted from calculated descriptors and thermal properties of the crystalline drug.
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■ INTRODUCTION

The demand for formulations that facilitate drug solubilization
is growing due to the increasing number of poorly water-
soluble drug molecules emerging from drug discovery
programs. A sufficient dissolution and solubility must be
attained in the gastrointestinal tract (GIT) for orally delivered
drugs to be available for absorption. Poor GIT solubility
substantially limits effective drug development and, in the worst
case, leads to late termination of the candidate drug.1,2 Lipid-
based formulations (LBFs) are a means to circumvent the low
solubility issues associated with lipophilic drugs. In contrast to
conventional dosage forms, the drug is typically predissolved in
LBFs to overcome the hurdle of dissolution in the GIT.3,4

Extensive research efforts have focused on optimizing in vitro
lipolysis experiments and altering formulation composition to
keep the drug solubilized and available for absorption.5−7

Nevertheless, these studies have not particularly focused on the
molecular mechanism governing drug loading into LBFs per se,
which is an equally important aspect to achieve successful drug
delivery.8

Less than 4% of all orally administered drugs on the market
use LBF dosage forms.3 Part of the reason is likely because of
the complex nature of lipid-based drug delivery systems, i.e.,

systems consisting of mixtures of oils, surfactants, and
cosolvents in different proportions.9,10 Moreover, the LBF
development process to date is mainly experimentally based,
where the drug is screened for solubility in numerous
excipients.8,11,12 This process is time and resource intensive,
and demands that there are large amounts of the drug available
for screening purposes. More importantly, this procedure is not
based on an understanding of the molecular interactions
between drug and formulation components, with the result that
suboptimal formulations might be selected.
Traditionally, phase diagrams have been used to compose

miscible formulations and the LBFs have subsequently been
experimentally determined for drug loading capacity.13 To
understand what defines drug solubility in cosolvent and lipid
mixtures a few other approaches have been applied. One of the
early models for prediction of solubilization in cosolvent/water
mixtures was the log−linear model of Yalkowsky and co-
workers.14,15 Recent studies on lipid systems have used similar
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approaches to estimate drug solubility in complex lipid
mixtures.16−18 Based on four model compounds, it was
shown that the sum of the loading capacity in the LBF is
equal to the solubility of each included excipient, when
compensated for the fraction of the excipient in the
formulation.17 The weakness of this methodology is that it
requires experimental measurements, which limits the applic-
ability for rapid estimation of LBF loading capacity.
Solubility in binary mixtures of cosolvent and water has also

been modeled mathematically in different ways. One such
quantitative structure−property relationship (QSPR) model
was developed, on a data set of 122 drugs, to predict solubility
in polyethylene glycol (PEG400)/water mixtures. The QSPR
model developed at each volume fraction (25%, 50%, 75%
PEG/water) had an R2 < 0.9 and a root-mean square error
(RMSE) of <0.5 log unit for the training set. These QSPR
models were solely based on calculated descriptors, and the
important descriptors reflected weight, volume, density, radius
of gyration, number of rotatable bonds, hydrogen-bond donors,
and hydrogen-bond acceptors.19 Another study on the same

data set performed a stepwise linear regression analysis which
included the melting point (Tm) as a descriptor. Although Tm

contributed to the solubility estimation in pure PEG400 (R2

0.71, RMSE 0.55), there was a minimal decrease in model
performance when the solid state descriptor was excluded (R2

0.69, RMSE 0.58).20 We previously applied a similar method-
ology to predict solubility in PEG400 which resulted in a model
with comparable accuracy (R2 0.62, RMSE 0.44). The inclusion
of Tm as a descriptor in that model did not improve the
performance.21

Although methodologies exist to calculate solubility in
cosolvents and lipid mixtures, there is not yet any model to
accurately predict solubilityand hence loading capacityin
complex mixtures of lipid excipients without the demand for
experimental work. The aim of the current study was to identify
molecular characteristics of poorly soluble compounds that
would define solubility in lipids, surfactants, and cosolvents
commonly used in LBFs. Furthermore, we aimed to develop
tools to enable rational experimental screening and computa-
tional prediction of loading capacity in the LBFs.

Table 1. Physicochemical Properties of Selected Model Compoundsa

compound Mw (Da) logP Tm (°C) ΔSf (J/mol·K) TPSA A/B/N/Am pKa
b

acitretin 326.5 5.6 221 115 47 A 4.2
albendazole 265.4 3.1 203 95 92 Am 3.7, 9.926

bezafibrate 361.9 3.8 185 110 76 A 3.643

candesartan 440.5 4.6 178 nd 119 Am 2.1, 3.3, 4.544

candesartan cilexetil 610.7 7.4 167 116 143 Am 3.0, 2.2
carbamazepine 236.3 2.7 173c nd 48 N na
cinnarizine 368.6 5.5 119 103 6 B 7.526

clofazimine 473.4 6.9 222 74 42 B 9.045

clotrimazole 344.9 5.2 142 77 18 B 5.2
danazol 337.5 4.9 227 63 46 N na
diflunisal 250.2 3.1 213 76 58 A 3.145

dipyridamole 504.7 2.5 166 72 145 B 6.226

disulfiram 296.6 4.6 67 84 121 B 2.5
ethinylestradiol 296.4 4.9 183 62 40 A 10.3
felodipine 384.3 3.6 143 73 65 N na
fenbendazole 299.4 3.8 226 123 92 B 5.146

fenofibrate 360.9 5.1 79 85 53 N na
fenofibric acid 318.8 4.1 184 99 64 A 3.5
glibenclamide 494.1 4.1 174 99 122 A 5.926

griseofulvin 352.8 2.2 217 87 71 N na
halofantrine 500.5 8.2 77 89 23 B 9.2
haloperidol 375.9 3.9 151 133 41 B 8.626

indomethacin 357.8 4.2 160 80 69 A 3.926

itraconazole 705.7 6.5 166 128 105 B 3.945

mefenamic acid 241.3 4.0 230 74 49 A 4.445

naproxen 230.3 2.8 155 75 47 A 4.226

niclosamide 327.1 3.6 231 87 95 A 10.3, 8.1
noscapine 413.5 3.0 175 80 76 B 5.9
perphenazine 404.0 4.2 94 86 60 B 7.828

praziquantel 312.5 2.7 139 72 41 N na
progesterone 314.5 3.6 128 63 34 N na
saquinavir 670.9 3.9 nd nd 167 B 7.447

sulfasalazine 398.4 2.0 255 99 146 A 10.9, 8.0, 2.448

tolfenamic acid 261.7 4.1 213 78 49 A 4.126

toltrazuril 425.4 6.1 192 89 111 A 8.2
aMolecular weight (Mw), logP (displays AlogP), and TPSA (displays TPSA(Tot)) were calculated with DragonX 6.0.16 (Talete, Italy). Melting
point (Tm) and entropy of fusion (ΔSf) were determined with differential scanning calorimetry (see Experimental Section). Abbreviations: acid (A);
base (B); neutral in the pH range 2−12 (N); ampholyte (Am). bpKa data was collected from the literature or, if not available in the literature,
predicted through ADMET Predictor v7.1 (Lancaster, CA). cTm of carbamazepine corresponds to form III (see Results).
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■ EXPERIMENTAL SECTION

Material. All drug compounds were purchased from Sigma-
Aldrich (St. Louis, USA) except acitretin (Ontario Chemicals
Inc., Canada), candesartan, and candesartan cilexetil (Angene
Ltd., China), danazol (Coral Drugs IVT, India), fenofibric acid
(Labratoreo Chimico Internazionale, Italy), halofantrine,
(SmithKline Beecham Pharmaceuticals, India), and itraconazole
(Lee Pharma Ltd., India). Felodipine was a gift from
AstraZeneca (Mölndal, Sweden). The excipients soybean oil
(SBO), Cremophor EL, Cremophor ELP, polysorbate 80
(PS80), Carbitol, and PEG400 were purchased from Sigma-
Aldrich (St. Louis, USA). Captex 355 (Captex) and Capmul
MCM EP (Capmul) (Abitec, Janesville, WI, USA) were
generous gifts from Barentz (Denmark, Copenhagen), and
Maisine 35-1 (Maisine) was kindly donated by Gattefosse ́
(Lyon, France). The average molecular weights used in
calculation of mol per mol solubility values were as follows:
SBO, 873.3 g/mol; Maisine, 489.7 g/mol; Captex, 504.9 g/mol;
Capmul, 248.4 g/mol; Cremophor EL and Cremophor ELP,
2424.4 g/mol; PS80, 1310.0 g/mol; PEG400 400.0 g/mol; and
Carbitol, 134.2 g/mol.
Data Set Selection and Characteristics. In this study 35

orally delivered compounds were investigated for their
solubility in excipients that are commonly used in LBFs. The
data set was selected to cover compounds that are potential
candidates of LBFs (reflected with a logP ≥ 2), while still being
structurally diverse (Table 1), and expected to give adequate
range in solubility in the excipients. Solubility of all 35
compounds was determined in four LBF excipients: Maisine
(long-chain mono-, di-, triglyceride), Capmul (medium-chain
mono-, di-, triglyceride), Cremophor EL (surfactant), and
Carbitol (cosolvent). A smaller number of compounds (n = 25)
were determined in Cremophor ELP (surfactant) to investigate
differences in solvation capacity between the Cremophor EL
and Cremophor ELP. The latter is a refined version of
Cremophor EL containing less water (Cremophor EL ≤3% w/
w, Cremophor ELP ≤0.5% w/w). All excipients were stored
under argon gas to avoid oxidation and water uptake. Seven of
the compounds were studied in SBO (long-chain triglyceride),
Captex (medium-chain triglyceride), PS80 (surfactant), and
PEG400 (cosolvent). For the remaining 28 compounds, we
used the solubility data in these excipients reported in our
previous publication.21 Nine selected model compounds were
determined for loading capacity in four formulations
representative of the lipid formulation classification system
(LFCS) types II, IIIA, IIIB, and IV (Figure 1).
Differential Scanning Calorimetry Experiments. The

compound onset of melting (Tm) and heat of fusion (ΔHf)
were measured with differential scanning calorimetry (DSC)
(DSC Q2000, TA Instruments, Japan), coupled to an automatic

cooling system. The instrument was calibrated for temperature
and enthalpy using indium. Approximately 1−3 mg of each
compound was weighed into a nonhermetic aluminum pan and
heated at 10 °C/min to 20 °C above the literature Tm. The
nitrogen gas flow rate was set to 50 mL/min. All measurements
were performed in triplicate. Tm and ΔHf were used to calculate
the entropy of fusion (ΔSf) from Gibbs free energy of fusion.
From the extracted solid state data the ideal solubility (log Xi

c)
was calculated for each compound.22

Drug Solubility in Single Excipients. A small-scale shake-
flask method was used to measure the drug solubility in all
excipients.21 Approximately 150% of the estimated soluble
amount of the compounds was weighed into a glass vial to
which 750 mg of excipient was added. Vials were sealed with a
lid, vortexed, and placed on a plate shaker (incubator at 37 °C)
for the time of the study. After 24, 48, and 72 h (or longer if
required) the vials were centrifuged (Eppendorf centrifuge
5810R) at 37 °C, 2800g for 30 min. Immediately after
centrifugation 20−30 mg of the supernatant was transferred to
a 5 mL volumetric glass flask and diluted with methanol except
for SBO, which is insoluble in methanol and therefore was
diluted in isopropanol. The drug suspensions were thereafter
dispersed thoroughly by vortexing the vials and returned to the
incubator at 37 °C. The samples were kept until after the
analysis to guarantee that solubility could be determined at later
time points. Equilibrium solubility was the value at which the
solubility differed less than 10% between two consecutive time
points. Compounds were quantified in a 96-well UV-plate
reader (Tecan, Safire2) at compound-specific wavelengths. For
samples with too low sensitivity to be detected by UV, LC−
MS/MS (Waters Xevo TQ, Milford, MA) was used. The LC−
MS/MS analytical conditions can be found in Table SI1. For all
analytical techniques, accuracy of the analysis was controlled by
a quality control (prepared from a separate stock solution), and
triplicate recovery samples with a known concentration of drug
compound.

Formulation Composition, Self-Emulsification, and
Solubility. LBFs were assembled from the excipients in this
study and those investigated in a previous study.21 We aimed to
design formulations representative of the different types in the
LFCS.9,10 The formulation ingredients were preheated to 37 °C
to facilitate handling and to obtain homogeneous mixing. The
excipients were added to a test tube in predefined fractions (%,
w/w) and vortexed thoroughly. Formulations were defined as
stable when there was no sign of phase separation after
incubation at 37 °C for a week followed by centrifugation (37
°C, 2800g, 30 min, Eppendorf centrifuge 5810R). Stable
formulations were tested for self-emulsification by dispersing 1
g of formulation in 39 mL (37 °C) of ultrapure water Millipore
(Billerica, MA, USA), i.e., conditions depicting a worst-case

Figure 1. Assembled type II−IV formulations used for loading capacity determinations of nine model compounds. The percent of excipient
corresponds to % w/w.
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scenario. Resulting homogeneous clear or milky dispersions
were considered to be self-emulsified.23,24 The final LBFs are
presented in Figure 1. Cinnarizine, disulfiram, fenbendazole,
fenofibrate, fenofibric acid, halofantrine, noscapine, progester-
one, and tolfenamic acid were chosen as model compounds to
be investigated for loading capacity in the LBFs. These
compounds represent a wide range in physicochemical
properties (Table 1) and solubility in the single excipients
(Tables 2 and 3). Formulations were prepared the day before
the solubility experiments, in order to equilibrate for at least 12
h; determinations were carried out as described for the single
excipients.
Statistics and Model Development. The solubility

determinations were performed in triplicate, and the solubility
values are presented as means ± standard deviation. The
coefficient of determination (R2) was used to ensure the
goodness-of-fit for standard curves and simple correlations.
Multivariate data analysis (Simca 13.0.2.0, Umetrics, Sweden)
was applied to investigate the influence of molecular structure
and physiochemical properties on solubility and whether the
loading capacity of the LBFs could be predicted from molecular

properties. First, Corina 3.49 (Molecular Networks, Erlangen,
Germany) was used to convert SMILES strings into three-
dimensional structures, which then were used as input for
calculation of molecular descriptors with DragonX 6.0.16
(Talete, Italy). The descriptors were blinded to avoid selection
bias, followed by removal of skewed descriptors, mean
centering, and scaling to unity of variance. This led to a matrix
consisting of 1660 variables. To reduce the descriptor matrix
and remove strongly linearly correlated descriptors before the
variable selection, a script was used (R, 3.2.0, Vienna, Austria)
to exclude those correlating ≥|0.9|. The compound data set was
sorted into training (Tr) and test (Te) sets. Strong outliers
identified in the principal component analysis (PCA) and the
distance-to-the-model-of-X (DModX) plot of the data set were
excluded from the training set; instead, these were placed in the
test set to avoid distortions in the model. Similarly, compounds
for which an exact solubility value not could be determined
were placed in the test set. An additional criterion for the test
set was that it was well distributed over the chemical space of
the training set in the PCA plot. The solubility in the logarithm
form of mol compound/mol excipient was used as response.

Table 2. Experimentally Determined Thermodynamic Solubility in Glycerides at 37°Ca

compound Maisine 35-1 (mg/g) soybean oil (mg/g) Capmul MCM EP (mg/g) Captex 355 (mg/g)

acitretin 0.62 ± 0.06 0.12 ± 0.01 1.54 ± 0.10 0.24 ± 0.01
albendazole 3.86 ± 0.21 0.17 ± 0.01 3.17 ± 0.10 0.39 ± 0.05
bezafibrate 1.55 ± 0.05 ≤0.20 6.36 ± 0.26 0.22 ± 0.01
candesartan ≤0.41 ≤0.03 3.19 ± 0.14 0.01 ± 0.00
candesartan c 1.99 ± 0.19 0.31 ± 0.01 9.07 ± 0.38 0.71 ± 0.02
carbamazepine 30.0 ± 1.66 1.42 ± 0.16 55.5 ± 3.23 2.56 ± 0.12
cinnarizine 29.0 ± 0.78 30.6 ± 0.88 33.5 ± 1.12 42.0 ± 1.71
clofazimine 11.7 ± 0.24 9.51 ± 0.21 16.3 ± 0.44 13.3 ± 0.38
clotrimazole 75.4 ± 8.95 15.1 ± 0.76 136.7 ± 5.94 18.8 ± 0.59
danazol 14.7 ± 0.79 3.89 ± 0.15 28.5 ± 1.11 7.41 ± 0.91
diflunisal 31.6 ± 0.99 7.86 ± 0.59 53.4 ± 1.29 16.5 ± 1.73
dipyridamole 3.02 ± 0.16 0.07 ± 0.01 12.3 ± 0.36 0.14 ± 0.02
disulfiram 49.0 ± 3.05 21.4 ± 1.07 47.2 ± 2.05 54.7 ± 2.39
ethinylestradiol 22.1 ± 1.83 13.4 ± 0.47 56.3 ± 1.76 44.0 ± 3.13
felodipine 37.7 ± 1.37 9.59 ± 0.67 80.2 ± 2.22 26.4 ± 1.75
fenbendazole 0.69 ± 0.11 0.09 ± 0.01 1.28 ± 0.09 0.19 ± 0.00
fenofibrate 78.6 ± 4.38 79.9 ± 3.92 102.3 ± 3.05 168.8 ± 15.7
fenofibric acid 7.38 ± 0.22 0.80 ± 0.05 14.5 ± 0.50 1.97 ± 0.05
glibenclamide 0.52 ± 0.14 ≤0.05 5.49 ± 0.26 0.06 ± 0.01
griseofulvin 2.43 ± 0.05 0.50 ± 0.06 5.56 ± 0.21 1.00 ± 0.04
halofantrine 71.2 ± 4.58 52.8 ± 6.30 52.6 ± 3.01 99.6 ± 2.82
haloperidol 3.57 ± 0.16 1.22 ± 0.13 13.4 ± 0.51 2.42 ± 0.08
indomethacin 13.0 ± 0.88 2.02 ± 0.05 28.6 ± 1.30 4.80 ± 0.34
itraconazole 2.26 ± 0.16 0.09 ± 0.01 5.60 ± 0.67 0.18 ± 0.00
mefenamic acid 5.38 ± 0.40 1.87 ± 0.12 9.63 ± 0.40 2.72 ± 0.04
naproxen 19.5 ± 1.42 5.49 ± 0.71 40.3 ± 1.19 9.61 ± 0.14
niclosamide 3.97 ± 0.19 1.38 ± 0.11 10.1 ± 0.40 2.82 ± 0.11
noscapine 5.36 ± 0.61 1.91 ± 0.15 7.23 ± 0.20 3.37 ± 0.11
perphenazine 92.5 ± 5.80 16.7 ± 1.72 192.4 ± 5.63 27.6 ± 2.50
praziquantel 85.9 ± 5.32 nd 184.9 ± 12.4 13.0 ± 0.48
progesterone 66.2 ± 4.87 30.4 ± 1.28 99.1 ± 2.94 36.9 ± 1.15
saquinavir ≥123 2.34 ± 0.09 ≥288 7.09 ± 0.14
sulfasalazine 0.16 ± 0.02 0.01 ± 0.00 3.16 ± 0.06 0.02 ± 0.00
tolfenamic acid 14.1 ± 1.18 3.81 ± 0.23 26.0 ± 1.45 7.24 ± 0.54
toltrazuril 7.90 ± 1.03 0.64 ± 0.04 11.8 ± 0.59 2.06 ± 0.15
min 0.16 0.01 1.28 0.01
max ≥123 79.9 ≥288 168.8

aAbbreviations: Candesartan cilexetil (candesartan c).
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Partial least-squares projection to latent structures (PLS) was
then used to identify trends, predict quantitative response
values, and understand differences between the included
excipients. The PLS models were developed with a stand-
ardized protocol from our group.25,26 A variable selection
procedure removed nonsignificant descriptors, decreased model
complexity, and increased model interpretability and robust-
ness. The first exclusion step removed all variables except the
100 most important for the response. Thereafter additional
variables were removed based on the variable importance to
projection (VIP) and the loading plot, and monitored by the
leave-one-out (using 7 groups), and cross-validated R2 (Q2). If
the exclusion of the variable had no effect or increased the Q2, it
was permanently eliminated from the model. The variable
selection procedure was repeated until no further descriptors
could be removed without lowering Q2. All PLS models were
validated by root-mean square error of the estimate (RMSEE)
calculations of the training and test sets and permutation tests
(100 iterations).
Calculation and Prediction of Loading Capacity in

Lipid-Based Formulations. The loading capacities of the

LBFs were calculated for the nine model compounds by taking
use of eq 1:

∑=S W SLBF e e (1)

where SLBF is the total drug loading in the formulation and
equal to the sum of the solubility in the pure excipient (Se),
multiplied by the weight percentage of that excipient in the
formulation (We).

14,17 In other words, the drug loading
capacity of the formulation is the sum of the drug solubility
in all included excipients normalized by the contributing weight
fraction of the excipients in the formulation. The above
equation was modified from the original log−linear equa-
tion;14,15 here the sum of the weighted mean of the solubility is
used instead of the weighed geometric mean. Our ultimate aim
was to provide computational tools for prediction of solubility
in LBFs, with no requirement for prior experimental screening
of solubility in lipid excipients. For that purpose the predicted
solubility values from the PLS models were similarly summed
by making use of eq 1 and thereafter compared to the
experimental values.

Table 3. Experimentally Determined Thermodynamic Solubility in Surfactants and Cosolvents at 37 °Ca

compound Cremophor EL (mg/g) PS80 (mg/g) Carbitol (mg/g) PEG400 (mg/g)

acitretin 2.85 ± 0.14 3.09 ± 0.03 3.52 ± 0.20 1.07 ± 0.01
albendazole 2.75 ± 0.14 2.09 ± 0.12 5.99 ± 0.19 ≥5.75
bezafibrate 37.9 ± 5.23 31.8 ± 1.20 43.0 ± 1.83 36.0 ± 1.71
candesartan 11.3 ± 0.67 5.04 ± 0.94 20.5 ± 1.26 12.9 ± 1.33
candesartan c 26.4 ± 1.46 26.3 ± 0.54 77.0 ± 2.04 25.9 ± 0.86
carbamazepine 34.5 ± 1.06 34.6 ± 1.45 82.9 ± 1.80 73.9 ± 4.71
cinnarizine 22.7 ± 1.83 29.3 ± 0.92 54.3 ± 2.76 19.5 ± 0.89
clofazimine 15.9 ± 0.83 15.6 ± 1.04 22.8 ± 0.54 13.2 ± 0.61
clotrimazole 44.1 ± 3.01 51.1 ± 3.18 135.0 ± 3.57 74.5 ± 5.92
danazol 29.8 ± 0.50 30.1 ± 4.37 83.2 ± 1.97 35.8 ± 2.04
diflunisal 157.9 ± 6.54 119.7 ± 12.4 286.3 ± 13.4 169.2 ± 27.3
dipyridamole 9.57 ± 0.29 8.31 ± 0.37 43.1 ± 2.40 16.9 ± 0.80
disulfiram 88.8 ± 3.66 55.7 ± 3.32 162.6 ± 8.46 69.6 ± 3.26
ethinylestradiol 163.9 ± 10.1 ≥99.4 247.1 ± 8.93 ≥163
felodipine 125.1 ± 6.23 45.2 ± 4.36 217.2 ± 16.0 43.9 ± 6.25
fenbendazole 2.07 ± 0.09 1.90 ± 0.05 4.13 ± 0.28 2.83 ± 0.07
fenofibrate 101.3 ± 5.76 102.3 ± 3.15 201.7 ± 11.1 65.1 ± 4.94
fenofibric acid 58.4 ± 2.59 57.1 ± 2.49 92.8 ± 4.81 54.8 ± 2.69
glibenclamide 11.2 ± 1.01 10.5 ± 0.22 21.1 ± 0.46 8.25 ± 0.32
griseofulvin 9.70 ± 0.36 8.13 ± 0.27 18.9 ± 0.99 13.5 ± 0.60
halofantrine 27.9 ± 0.79 25.0 ± 1.60 79.3 ± 7.90 5.73 ± 0.38
haloperidol 11.3 ± 0.82 7.06 ± 0.64 27.2 ± 1.82 12.3 ± 0.92
indomethacin 71.6 ± 4.57 116.1 ± 8.33 187.4 ± 7.08 134.6 ± 11.3
itraconazole 1.92 ± 0.29 1.42 ± 0.19 6.30 ± 0.55 2.47 ± 0.08
mefenamic acid 30.7 ± 0.89 26.2 ± 0.65 43.6 ± 1.52 25.1 ± 0.86
naproxen 119.9 ± 2.97 106.6 ± 4.31 183.0 ± 4.92 132 ± 2.87
niclosamide 44.1 ± 1.75 30.2 ± 1.77 49.6 ± 2.62 61.7 ± 1.72
noscapine 12.3 ± 0.25 14.3 ± 0.91 25.6 ± 1.00 19.4 ± 0.94
perphenazine 71.7 ± 3.04 76.6 ± 4.35 232.6 ± 13.4 98.4 ± 4.32
praziquantel 45.4 ± 3.51 19.2 ± 1.20 116.9 ± 14.8 28.0 ± 1.08
progesterone 41.1 ± 1.27 28.3 ± 2.19 67.02 ± 1.36 17.1 ± 0.71
saquinavir ≥45.9 48.9 ± 2.15 ≥317 ≥300
sulfasalazine 13.1 ± 1.02 11.4 ± 0.63 16.4 ± 0.72 11.8 ± 0.58
tolfenamic acid 70.6 ± 3.87 57.3 ± 7.05 85.5 ± 4.29 46.8 ± 7.00
toltrazuril 19.7 ± 3.11 11.1 ± 1.29 50.2 ± 2.47 18.3 ± 2.27
min 1.92 1.42 3.52 1.07
max 163.9 119.7 ≥317 ≥300

aAbbreviations: Candesartan cilexetil (candesartan c).
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■ RESULTS

Solid State Characterization. DSC was used to provide
the following solid state data: Tm (°C), ΔHf (J/g), ΔSf (J/mol·
K), and calculation of ideal solubility at 37 °C (log Xi

c). The
ideal solubility has previously been identified to be closely
related to solubility of crystalline organic nonelectrolytes in
aqueous systems,22 and was therefore included as a descriptor
in this work. The four solid state related properties determined
from the DSC thermograms were used, together with calculated
molecular descriptors, as variables in the in silico model
development. The DSC thermograms generated easily
interpretable and sharp peaks for all compounds except for
candesartan, carbamazepine, and saquinavir. For candesartan
the Tm was confirmed to be 178 °C in a capillary melting point
apparatus (Electrothermal, England). Saquinavir gradually
liquefied by this approach starting at ∼100 °C. No sharp
melting point was observed, and at high temperature, the
compound decomposed. Hence, for saquinavir the Tm could
not be determined. The DSC thermograms of carbamazepine
showed a melting peak at 173 °C (form III) upon which an
exothermic crystallization to form I (181 °C) occurred that
subsequently melted at 191 °C.27 Hence, the solubility data
reported herein is for carbamazepine form III. Candesartan,
carbamazepine, and saquinavir were not included in the PLS
model development, since all four solid state descriptors were
required as input for modeling.
Drug Solubility in Single Excipients. Thirty-five poorly

water-soluble drugs were selected and measured for solubility in
five commonly used LBF excipients. The compounds were
selected to be as diverse in chemical properties as possible while
remaining suitable LBF candidates. The data set had the
following physicochemical properties: lipophilicity (reflected by
the calculated octanol/water partition coefficient, AlogPoct) 2.0
to 8.2, molecular weight 230.3 to 705.7 g/mol, and Tm 67−255
°C. In addition, the compounds were selected to be
representative examples of acids, bases, and nonionizable
compounds (Table 1).
Equilibrium solubility in the excipients varied 10,000-fold,

from as low as 0.01 mg/g up to >300 mg/g. The general
ranking order of drug solubility in the excipients (mg/g) was
long-chain triglyceride < medium-chain triglyceride < surfactant
< cosolvent (Tables 2 and 3). The mixed mono-, di-,
triglycerides (Maisine and Capmul) had higher solvation
capacity than the corresponding triglycerides (SBO and Captex,
respectively) on an mg/g scale (Table 2). In general the
solubility was slightly higher in Cremophor EL than
Cremophor ELP, but the rank order of compound solubility
was similar (Spearman rank coefficient 0.97) (Table SI2). For
10 of the compounds the solubility differed more than 10 mg/g
in these two surfactants. In the cosolvents, the drug solubility
was higher in Carbitol than PEG400 for all compounds
investigated except for niclosamide (Table 3).
In our previous study, there was a high correlation between

SBO and Captex when the solubility was converted to a mol
per mol scale.21 The extended data set in this study (n = 35)
verified this trend (R2 0.99) (Figure 2A). Intriguingly, the
mixed mono-, di-, triglycerides (Maisine and Capmul) also
displayed equal solvation capacities on a mol per mol scale (R2

0.89) (Figure 2A). Further, the solubility in ethoxylated
solvents was highly correlated as exemplified with the strong
correlations between Carbitol and PEG400 (R2 0.85), PS80 (R2

0.90), and Cremophor EL (R2 0.93) (Figure 2B). Hence this

confirms the importance of the ethoxylation for the solvation
capacity of these excipients. In addition, on a mol/mol scale,
the surfactants (PS80 and Cremophor EL) had a 2- to10-fold
greater solvation capacity than what was obtained in the
ethoxylated cosolvents (PEG400 and Carbitol).
We also investigated the relationship between drug solubility

in single excipients and melting temperature. The compounds
with Tm below 150 °C in general displayed solubility values
greater than 10 mg/g in SBO (Figure 3), and a similar trend
was observed for all studied glycerides. In Captex and Maisine,
a Tm below 150 °C corresponded to solubility values above 20
mg/g and in Capmul above 40 mg/g (Figure SI1). Moreover, it

Figure 2. Relation between solubility in single excipients. (A) Mixed
mono-, di-, triglycerides. (B) Ethoxylated surfactants and cosolvents.

Figure 3. Solubility of drug compounds in soybean oil compared to
melting point. Compounds with a Tm below 150 °C in general
displayed solubility greater than 10 mg/g in this triglyceride (upper
green area). Black circle (acid), dark gray circle (ampholyte), light gray
circle (base), and white circle (neutral).
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was observed that compounds that did not follow this general
trend had a high melting point in combination with low
entropy of fusion. Hence, the large and structurally diverse data
set yet again confirmed the importance of solid state limitations
of high-melting compounds not only in water-based
solvents,22,28 but also for solubility in lipids. However, this
data set showed no such trends for solubility in surfactants and
cosolvents (Figure SI1).
Another trend was that acidic compounds in general

displayed lower solubility in the lipids than the bases and
neutral compounds did, but this was not observed in the
surfactants and cosolvents. One reason may be that acidic
compounds are less prone to dissolve in the lipids because of
the low fraction free fatty acid present in the lipids. However,
for this particular data set, a further explanation may be that the
acids had relatively high melting points.
Computational Prediction of Drug Solubility in Lipid

Excipients. We developed eight PLS models (SBO, Maisine,
Captex, Capmul, Cremophor EL, PS80, Carbitol, and PEG400)
to analyze which molecular properties were most important for
describing thermodynamic solubility in commonly used lipid
excipients and to allow for fast prediction of loading capacity in
LBFs. All eight PLS models used 2−3 principal components
and 4−6 variables, and produced statistically strong models (R2

0.81−0.94 and Q2 0.78−0.91). Importantly, they predicted the
test sets well (Table 4). In this work, the logarithm form of the
ideal solubility was included in the model development, and
this term was found necessary to allow highly accurate models
to be developed for all excipients (lipids, surfactants, and
cosolvents). This descriptor was the most important descriptor
in all excipient models, except the PEG400 model in which it
was the third most important descriptor. Previous studies have
also found that descriptors related to crystal lattice energy are

of less importance for solubility predictions in PEG400
systems.20,21

Total polar surface area (TPSA (tot)), number of nitrogens
(nN), and surface area of hydrogen bond acceptors (SAacc)
negatively influenced solubility in the lipid excipients, thus
identifying the detrimental effect of polar groups on the
solubility in these systems. In addition to these easily
interpreted molecular properties, topological charge distribu-
tion (JGI6) was of importance in three of the lipid PLS models.
JGI6 positively impacted solubility, i.e., the distribution of
topological charges is an advantage for lipid solubility.
Cremophor EL is a surfactant with similarities in its molecular
structure to the lipids, and also in this model nN was found to
be a descriptor that negatively impacted the solubility. Other
significant descriptors in the surfactant and cosolvent models
were related to ionization potential, size, and electronegativity.
Mor18i and Mor26i belong to the 3D-MORSE descriptors and
contain information about both size and ionization state; for
solubility in surfactant and cosolvent excipients, larger
structures without ionization potential appear to be unfavor-
able. Additionally, electronegative atoms positively influenced
solubility (R6e+). For detailed description of the calculated
descriptors, see Table SI3. Table 4 depicts the descriptor
trends. The descriptors of the lipid models (SBO, Maisine,
Captex) are similar, and likewise the cosolvent models
(Carbitol, PEG400) are based on comparable descriptors.
Interestingly, Cremophor EL and PS80 share several
descriptors with the cosolvents, yet again emphasizing the
importance of the ethoxylated chain of the surfactants on the
final solubility. In addition, the in silico models revealed that
Capmul, the most surface active lipid of those investigated, has
descriptors in common with both the lipids and the surfactants.

Table 4. Statistics of and Descriptors Used in the Final Developed PLS Models of Drug Solubility (log (mol drug/mol
excipient)) in Single Excipientsa

SBO Maisine Captex Capmul Cremophor EL PS80 Carbitol PEG400

R2 0.93 0.93 0.94 0.94 0.85 0.86 0.87 0.81
Q2 0.91 0.91 0.91 0.90 0.81 0.81 0.83 0.78
RMSEETr 0.28 (n = 25) 0.19 (n = 25) 0.25 (n = 25) 0.15 (n = 25) 0.23 (n = 25) 0.22 (n = 25) 0.21 (n = 25) 0.27 (n = 25)
RMSEETe 0.23 (n = 4) 0.46 (n = 7) 0.37 (n = 6) 0.35 (n = 7) 0.33 (n = 7) 0.38 (n = 7) 0.27 (n = 7) 0.40 (n = 6)
log Xi

cb + + + + + + + +
TPSA (tot) − − −
nN − − −
JGI6 + + +
SAacc −
B10[C-O] − −
B04[N-O] −
B07[N-O] +
HATS7e +
HATS6i +
GATS1p −
GATS8s + + +
MATS7e +
Mor18ib − − − −
Mor26i −
R6e+ + + + +
CMC-80 +
TDB06s +
G2s +

aA plus sign (+) indicates a positive influence on the solubility, and a minus sign (−) indicates a negative effect on the solubility. bDescriptor with a
negative range.
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Calculation and Prediction of Solubility in Lipid-
Based Formulations. All four formulation types met the
requirements of self-emulsification and absence of phase
separation (Figure 1). The loading capacity of the formulations
ranged from 1.7 mg/g to 93.0 mg/g in type II, 1.3 mg/g to
167.1 mg/g in type IIIA, 2.8 mg/g to 166.0 mg/g in type IIIB,
and 1.9 mg/g to 92.9 mg/g in type IV. This extensive data set
confirms earlier studies,16−18 i.e., the total loading capacity of a
complex formulation can be calculated by proportionately
summing up the solubility of the compound in the single
excipients (eq 1). This trend was regardless of formulation type
or whether the compound displayed low, medium, or high
solubility in the LBFs (R2 0.91) (Figure 4A). Predicted
solubility values from the developed PLS models and eq 1 were
also in agreement with experimental loading capacity of the
formulations (R2 of 0.79 for all formulations). The predictions
were slightly better for the lipid-rich LBFs (II and IIIA) (R2

0.82) (Figure 4B), than the formulations with higher quantities
of surfactants and cosolvents (IIIB and IV) (R2 0.79) (Figure
4C). The better accuracy of the predictions in the lipid-rich
formulations was not unexpected, given the model performance
of the lipid models compared to the surfactant and cosolvent
models (Table 4). If the weighted geometric mean of the
solubility is used instead (log−linear equation), comparable
accuracy in the predictions is achieved. The use of either the
weighed mean or the geometric mean of the solubility for this
purpose has been discussed elsewhere.17

■ DISCUSSION

Loading capacity in LBFs is a critical factor during formulation
development, but it is still poorly understood which molecular
features determine solubility in commonly used LBF excipients.
A log−linear relationship was originally identified for solubility
in cosolvent/water systems.14 In this work, we used a linear
model to calculate solubility in complex lipid, surfactant, and
cosolvent mixtures. Our aim was to establish tools that rapidly
and accurately inform formulators of the potential use of LBFs
as delivery systems for poorly water-soluble drugs and,
ultimately, develop computational tools for solubility prediction
in single excipients and complex formulations. Such models are
highly warranted as they would provide flexible and rapid
predictions of loading capacity in any new LBF for which
excipient in silico models exist. We also hoped to gain a

mechanistic understanding of the molecular features important
for drug solvation in lipid excipients and formulations.
Our results strengthen the concept of obtaining solubility

data in key excipients. As we have proposed previously, such
data can be used to estimate solubility in similar excipients.21 In
other words, solubility determination in key excipients
reflecting one triglyceride, one mixed mono-, di-, triglyceride,
and one ethoxylated excipient can be used to estimate solubility
in similar excipients. Using ten structurally diverse drugs, Thi et
al. observed that the ranking order of excipients (i.e., the
amount of drug dissolved on a mg/g scale) in general was long-
chain oil < medium-chain oil < surfactant.29 Our database with
solubility values for 35 compounds in 9 excipients confirms the
trend reported by Thi et al. We also observed that mixed
mono-, di-, triglyceride glycerides (Maisine and Capmul)
overall had higher solvation capacities than the corresponding
triglycerides (SBO and Captex, respectively) on a mg/g scale
(Table 2). Notably, compounds that fall outside this general
rank trend in solubility are commonly used model compounds
in the study of LBFs. For instance, cinnarizine, halofantrine,
and fenofibrate are more soluble in Captex than Capmul and
less soluble in the surfactants than in the medium-chain lipids.
We speculate that these particular drug molecules are
compounds that thrive in lipids and their aliphatic chain
more than other, similarly lipophilic ones. Although these three
drugs have different molecular profiles and reflect both basic
and neutral drugs (see, e.g., Table 1), they are all low melting
compounds with fairly high logP and low or modest polar
surface area. Moreover, the three compounds possess some
degree of elongation and flexibility that might help in covering
polar groups, and thus favor lipophilic milieus. Other
compounds with similar properties, e.g., disulfiram and
perphenazine, also follow a similar trend and display high
lipid solubility. The analysis herein stresses that precautions
should be taken when choosing single model compounds, and
as a suggestion the use of cinnarizine, halofantrine, and
fenofibrate as general LBF model compounds should be re-
evaluated. When studies all use the same model compounds,
the understanding of these systems, and thus the LBF
development, could be misguided. On the other hand, this
analysis also revealed three optimal physicochemical properties
for drug solubility in lipids: the drugs should be neutral or basic,
have a low to intermediate Tm (preferably <150 °C), and have
few polar groups.

Figure 4. Experimentally determined solubility plotted against calculated and predicted solubility through eq 1 in four types of LBFs. (A)
Experimental solubility in LBF type II−IV compared to calculated solubility. (B) Experimental solubility in lipid rich LBFs (type II and IIIA)
compared to predicted solubility. (C) Experimental solubility in surfactant/cosolvent rich LBFs (type IIIB and IV) compared to predicted solubility.
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Mixtures of lipid, surfactants, and cosolvent are likely to form
stable microemulsions in the formulation itself. These will have
some degree of short-range order, e.g., reversed micelles and
lamellar phases, whereas any long-range order is stochas-
tic.30−33 In other words, the microemulsions that form are
distinguishable from the homogeneous solution because they
are isotropic over short distances. These types of excipients are
prone to water uptake which may impact the microstructures in
pure excipients and mixtures and thus distort solubility
determinations. We chose to work with off-the-shelf excipients
(stored under argon gas) to mimic the laboratory situation. In a
previous work, we had determined the amount of water in
PEG400 to be minimal (0.32% w/w).21 Nevertheless, water
sorption may be solvent dependent and could increase or
decrease drug solubility, depending on the properties of the
particular drug.30,34 Through determinations of solubility in
Cremophor EL (≤3% w/w water) and Cremophor ELP
(≤0.5% w/w water) of a larger drug data set, we have
confirmed that the compound solubility follows the same rank
order in the two, but the impact of a small amount of water is
indeed compound dependent. Overall the solubility was higher
in the surfactant containing more water. Water has been
observed to increase the solvation capacity of other organic
solvents.35,36 For example, the solubility of N-methylbenzamide
increases with more than 50% in water-saturated tricaprylin
compared to dry tricaprylin.34

The predictive power of the developed models is in line with
similar models for prediction of drug water solubility.37 Our
models represent the first computer-aided tools that can predict
drug solubility in various types of excipients, ranging from
triglycerides to cosolvents, and allow calculation of loading
capacity in complex formulations. To further challenge the
developed computational formulation models, a set of five
compounds (clofazime, dipyridamole, griseofulvin, mefenamic
acid, naproxen) was measured for their loading capacity in an
additional type IV formulation (50% w/w PEG400; 50% w/w
PS80). The calculated solubility (eq 1) was in excellent
agreement with the experimental (R2 1.0), and with only a
slight decrease in predictability using the computer approach
(R2 0.9). Solid state properties were of major importance for
solubility in all excipient models; in fact, we were not able to
develop well performing cosolvent models without inclusion of
such descriptors. Even though the inclusion of solid state
descriptors allowed development of predictive cosolvent
models, Tm alone did not give a threshold value for solubility
as was the case for the lipid excipients. Based on our data set it
is suggested that it would be better to make solid state
modifications to enhance the solubility of high-melting
compounds rather than using lipid rich LBFs (I-IIIA).
Moreover, polar groups negatively influenced solubility in
lipids, as seen from the negative contribution of polar surface
area, number of nitrogens, and surface area of hydrogen bond
acceptors. The modeling work also revealed that, when
electronegative atoms are present, the provided possibility to
distribute the topological charge is positive for lipid solubility.
Taken together, suitable candidates for a lipid-rich LBF (I-IIIA)
would be lipophilic, low-melting, have few polar groups, and
have a capacity to distribute charges. Examples meeting these
criteria are fenofibrate and perphenazine. In contrast, more
“hydrophilic” compounds (lower end of the logP scale
investigated here) could benefit from formulation in less
lipophilic LBFs (IIIB-IV), in which the polar descriptors were
unimportant. For solubility in these systems, the important

descriptors are related to ionization state, electronegativity, size,
and shape. Hence, suitable candidates in such formulations
would be polar but still lipophilic, and low-to-high melting, e.g.,
diflunisal and niclosamide.
In this work we showed that the weighted average of the

solubility in single excipients could be used to predict loading
capacity in complex lipid, surfactant, and cosolvent systems.
Drug solubility is clearly linked to drug localization, and we
speculate that this equation might be valid due to stable micro-
or nanostructures formed in these mixtures. In the colloidal
structures, or “excipient clusters”, the drug reaches the same
local maximum solubility as in the pure excipients, and hence
the loading capacity of the LBF is the sum of the solubility in
the included excipients. MD simulations of similar excipients,
glyceride surfactant, and mixed di- and triglyceride systems
show that the excipients reside in clusters.38 When there are no
or only trace amounts of water, reversed micellar structures
form.39 Experimental characterization of such systems also
confirms these reversed micellar structures.40−42 We are now
embarking on studies in which microscopic observation of
excipient mixtures will be combined with MD simulations, to
provide a deeper mechanistic understanding of the molecular
interactions in these complex systems.

■ CONCLUSION

In conclusion, the tools developed here rationalize the
identification of LBFs as a useful formulation strategy for
poorly water-soluble drug molecules. First, melting point
measurements can identify the use of formulations that include
large amounts of oils, i.e., LFCS I-IIIA. Tm < 150 °C was a good
indicator of reasonable solubility in glycerides and can serve as
a baseline for the selection of LBFs as potential enabling
formulations. However, drugs with higher melting points might
be well solubilized in LBFs containing high quantities of
cosolvents and surfactants; we found no relationship between
Tm and solubility in such solvents. Second, solubility in key
excipients can be estimated based on solubility in similar
excipients. For example, measurements in PEG400 can be used
to estimate solubility in other ethoxylated excipients such as
Cremophor EL, PS80, and Carbitol. Third, the loading capacity
of LBFs can be calculated or predicted from solubility in single
excipients. Our study is the first to develop computational
models for prediction of loading capacity in LBFs based on
calculated molecular descriptors and experimentally determined
solid state properties. These models accurately predicted the
loading capacity in four complex lipid formulations, allowing
the identification of suitable LBFs from a rapid DSC
measurement (using a few mgs only) and easily calculated
molecular descriptors. The computational models presented
here provide advantages in speed and simplicity and increase
our understanding of the molecular features important for
loading capacity in any new LBF.
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Pouton, C. W.; Porter, C. J. Toward the Establishment of Standardized
In Vitro Tests for Lipid-Based Formulations, Part 3: Understanding
Supersaturation Versus Precipitation Potential During the In Vitro
Digestion of Type I, II, IIIA, IIIB and IV Lipid-Based Formulations.
Pharm. Res. 2013, 30, 3059−3076.
(6) Williams, H. D.; Anby, M. U.; Sassene, P.; Kleberg, K.; Bakala-
N’Goma, J.; Calderone, M.; Jannin, V.; Igonin, A.; Partheil, A.;
Marchaud, D.; Jule, E.; Vertommen, J.; Maio, M.; Blundell, R.;
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